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Background:Machine learning (ML) has been used to build high performance prediction

model. Patients with congestive heart failure (CHF) are vulnerable to acute kidney injury

(AKI) which makes treatment difficult. We aimed to establish an ML-based prediction

model for the early identification of AKI in patients with CHF.

Methods: Patients data were extracted from the Medical Information Mart for Intensive

Care III (MIMIC-III) database, and patients with CHF were selected. Comparisons

between several common ML classifiers were conducted to select the best prediction

model. Recursive feature elimination (RFE) was used to select important prediction

features. The model was improved using hyperparameters optimization (HPO). The

final model was validated using an external validation set from the eICU Collaborative

Research Database. The area under the receiver operating characteristic curve (AUROC),

accuracy, calibration curve and decision curve analysis were used to evaluate prediction

performance. Additionally, the final model was used to predict renal replacement therapy

(RRT) requirement and to assess the short-term prognosis of patients with CHF. Finally, a

software program was developed based on the selected features, which could intuitively

report the probability of AKI.

Results: A total of 8,580 patients with CHF were included, among whom 2,364 were

diagnosed with AKI. The LightGBM model showed the best prediction performance

(AUROC = 0.803) among the 13 ML-based models. After RFE and HPO, the final

model was established with 18 features including serum creatinine (SCr), blood urea

nitrogen (BUN) and urine output (UO). The prediction performance of LightGBM was

better than that of measuring SCr, UO or SCr combined with UO (AUROCs: 0.809,

0.703, 0.560 and 0.714, respectively). Additionally, the final model could accurately

predict RRT requirement in patients with (AUROC = 0.954). Moreover, the participants

were divided into high- and low-risk groups for AKI, and the 90-day mortality in

the high-risk group was significantly higher than that in the low-risk group (log-

rank p < 0.001). Finally, external validation using the eICU database comprising

9,749 patients with CHF revealed satisfactory prediction outcomes (AUROC = 0.816).
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Conclusion: A prediction model for AKI in patients with CHF was established based

on LightGBM, and the prediction performance of this model was better than that of

other models. This model may help in predicting RRT requirement and in identifying the

population with poor prognosis among patients with CHF.

Keywords: acute kidney injury, congestive heart failure, prediction model, machine learning, LightGBM

INTRODUCTION

Acute kidney injury (AKI) is a condition characterized by a rapid
increase in serum creatinine (SCr), a decrease in urine output
(UO) or both symptoms occurring simultaneously, accompanied
by major complications including volume overload, electrolyte
disorders, uremic complications, and drug toxicity (1). The
incidence of AKI is 10–15% in patients admitted to the hospital
(2), and is more than 50% in those in the intensive care unit
(ICU) (3). Previous studies have demonstrated that even mild
forms of AKI are strongly associated with poor prognosis (4, 5).
In other words, patients who develop AKI have an increased
risk of mortality. Moreover, there is a lack of effective treatment
options for AKI, which leads to adverse outcomes for patients.
Although renal replacement therapy (RRT) is a key treatment for
advanced AKI, it also has the potential to cause some harm and
is not available in certain settings and regions (6). Therefore, it is
important to prevent AKI in hospitalized patients.

Although AKI is associated with many conditions, in most
cases, it can be attributed to certain simple and common causes,
including insufficient effective circulating volume (ECV) and
hypotension (7). Accordingly, in the past decade, attention
has shifted from treatment to prevention and early detection.
For many years, increased SCr and decreased UO have been
used to identify AKI in the short term (8). However, some
issues including unsatisfactory accuracy, lack of specificity and
hysteretic nature, limit the value of these measurements in the
early detection of AKI (9, 10).

The relationship between heart failure and renal dysfunction
is very complicated. Briefly, congestive heart failure (CHF) causes
low ECV and reduces renal perfusion, which in turn increases
the absorption of sodium-water, leading to a heavy load on
the heart, thereby making the combination of these conditions
extremely difficult to address (11). Because of the poor prognosis
of AKI in patients with CHF (12), clinicians should pay more
attention to identifying early renal dysfunction in such patients.
Unfortunately, few studies were focused on this issue. Therefore,
in the present study, we aimed to establish a prediction model for
AKI in patients with CHF based on machine learning (ML).

MATERIALS AND METHODS

Sources of Data
Medical Information Mart for Intensive Care III (MIMIC-III,
version 1.4) is a large single-center database containing the
medical records of ∼60,000 ICU patients admitted to the Beth
Israel Deaconess Medical Center (Boston, MA, USA) between
2001 and 2012 (13). To establish the prediction model, the

data from the MIMIC-III database were split into a training set
and an internal validation set. The eICU Collaborative Research
Database (eICU, version 2.0) is a multicenter ICU database
comparising high granularity data related to over 200,000 ICU
admissions between 2014 and 2015 at 208 hospitals located
throughout the United States (14). Data from the eICU database
were used as an external validation set.

Researchers who completed and passed an online course
on “Protecting Human Research Subjects” organized by the
National Institutes of Health (NIH) are qualified to inquie
about the information from the databases. One of the authors
(LL) obtained the qualification (record ID: 35965741) and was
responsible for data extraction. The Massachusetts Institute of
Technology has approved the establishment of the databases
with an informed consent exemption. The study was reported
according to the recommendations of the Transparent Reporting
of a multivariable prediction model for Individual Prognosis or
Diagnosis (TRIPOD) statement (15).

Study Population
Patients aged >18 years with CHF as the major cause of hospital
admission were included in this retrospective cohort study.
Patients with incomplete data were excluded from the study. In
the two databases, CHF was diagnosed by clinicians based on the
guideline of heart failure (16). We aimed to build a prediction
model for AKI diagnosed based on the following clinical practice
guidelines: increase in SCr by ≥0.3 mg/dL (or≥ 26.5 µmol/L) in
48 h, increase in SCr to 1.5 times over baseline levels in 7 days,
and patient UO ≤0.5 mL/kg/h for 6 h (8).

Data Collection
We used PostgreSQL tools version 13.0, to extract medical data
from the two databases. There were some patients had more than
one ICU admission, the first data records (mostly within the
first 24-h) in the first ICU admission were used in the analysis.
Subject IDs were used to identify distinct patients. Data, such
as the demographics, vital signs, common comorbidities, and
laboratory tests results were included in the initial analysis.

Development of the Prediction Model
In the present study, ML-based models were used to build
a prediction model for AKI developing during the period of
hospital admission in patients with CHF.

First, data from the MIMIC-III database were randomly split
into the training set (80%) and internal validation set (20%).
Models based on common ML classifiers including LightGBM,
XGBoost, AdaBoost, CatBoost, gradient boosting decision tree
(GBDT), bootstrap aggregating (Bagging), decision tree, random
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FIGURE 1 | Flow chart.

forest, logistic regression (LR), support vector machine (SVM),
naïve Bayes, multi-layer perceptron neural networks (MLP) and
k nearest neighbors (KNN) models were selected for making the
initial prediction based on 58 features, and the model with the
highest prediction value was selected as the primary model in
this study.

Second, the recursive feature elimination (RFE) algorithm
based on Shapley Additive explanations (SHAP) values was
performed to identify key features, which helped in making
the model more feasible for clinical practice. The effects of the
remaining features on the prediction scores were then measured
using the functions of the SHAP Python package (version 0.40.0),
which assessed the importance of each feature using a game-
theoretic approach (17). The feature with the smallest effect on
the prediction was eliminated in each loop (18), and, a compact
model was generated.

Third, hyperparameter optimization (HPO) was performed to
improve the prediction performance of the selected model. For
performing the optimization through the hyperbandmethod and
for testing different combinations of hyperparameters, we used
Optuna version 2.10.0 (19), which is an open-source optimization
framework that enables users to design complex deep learning
experiments quickly, efficiently, and dynamically (20). A total of
100 trials were conducted, and the parameters with the greatest
area under the receiver operating characteristic curve (AUROC)
were saved.

Last, the final model was used to predict AKI based on
the best combination of hyperparameters. Data from the eICU
database were used as an external validation set to verify the
model’s value. To further demonstrate the performance of the
prediction model, patients in the internal validation set were
divided into high- and low-risk groups based on whether their
AKI risk predicted by the final model was greater than the

median risk in the set, and 30-day mortality was also compared
between the two groups. Moreover, the requirement for RRT
within the first 24-h after ICU admission was predicted based
on the final model (Figure 1). In contrast to other studies
involving prediction models, we attempted to develop a software
program for calculating the possibility of AKI development
in patients with CHF, which could help clinicians in easily
identifying the high-risk patients and implementing effective
prevention strategies.

Statistical Analyses
The Kolmogorov-Smirnov test was used to evaluate the
normal distribution of the data. Continuous variables were
expressed as mean ± standard deviation (SD) and compared
using t–tests. Levene’s homogeneity of variance test was
used to test the assumption of homoscedasticity. If the
homoscedasticity was unsatisfactory, Welch’s t-test was used
for performing comparisons between the groups. Categorical
data were expressed as proportions and were compared using
the chi-squared test. The discriminative ability of the model in
predicting AKI was assessed using AUROC. To further elucidate
the performance of the model, calibration plotting and decision
curve analysis (DCA) were performed. In addition, the accuracy,
positive prediction value (PPV), negative prediction value (NPV),
balanced accuracy (BA), F1-score and Matthews correlation
coefficient (MCC) were calculated for each model in order to
evaluate the model’s value.

Both the MIMIC-III and eICU databases included extreme
and missing values. Extreme and error values that failed the
logic check were censored and were replaced with mean values.
Variables with a missing values rate of more than 30% of the
sample size were excluded. Mean imputation was performed to
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fill in missing data of <5%. Multiple imputation was used to
handle variables with missing data of between 5 and 30% (21).

All statistical analyses were conducted using Python version
3.9.0 (Python Software Foundation, www.python.org) and Stata
version 15.0 (StataCorp, College Station, TX, USA). A two-tailed
test was performed, and a P < 0.05 was considered to reflect
statistical significance.

RESULTS

Baseline Characteristics
A total of 8,580 patients with CHF from the MIMIC-III database
were finally included in the analysis. Among them, 2,364 patients
were diagnosed with AKI. Additionally, 58 features, including
patient demographics and characteristics, vital signs, therapy
administered, comorbidities and laboratory values were used
to build the initial model (Supplementary Table 1). After the
feature selection process, 18 important features including age,
weight, temperature, heart rate (HR), mean aortic pressure
(MAP), UO within the first 24 h, partial arterial oxygen pressure
(PaO2), arterial partial pressure of carbon dioxide (PaCO2),
white blood cell count (WBC), red blood cell count (RBC),
hematocrit, platelet count (PLT), SCr, blood urine nitrogen
(BUN), creatine kinase (CK), blood lactate, blood glucose, and
calcium were identified for establishing a compact model and
for performing external validation using the eICU database.
Comparisons between the non-AKI and AKI groups from the
MIMIC-III and eICU databases are shown in Table 1. The
first records of the abovementioned medical data were selected
for analysis.

Development of LightGBM Model
Comparisons among 13 ML-based models for the initial
prediction of AKI showed that the LightGBM algorithm
exhibited the best prediction performance, with an AUROC
of 0.803 (Figure 2). Therefore, the LightGBM algorithm was
selected as the primary model. Eighteen important features were
selected after RFE. The distribution of the effects of each feature
in the full and compact models is shown in Figure 3. For the
full model with 58 features, the feature importance was evaluated
by SHAP value (Figure 3A). Feature importance in the compact
model with the 18 selected features is shown in Figures 3B,C. We
found that SCr, BUN and PaO2 were the three main important
risk factors in both the full and compact models.

Subsequently, HPO was conducted to improve the
performance of the compact model (Figure 4). After 100
trials, the LightGBM model with the greatest AUROC was
obtained. The final settings of the hyperparameter search
are listed in Supplementary Table 2. The performance of a
single hyperparameter is shown in Supplementary Figure 1. A
comparison was performed between the latest model with the
best combination of model parameters and the pre-HPO model
in order to confirm the optimization effect (Figure 5). As shown
in the figure, the full model had a favorable AUROC of 0.803, and
the compact model had a slightly lower prediction performance
with an AUROC of 0.802. After HPO, the prediction value of the
compact model increased as expected (AUROC= 0.809).

FIGURE 2 | Comparisons of different machine learning models.

Model Evaluation and Validation
The AKI prediction performance of the LightGBM model was
compared with that of other predictive factors including SCr,
UO, BUN, and SCr combined with UO, and we found that
the LightGBM model had the best prediction performance
(Figure 6A). Other evaluation indicators including AUROC,
accuracy, PPV, NPV, BA, F1-score and MCC of the different
models based on the 18 features in the internal validation and the
external validation sets are summarized in Table 2. As shown in
the table, the LightGBMmodel had the highest AUROC, accuracy
and MCC in the two sets. Moreover, it also had the best NPV
and BA in the internal validation set of the MIMIC-III database.
Calibration curve plotting and DCA were also performed in the
present study, and for simplicity, LR, XGBoost and KNNmodels
were selected for comparisons with LightGBM model. As shown
in Figure 6B, the prediction probability of the LightGBM model
was the closest to the true probability compared with that of the
other models. A favorable performance was also observed in the
DCA (Figure 6C).

Because many patients with severe AKI have to receive RRT
for hyperkalemia, pulmonary edema or anuria, we performed
another prediction of RRT requirement during ICU admission
based on the LightGBM model using the 18 selected features to
further elucidate the prediction performance of the LightGBM
model. Figure 6D showed that the performance of the LightGBM
model in predicting RRT requirement was satisfactory, with
an AUROC of 0.954. In addition, patients from the internal
validation set were divided into high- and low-risk groups,
as previously described. The comparison of 90-day mortality
between the high- and low-risk groups is shown in Figure 6E;
the mortality in the high-risk group was significantly higher than
that in the low-risk group (log-rank p < 0.001).
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TABLE 1 | Baseline characteristic of the cohorts.

MIMIC-III cohort (n = 8580) eICU cohort (n = 9749)

Variables Non-AKI (n = 6,216) AKI (n = 2,364) P value Non-AKI (n = 7,837) AKI (n = 1,912) P value

Demographics and vital signs

Age, years 72.3 ± 13.7 75.0 ± 12.7 < 0.001 69.9 ± 13.9 70.5 ± 13.7 0.110

Weight, kg, 80.6 ± 22.3 82.6 ± 24.8 < 0.001 88.3 ± 29.5 91.7 ± 31.0 < 0.001

Temperature, ◦C 36.8 ± 0.6 36.6 ± 0.7 < 0.001 36.8 ± 0.9 36.4 ± 0.6 < 0.001

HR, bpm 102.9 ± 21.2 102.1 ± 22.6 0.145 91.4 ± 18.4 92.1 ± 21.0 0.183

MAP, mmHg 75.7 ± 10.5 73.8 ± 10.8 < 0.001 82.7 ± 20.2 75.9 ± 21.4 < 0.001

UO, mL 1,813 ± 1,171 1,639 ± 1,193 < 0.001 1,734 ± 1,539 1,226 ± 1,033 < 0.001

Laboratory tests

PaO2, mmHg 169.2 ± 88.7 137.7 ± 74.7 < 0.001 119.4 ± 64.9 122.1 ± 72.2 0.112

PaCO2, mmHg 44.5 ± 12.7 44.1 ± 13.4 0.247 45.3 ± 16.5 40.8 ± 16.2 < 0.001

WBC, × 109/L 12.2 ± 6.1 12.2 ± 6.5 0.618 11.2 ± 5.6 12.4 ± 6.5 < 0.001

RBC, × 1012/L 3.57 ± 0.68 3.55 ± 0.70 0.138 4.00 ± 0.81 3.86 ± 0.89 < 0.001

Hematocrit, % 32.0 ± 6.1 31.9 ± 6.1 0.228 36.2 ± 7.1 34.7 ± 7.8 < 0.001

Platelet, × 109/L 216.2 ± 100.2 221.9 ± 105.1 0.024 228.4 ± 93.9 217.7 ± 97.7 < 0.001

SCr, mg/dL 1.47 ± 1.55 2.04 ± 1.33 < 0.001 1.90 ± 2.05 2.76 ± 2.19 < 0.001

BUN, mg/dL 28.0 ± 19.9 46.1 ± 26.7 < 0.001 31.3 ± 20.3 50.3 ± 29.0 < 0.001

CK, U/L 467 ± 900 442 ± 926 0.246 245 ± 266 427 ± 474 < 0.001

Lactate, mmol/L 2.21 ± 1.52 2.22 ± 1.62 0.832 2.31 ± 1.47 2.80 ± 2.13 < 0.001

Glucose, mg/dL 141.8 ± 44.2 145.8 ± 48.8 < 0.001 165.7 ± 89.6 169.3 ± 98.9 0.145

Calcium, mmol/L 2.10 ± 0.21 2.09 ± 0.22 0.542 2.06 ± 0.50 2.04 ± 0.48 0.091

AKI, acute kidney injury; HR, heart rate; MAP, mean aortic pressure; UO, urine output; PaO2, partial arterial oxygen pressure; PaCO2, arterial partial pressure of carbon dioxide; WBC,

white blood cell count; RBC, red blood cell count; SCr, Serum creatinine; BUN, blood urine nitrogen; CK, creatine kinase.

FIGURE 3 | Features importance estimated using the Shapley Additive explanations (SHAP) values. (A) All 58 features, the blue to red color represents the feature

value (red high, blue low). The x-axis measures the impacts on the model output (right positive, left negative); (B) Compact 18 features; (C) Significance of the

predictors in the LightGBM model. CRE, creatinine; BUN, blood urea nitrogen; PO2, partial pressure of oxygen; UO, urine output; HR, heat rate; WBC, white blood

cell; PCO2, partial pressure of carbon dioxygen; MAP, mean aortic pressure. RBC, red blood cell; PLT, platelet; CK, creatine kinase.

Moreover, the eICU database was used for external validation
of the model. As shown in Figure 7, the LightGBM model had
the best prediction performance (AUROC = 0.816) compared

with the other models. The accuracy of the LightGBM model
in the external validation set was also the highest among the
models, and the other evaluation indicators are summarized
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FIGURE 4 | Hyperparameters optimization. (A) Each blue point represents the result of a trial, and the dark orange line represents the best AUROC value; (B) Each

line represents a trial, the shade of color represents the performance of optimization; (C) the empirical distribution function of HPO.
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FIGURE 5 | Comparisons of full parameters, pre-HPO and after-HPO

compacted parameters models.

in Table 2. Finally, we developed a software program based
on the 18 features for predicting AKI and determining the
probability (Figure 8). The main codes of this study were
available at gitee (https://gitee.com/lile_xj/prediction-model-
for-aki-in-patients-with-chf).

DISCUSSION

In the present study, we established a prediction model based
on several ML algorithms, and found that various features are
strongly associated with AKI in patients with CHF. Among
the 13 models, the LightGBM model had the best prediction
performance in both the internal and external validation sets.
Using this model as the primary model, we found that SCr, BUN
and UO were significant risk factors for AKI which is consistent
with previous findings (1, 8). Moreover, demographics, such as
age and weight; vital signs including temperature, HR and MAP;
and various laboratory values, including PaO2, PaCO2, WBC,
RBC, PLT, hematocrit, CK, glucose, blood calcium and lactate
were also associated with AKI. When evaluated in both the
internal and external validation sets, the LightGBM model also
exhibited a favorable performance, predicting RRT requirement
during ICU admission and in assessing the short-term mortality
in high- and low-risk groups for AKI based on its prediction.

LightGBM is a type of modified gradient boosting algorithm
which overcomes the unsatisfactory efficiency and scalability
of traditional gradient boosting algorithms, such as XGBoost
(22). Several studies have demonstrated that it has a favorable
prediction value in the field of medicine (23–25). In this study,
we found that LightGBM had the best prediction value compared
with XGBoost, LR, naïve Bayes and etc. models. Using the
exclusive feature bundling (EFB) method, LightGBM can speed
up the training process of the XGBoost algorithm by up to over 20
times while achieving almost the same accuracy (22). Therefore,

we suggest that LightGBM, a highly efficient and accurate new
ML algorithm, to build some convincing prediction models.

An increase in SCr and a decrease in UO over a short period
of time were the main features of AKI and were used to define
AKI according to the guidelines (8, 26). BUN is also a classic
biomarker for evaluating renal function (27). As mentioned
above, SCr, UO, and BUN were the key predictive factors for
AKI; however, these biomarkers were not sensitive enough,
especially for the early diagnosis of AKI (28). Accordingly, we
compared the prediction performance between the compact
model and measurements of SCr, UO, SCr combined with UO,
and BUN and found that the performance of the compact model
was significantly better than the that of these measurements
(AUROCs: 0.809, 0.703, 0.560, 0.714 and 0.675, respectively)
(Figure 6A). In addition, although chronic kidney disease (CKD)
is an important risk factor for AKI (6), it was excluded in
the compact model through RFE. The reason may be that the
participants with CKD were not divided into different groups
based on the severity of renal dysfunction in the present study;
stage 1 or 2 CKD may be less strongly associated with AKI than
moderate to severe CKD (29). Future studies are required to
address this issue.

Furthermore, we found that elderly and obese patients
may at a high risk of AKI, which was consistent with the
findings of previous studies (30, 31). Abnormal vital signs,
including temperature, HR, and MAP, were associated
with AKI, as expected. Other laboratory values, including
PaO2, PaCO2, WBC, RBC, PLT, hematocrit, CK, glucose,
calcium, and lactate, which are not commonly used in
prediction models, were also found to be predictive factors
for AKI; this information would be helpful in future
research (Figure 3B).

To further evaluate the prediction performance, the
LightGBM model was used to predict RRT requirement
during ICU admission using the 18 selected features. AKI
is strongly associated with increased early and long-term
mortality (32, 33), and some patients with severe AKI
must receive RRT for hyperkalemia, pulmonary edema or
anuria (34). In the present study, the LightGBM model
was also able to efficiently predict RRT requirement
with an AUROC of 0.954, which again demonstrated the
satisfactory prediction performance of LightGBM. Moreover,
all patients in the internal validation set were divided into
high- and low-risk groups for AKI using the model, and
we performed a Kaplan-Meier curve analysis to compare
the 90-day mortality between the two groups. The result
showed that the 90-day mortality in the high-risk group was
significantly higher than that in the low-risk group (log-
rank p < 0.001). In addition, the LightGBM model also
had the best prediction value in the external validation set
from the eICU database, indicating a remarkable ability for
generalization and clinical value. The favorable prediction
performance of the LightGBM model was demonstrated
in various aspects, suggesting its clinical application value
in the early identification of AKI in patients with CHF
and consequently in the administration of appropriate
preventive treatments.
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FIGURE 6 | Model evaluation and validation. (A) Comparisons of prediction performance between the compact model and measurements of creatinine, urine output,

creatinine combined with urine output, and urea nitrogen; (B) Calibration curve; (C) Decision curve analysis; (D) Prediction of renal replacement therapy requirement

using the LightGBM model; (E) Kaplan-Meier curve analysis of 90-day mortality between high-and low-risk groups divided using the LightGBM.
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TABLE 2 | Model evaluation.

Model AUROC Accuracy, % PPV, % NPV, % BA, % F1-score MCC

Internal validation

LightGBM 0.807 76.9 60.1 81.6 67.9 0.533 0.387

CatBoost 0.795 76.2 60.1 79.7 64.8 0.478 0.344

GBDT 0.798 76.0 60.3 79.4 64.2 0.333 0.336

XGBoost 0.780 75.3 56.3 80.7 66.1 0.414 0.345

Random Forest 0.792 76.3 61.2 79.5 64.5 0.326 0.343

LR 0.758 75.1 60.6 77.1 60.0 0.258 0.275

Bagging 0.761 74.2 54.7 78.8 62.7 0.384 0.291

SVM 0.757 72.4 45.5 76.5 56.4 0.351 0.169

Naïve Bayes 0.640 72.7 51.1 75.3 56.3 0.274 0.182

MLP 0.651 69.8 43.3 76.5 58.0 0.456 0.184

KNN 0.608 71.6 42.7 73.5 52.4 0.211 0.089

AdaBoost 0.790 74.9 55.7 80.0 64.9 0.404 0.326

Decision Tree 0.603 69.0 43.8 78.9 61.6 0.536 0.230

External validation

LightGBM 0.816 82.8 59.0 85.0 60.9 0.362 0.311

CatBoost 0.791 82.6 62.4 83.7 57.5 0.271 0.262

GBDT 0.778 82.1 62.1 82.7 54.2 0.171 0.195

XGBoost 0.790 81.9 52.9 85.4 62.0 0.384 0.303

Random Forest 0.804 82.4 58.7 84.0 58.2 0.293 0.264

Logistic Regression 0.755 82.0 55.9 83.6 57.0 0.261 0.234

Bagging 0.760 81.7 52.1 84.4 59.3 0.325 0.261

SVM 0.707 81.5 46.9 83.6 55.6 0.227 0.185

Naïve Bayes 0.569 73.0 29.2 85.3 58.5 0.322 0.156

MLP 0.692 80.9 47.2 83.6 57.0 0.268 0.207

KNN 0.606 81.4 57.1 81.6 50.9 0.042 0.084

AdaBoost 0.793 82.2 54.4 85.0 61.0 0.363 0.294

Decision Tree 0.622 74.8 34.5 85.3 61.1 0.367 0.212

The bold values represent the best predict performance among these models. AUROC, the area under the receiver operating characteristic curve; PPV, positive prediction value; NPV,

negative prediction value; BA, balanced accuracy; MCC, Matthews correlation coefficient.

STRENGTHS AND LIMITATIONS

Our study, which was based on two large-scale cohorts, has

contributed to establishing a prediction model for AKI. To
our knowledge, the present study has built the first ML-based

prediction model for AKI in patients with CHF. Furthermore,

a series of ML algorithms were screened to select the best
prediction model and guarantee the satisfactory prediction

performance. Moreover, RFE was performed to identify the

important prediction features and to exclude weakly correlated
factors, which also improved the clinical feasibility. Additionally,

HPO could improve the prediction performance of theML-based

model. Finally, a large cohort was included in this study as the

external validation set, and internal and the external validation
enhanced the reliability of the model.

There were some limitations associated with this study.

First, we collected related data from two public databases,

and some features, including B-type natriuretic peptide and
cardiac troponin I levels were excluded because of the high

rate of missing data. Feature selection is an important aspect

of building a prediction model, and excluding certain variables

might affect the prediction performance. Second, the participants
were all from the ICU, where patients are more likely to have

FIGURE 7 | Comparisons of different machine learning models in external

validation set.
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FIGURE 8 | An example of the prediction software.

multiple-organ dysfunction and poor prognosis compared with
those in general wards, which may limit the target population
of the prediction model. Finally, this study was based on a
retrospective analysis of data and the results should be confirmed
through further prospective studies.

CONCLUSION

In conclusion, we established a prediction model based on ML
algorithms, which included 18 clinical features, and found that
the LightGBM model could predict AKI in CHF patients with
high accuracy and that the prediction performance was better
than that of other clinical models. Moreover, the model may help
in predicting RRT requirement and identifying the population
of patients with poor prognosis among those with CHF. These
findings need to be confirmed in future prospective studies.
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