AUTHOR=Gertz Roman Johannes , Gerhardt Felix , Kröger Jan Robert , Shahzad Rahil , Caldeira Liliana , Kottlors Jonathan , Große Hokamp Nils , Maintz David , Rosenkranz Stephan , Bunck Alexander Christian TITLE=Spectral Detector CT-Derived Pulmonary Perfusion Maps and Pulmonary Parenchyma Characteristics for the Semiautomated Classification of Pulmonary Hypertension JOURNAL=Frontiers in Cardiovascular Medicine VOLUME=9 YEAR=2022 URL=https://www.frontiersin.org/journals/cardiovascular-medicine/articles/10.3389/fcvm.2022.835732 DOI=10.3389/fcvm.2022.835732 ISSN=2297-055X ABSTRACT=Objectives

To evaluate the usefulness of spectral detector CT (SDCT)-derived pulmonary perfusion maps and pulmonary parenchyma characteristics for the semiautomated classification of pulmonary hypertension (PH).

Methods

A total of 162 consecutive patients with right heart catheter (RHC)-proven PH of different aetiologies as defined by the current ESC/ERS guidelines who underwent CT pulmonary angiography (CTPA) on SDCT and 20 patients with an invasive rule-out of PH were included in this retrospective study. Semiautomatic lung segmentation into normal and malperfused areas based on iodine density (ID) as well as automatic, virtual non-contrast-based emphysema quantification were performed. Corresponding volumes, histogram features and the ID SkewnessPerfDef-Emphysema-Index (δ-index) accounting for the ratio of ID distribution in malperfused lung areas and the proportion of emphysematous lung parenchyma were computed and compared between groups.

Results

Patients with PH showed a significantly greater extent of malperfused lung areas as well as stronger and more homogenous perfusion defects. In group 3 and 4 patients, ID skewness revealed a significantly more homogenous ID distribution in perfusion defects than in all other subgroups. The δ-index allowed for further subclassification of subgroups 3 and 4 (p < 0.001), identifying patients with chronic thromboembolic PH (CTEPH, subgroup 4) with high accuracy (AUC: 0.92, 95%-CI, 0.85–0.99).

Conclusion

Abnormal pulmonary perfusion in PH can be detected and quantified by semiautomated SDCT-based pulmonary perfusion maps. ID skewness in malperfused lung areas, and the δ-index allow for a classification of PH subgroups, identifying groups 3 and 4 patients with high accuracy, independent of reader expertise.