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Background: Observational studies have shown an association between early age at
menarche (AAM) and myocardial infarction (MI) with recorded cases. In this Mendelian
randomization (MR) study, we used large amounts of summary data from genome-wide
association studies (GWASs) to further estimate the association of genetically predicted
AAM with genetically predicated risk of MI and investigate to what extent this association
is mediated by genetically determined lifestyles, cardiometabolic factors, and estrogen
exposure.

Methods: A two-step, two-sample MR study was performed by mediation analysis.
Genetic variants identified by GWAS meta-analysis of reproductive genetics consortium
(n = 182,416) were selected for genetically predicted AAM. Genetic variants identified
by the Coronary ARtery DIsease Genome-wide Replication and Meta-analysis plus
The Coronary Artery Disease Genetics Consortium (n = 184,305) were selected
for genetically predicted risk of MI. Genetic variants from other international GWAS
summary data were selected for genetically determined mediators.

Results: This MR study showed that increase in genetically predicted AAM was
associated with lower risk of genetically predicted MI (odds ratio 0.91, 95% confidence
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interval 0.84–0.98). Inverse variance weighted (IVW) MR analysis also showed that
decrease in genetically predicted AAM was associated with higher genetically predicted
alcohol intake frequency, current smoking behavior, higher waist-to-hip ratio, and
higher levels of systolic blood pressure (SBP), fasting blood glucose, hemoglobin A1c
(HbA1c), and triglycerides (TGs). Furthermore, increase in genetically predicted AAM
was associated with genetically predicted longer sleep duration, higher levels of high-
density lipoproteins, and older age at which hormone replacement therapy was started.
The most essential mediators identified were genetically predicted current smoking
behavior and levels of HbA1c, SBP, and TGs, which were estimated to genetically
mediate 13.9, 12.2, 10.5, and 9.2%, respectively, with a combined mediation proportion
of 37.5% in the association of genetically predicted AAM with genetically predicted
increased risk of MI in an MR framework.

Conclusion: Our MR analysis showed that increase in genetically predicted AAM was
associated with lower genetically predicted risk of MI, which was substantially mediated
by genetically determined current smoking behavior and levels of HbA1c, SBP, and TGs.
Intervening on the above mediators may reduce the risk of MI.

Keywords: age at menarche, cardiometabolic risk factors, myocardial infarction, Mendelian randomization,
lifestyle, mediation analysis

INTRODUCTION

Cardiovascular disease (CVD), with myocardial infarction (MI)
as one of the most acute and severe manifestations, continues to
be the dominant cause of deaths worldwide and accounts for over
17 million deaths annually (1). Notably, women were reported to
suffer a greater burden of ischemic symptoms caused by MI, with
higher rates of functional disability and more adverse outcomes
compared to men (2). However, conventional precautions against
CVD demonstrate a persistent gap in effective recognition of
gender-specific risk factors and understanding how these factors
result in poorer outcomes for women (3). Thus, identifying
gender-specific risk factors for adverse CVD events, especially
MI, during women’s lifetime could yield more timely prevention
and improved clinical prognosis.

Menarche signifies the puberty and start of reproductive
capacity, and is followed by the onset of cyclic ovarian function
and increased secretion and exposure to endogenous estradiol.
As a reproductive physiologic landmark of the female body,
menarche is dependent on a tightly orchestrated process of
neurohormonal alterations through the hypothalamus-pituitary-
ovarian axis (4). Previous large-population cohort studies have
reported that early age at menarche (AAM) was associated
with increased risks of coronary heart disease (CHD) in both
adolescent and adult women (5–11). Glucose intolerance, blood
pressure, and serum lipids were reported to be increased in
adolescent girls with early AAM, which might play an essential
role in the development of ischemic heart disease (IHD) (12).
Inconsistent results were obtained concerning the roles of
smoking and estrogen exposure in mediating the association
of AAM with IHD (6, 8, 9, 13, 14). As previous approaches
for testing potential mediators in observational studies led to
biased results by calculating the reduction in strength of the

multivariable association between exposure variable and disease
with adjustment for confounding factors (15, 16), it remains
unclear whether the correlation of AAM with CHD is modified
by diverse potential confounding factors, including lifestyles
along with cardiometabolic factors, and the extent of their
potential impacts.

Mendelian randomization (MR) has emerged as a new
investigative approach that utilizes genetic variants as
instrumental variables to investigate the association of an
exposure of interest with an outcome. In brief, MR refers to
a random combination of alleles in which DNA is transferred
from parent to offspring as gametes formed during meiosis, a
process known as Mendel’s second law. This means that the
inheritance of any particular genetic variant in an individual’s
DNA should be independent of other traits. Therefore, when
individuals in a population are grouped by a specific genotype
associated with biomarker differences, they should be similar
in all aspects except for one group with genetically higher or
lower biomarker levels. For this reason, MR has been described
as “nature’s randomized trial.” MR is less prone to confounder
bias, measurement error, and reverse causality; thus, it can
provide more efficient and robust results that closely resemble
those from randomized controlled studies (17–20). Based on
the well-established MR framework, the two-step approach
has higher sensitivity in evaluating potential mediators and is
less likely to cause inherent bias compared with the traditional
multivariable approach (21).

In this study, we aimed to estimate the association of
genetically predicted AAM with genetic susceptibility of MI, and
to further estimate whether and to what extent the association
was mediated by lifestyles, anthropometric characteristics,
cardiometabolic risk factors, and age at which hormone
replacement therapy (HRT) was started.
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MATERIALS AND METHODS

Overall Study Design
Large two-step, two-sample MR analyses involving over 647,920
participants selected from publicly available, summary-level
genetic datasets were performed using a two-step strategy to
investigate the association of genetically predicted AAM with
genetically predicted risk of MI and whether this association
could be mediated by lifestyles, conventional cardiometabolic
risk factors, and age at which hormone replacement therapy
was started. Two-sample MR analyses refer to the utilization of
distinct data sets to ascertain the associations of same genetic
variants with the exposure (e.g., AAM) and outcome (e.g., MI)
of interest (22). The association of genetically predicted AAM
with genetic disposition to MI was tested first, and the two-
step approach was applied in mediation analyses. The two-step
approach investigated the association of genetically predicted
AAM with each genetically determined mediator in the first step.
In the second step, the approach investigated the association of
these genetically determined mediators with genetically predicted
MI risk after adjusting for AAM. The proportion of mediation
was also estimated for each mediator following the second step.

Data Sources
Selection of Genetic Instruments for Genetically
Predicted Age at Menarche
Genetic association estimates for AAM were obtained from
genome-wide association study (GWAS) meta-analysis
derived from 182,416 participants of European ancestry that
included 2,441,815 autosomal single nucleotide polymorphisms
(SNPs) provided by the Reproductive Genetics (ReproGen)
Consortium (23). A set of SNPs that reached GWAS significance
(p < 5 × 10−8) in association with AAM were selected
as genetic instruments. SNPs with linkage disequilibrium
(r2 < 0.001) were ruled out.

Selection of Genetic Instruments for Genetically
Predicted Potential Mediators
We obtained SNPs for waist-to-hip ratio (WHR) from the
Genetic Investigation of Anthropometric Traits (GIANT)
consortium’s 2015 GWAS meta-analysis including 2,542,447
SNPs from 210,088 participants of European descent (24).
SNPs for fasting blood glucose (FBG) were extracted from
Meta-Analyses of Glucose and Insulin-related traits Consortium
(MAGIC), which provided a GWAS meta-analysis of 2,445,760
SNPs from 46,186 participants of European descent in 2010 (25).
SNPs for high-density lipoprotein (HDL) were obtained from a
GWAS meta-analysis provided by Kettunen et al. (26) comprising
12,133,295 SNPs from 24,925 participants of European descent
in 2016. SNPs for alcohol intake frequency, sleep duration, and
age at which HRT was started were all acquired from an online
public GWAS provided by Elsworth et al., and totaled 9,851,867
SNPs from participants of European descent in 2018. In addition,
SNPs for current smoking behavior and systolic blood pressure
(SBP) were selected from an online public GWAS provided by
Neale et al., including 10,894,596 SNPs from participants of

European descent in 2017. SNPs for hemoglobin A1c (HbA1c)
were extracted from an online public GWAS provided by Neale
et al. including 13,586,180 SNPs from participants of European
descent in 2018. SNPs for triglycerides (TGs) were identified from
an online public GWAS provided by Neale et al. comprised of
13,586,007 SNPs from participants of European descent in 2018.
Detailed results of genetically predicted alcohol intake frequency,
sleep duration, current smoking behavior, SBP, HbA1c, TGs,
and age at which HRT was started could be obtained through
online public GWAS database1 using the R 4.0.3 software
TwoSampleMR package. The SNPs were clumped, and those with
linkage disequilibrium (r2 < 0.001) were ruled out. SNPs that
reached GWAS significance (p < 5 × 10−8) in association with
potential mediators were selected as genetic instruments.

Selection of Genetic Instruments for Genetically
Predicted Myocardial Infarction
For genetically predicted MI, we used genetic association
estimates that were publicly available from the Coronary
ARtery DIsease Genome wide Replication and Meta-analysis
plus The Coronary Artery Disease Genetics Consortium
(CARDIoGRAMplusC4D) 1000 Genomes-based GWAS meta-
analysis of 123,504 controls and 60,801 cases including 8,600,000
SNPs (27). SNPs that reached GWAS significance (p< 5× 10−8)
in association with MI were selected as genetic instruments.
The SNPs were clumped, and those with linkage disequilibrium
(r2 < 0.001) were ruled out.

Statistical Analysis
Association of Genetically Predicted Age at
Menarche With Genetically Predicted Myocardial
Infarction Risk
Two-sample MR analyses were performed to investigate the
association of genetically predicted AAM with genetically
predicted MI risk. We assumed that summarized GWAS data
were available for multiple genetic variants that satisfied the
following assumptions: (i) genetic variants were associated
with exposure; (ii) genetic variants were independent of any
confounder of the exposure-outcome association; (iii) genetic
variants were independent of outcome and could only be
associated with outcome through gene expression of exposure.

The genetic association of each effect allele with genetically
predicted AAM was represented by Xk (k = 1, 2, 3. . .) with a
standard error (SE) as σXk. Xk (k = 1, 2, 3. . .) representing the
effect size per allele of SNPk (k = 1, 2, 3. . .) in AAM (in years).
The data of Xk and σXk were both extracted from beta value
and SE in a relevant GWAS study with SNP characteristics (23),
respectively, by applying the R 4.0.3 software TwoSampleMR
package. The genetic association of each allele with genetically
predicted MI was represented by Yk (k = 1, 2, 3. . ..) with an
SE as σYk. For a binary outcome as MI, Yk (k = 1, 2, 3. . .)
represented the effect size per allele of SNPk (k = 1, 2, 3. . .) in
the log-odds or the log probability of MI. The data of Yk and σYk
were both extracted from OR and SE in a relevant GWAS study
with SNP characteristics (27) and were harmonized, respectively,

1https://gwas-api.mrcieu.ac.uk/
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by applying the R 4.0.3 software TwoSampleMR package. The
ratio estimate of the association of genetically predicted AAM
with genetically predicted MI could be calculated by formula
Yk/Xk (k = 1, 2, 3. . .). The SE of the ratio estimate could be
approximated using the delta method, and the leading term is
σYk/Xk (k = 1, 2, 3. . .) (28). To investigate the association of
genetically predicted AAM with genetically predicted MI risk,
an inverse variance weighted (IVW) meta-analysis using a fixed-
effects model was implemented to pool estimates of MR as
β̂IVW across individual SNPs with the R 4.0.3 software (29). The
calculation of β̂IVW is shown by the following formula:

β̂IVW =
6kXkYkσ

−2
Yk

62
kXk

σ−2
Yk

se(̂βIVW), the approximate standard error of the pooled estimates,
was also calculated with the R 4.0.3 software using the following
formula:

se(̂βIVW) =

√
1

6kX2
kσ
−2
Yk

Mediation With Genetically Predicted Lifestyles,
Anthropometric and Cardiometabolic Parameters,
and Age at Which Hormone Replacement Therapy
Was Started
The genetic association of each effect allele with genetically
determined potential mediators was represented by Zk (k = 1,
2, 3. . ..) with standard error (SE) σZk. Zk (k = 1, 2, 3. . .)
representing the effect size per allele of SNPk (k = 1, 2, 3. . .)
in potential mediators. The data of Zk and σZk were extracted
from beta value and SE in relevant GWAS studies on potential
mediators with SNP characteristics as mentioned above in section
“Materials and Methods” and were harmonized, by applying
the R 4.0.3 software TwoSampleMR package. To investigate the
association of genetically predicted AAM with each genetically
determined potential mediator, the IVW meta-analysis, which
used a fixed-effects model, was also implemented through the R
4.0.3 software to pool estimates of MR as β̂IVW∗ across individual
SNPs. The calculation of β̂IVW∗ is shown by the following
formula:

β̂IVW∗ =
6kXkZkσ

−2
Zk

62
kXk

σ−2
Zk

Se(β̂IVW∗), the approximate standard error of the above
pooled estimates, was calculated with R 4.0.3 software using the
following formula:

se(̂βIVW∗) =

√
1

62
kXk

σ−2
Zk

To determine the mediation of each factor, we multiplied
coefficients of association of genetically predicted AAM with
each mediator, and coefficients of association of each mediator
with MI after adjusting for genetically predicted AAM. In order
to estimate the association of t genetically determined potential
mediators with genetically predicted risk of MI adjusting for

influences from AAM, a regression-based MR was also conducted
with the R 4.0.3 software (30).

Sensitivity Analyses
MR-Egger, MR-Egger intercept, and MR-PRESSO analyses were
performed to estimate whether there was pleiotropy, which
might affect the results of the MR analysis (30–32). The
Robust Adjusted Profile Score (RAPS) was applied to test
weak instrumental variables, and weighted median sensitivity
analyses were conducted to estimate invalid instrumental
variables (32).

Statistical Software
We carried out the two-step, two-sample MR analyses by utilizing
R version 4.0.3 (R Foundation for Statistical Computing, Vienna,
Austria, 2008) and R studio version 1.3.1093 (Boston, MA,
United States). We used the TwoSampleMR package for R to
facilitate the MR analyses.

RESULTS

Association of Genetically Predicted Age
at Menarche With Genetically Predicted
Myocardial Infarction Risk
Characteristics of SNPs used as instrumental variables for AAM
are listed in Supplementary Table 1. Genetic estimates for
the association of genetically predicted AAM with genetically
predicted MI are shown in Supplementary Table 2. Figure 1
shows that increase in genetically predicted AAM was associated
with lower risk of genetically predicted MI, with an odds ratio
(OR) of 0.91 [95% confidence interval (CI) 0.84–0.98] in the main
IVW MR analysis (also shown in Supplementary Table 3).

Association of Genetically Predicted Age
at Menarche With Genetically Predicted
Lifestyles, Anthropometric and
Cardiometabolic Parameters, and Age at
Which Hormone Replacement Therapy
Was Started
Figure 2 indicates that increase in genetically predicted AAM
was associated with lower genetically predicted alcohol intake
frequency (OR: 0.95, 95% CI: 0.92–0.98, p < 0.001), current
smoking behavior (OR: 0.99, 95% CI: 0.97–0.99, p = 0.049),
WHR (OR: 0.95, 95% CI: 0.90–0.99, p = 0.035), FBG (OR:
0.97, 95% CI: 0.94–0.99, p = 0.048), HbA1c (OR: 0.75, 95%
CI: 0.61–0.92, p = 0.005), SBP (OR: 0.97, 95% CI: 0.95–
0.99, p = 0.048), and TGs (OR: 0.97, 95% CI: 0.94–0.99,
p = 0.041) in the IVW MR analysis. Figure 2 also shows
that increase in genetically predicted AAM is associated with
genetically predicted longer time of sleep duration (OR: 1.03,
95% CI: 1.01–1.05, p = 0.001), higher levels of HDL (OR: 1.08,
95% CI: 1.02–1.15, p = 0.011), and older age at which HRT
was started (OR: 1.05, 95% CI: 1.01–1.09, p = 0.008) in the
IVW MR analysis. The above potential genetically predicted
mediators that were associated with genetically predicted AAM

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 April 2022 | Volume 9 | Article 821068

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-821068 April 15, 2022 Time: 13:11 # 5

Zheng et al. An MR Study of AAM With MI

FIGURE 1 | Estimate of associations of genetically predicted AAM with genetically predicted MI. IVW was applied as main analysis for estimating the association of
genetically predicted AAM with genetically predicted MI. AAM, age at menarche; MI, myocardial infarction; IVW, inverse variance weighted.

FIGURE 2 | Estimate of the association of genetically predicted AAM with each genetically determined potential mediator. IVW was applied as main analysis. The
results showed that increase in genetically predicted AAM was associated with genetically determined longer sleep duration, higher levels of HDL and older at which
HRT was started. The results also showed that increase in genetically predicted AAM was inversely associated genetically determined alcohol intake frequency,
current smoking behavior, WHR, FBG, HbA1c, SBP, and TGs. AAM, age at menarche; IVW, inverse variance weighted; HDL, high-density lipoprotein; HRT, hormone
replacement therapy; WHR, waist-hip-ratio; FBG, fasting blood glucose; HbA1c, hemoglobin A1c; SBP, systolic blood pressure; TG, triglycerides.

(p < 0.05) were all involved in the MR analyses of association
of each genetically predicted mediator with genetically predicted
risk of MI. Characteristics of SNPs used as instrumental
variables for genetically determined potential mediators are
shown in Supplementary Tables 4–13. Genetic estimates for
the association of genetically predicted AAM with genetically
determined mediators can be seen in Supplementary Tables 14–
23. MR estimates of associations of genetically predicted
AAM with genetically determined risk factors are shown in
Supplementary Table 24.

Association of Genetically Predicted
Lifestyles, Anthropometric and
Cardiometabolic Parameters, and Age at
Which Hormone Replacement Therapy
Was Started With Genetically Predicted
Risk of Myocardial Infarction
Figure 3 shows that our MR analyses supported that genetically
predicted increased risk of MI was associated with genetically
predicted current smoking behavior (OR: 2.89, 95% CI: 1.37–
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FIGURE 3 | Estimate of the association of each genetically determined potential mediator with genetically predicted MI. The association of genetically determined
potential mediators with genetically predicted MI was estimated by linear regression-based MR method. MI, myocardial infarction; HDL, high-density lipoprotein;
HRT, hormone replacement therapy; WHR, waist-hip-ratio; FBG, fasting blood glucose; HbA1c, hemoglobin A1c; SBP, systolic blood pressure; TG, triglycerides.

6.11, p = 0.021) and genetically predicted higher levels of FBG
(OR: 1.18, 95% CI: 1.02–1.37, p = 0.049), HbA1c (OR: 1.04, 95%
CI: 1.02–1.06, p < 0.001), SBP (OR: 1.49, 95% CI: 1.20–1.86,
p < 0.001), and TGs (OR: 1.33, 95% CI: 1.21–1.45, p < 0.001)
in the IVW MR analysis, after adjusting for genetically predicted
AAM. Because there was no evidence of association of genetically
predicted alcohol intake frequency, sleep duration, WHR, HDL,
and age at which HRT was started with genetically predicted
MI risk in the IVW MR analysis (p > 0.05), these potential
mediators were excluded. Genetic estimates for the association
of genetically determined mediators with genetically predicted
MI after adjusting for genetically predicted AAM are shown in
Supplementary Tables 25–34.

Mediation of Genetically Predicted
Lifestyles and Cardiometabolic
Parameters
The two-sample MR analyses showed that the percentage
mediated by genetically predicted current smoking behavior
and genetically predicted higher level of HbA1c, SBPs,
and TGs was at a proportion of 13.9, 12.2, 10.5, and
9.2%, respectively (As is shown in Table 1). FBG was
not involved in the final mediation analyses, because the
mediation proportion of FBG was comparatively lower
than the other four mediators, which indicated that it
may not be a core mediator. The combined mediation
proportion of the four risk factors accounted for 37.5% of
the association of genetically predicted AAM with genetic
predisposition to MI risk.

Sensitivity Analyses
Simple median (p < 0.05, Supplementary Table 3) and
weighted median sensitivity analyses (p < 0.05, Supplementary
Table 3) showed that our results were less likely to be biased
with invalid instruments. RAPS (p < 0.05, Supplementary
Table 3) indicated that weak instruments were unlikely to affect
our results. Other sensitivity analyses including single SNP

TABLE 1 | MR analyses of association of genetically predicted AAM with
genetically predicted risk of MI and mediation explained by risk factors.

Beta Proportion (%)

Estimated association of AAM with MI −0.0990 1.0

Estimated association of mediators with MI

Current smoking behavior −0.0138 13.9

HbA1c −0.0121 12.2

SBP −0.0104 10.5

TG −0.0091 9.2

Total −0.0370 37.5

MR, Mendelian randomization; AAM, age at menarche; MI, myocardial infarction;
HbA1c, hemoglobin A1c; SBP, systolic blood pressure; TG, triglycerides.

analysis (Supplementary Table 35) and leave-one-out analysis
(Supplementary Table 36) provided results consistent with the
main IVW MR analysis. MR-Egger (p > 0.05, Supplementary
Table 3) and MR-PRESSO analysis (p < 0.05, Supplementary
Table 37) also showed that our MR analysis was not significantly
affected by pleiotropy.

DISCUSSION

The MR analyses conducted in this study provided strong
evidence to support the association of genetically predicted AAM
with genetically predicted risk of MI. This study also found that
the association was mediated by genetically predicted current
smoking behavior and levels of HbA1c, SBP, and TGs at a
proportion of 13.9, 12.2, 10.5, and 9.2%, respectively. Together,
all these genetically determined mediators account for more than
one-third of the association of genetically predicted AAM with
genetically predicted risk of MI.

Our findings are consistent with previous studies conducted
in different settings (5, 9, 33, 34). A hospital-based case-control
study conducted by La Vecchia et al. (33) enrolled 576 women
(202 cases of acute MI) below 55 years of age from 1983 to
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1986 in Northern Italy and found that women with menarcheal
age of 12–14 years showed reduced risk of MI (relative risk:
0.49, 95% CI: 0.31–0.75) compared with women whose menarche
occurred younger than 12 years old. Another population-based
prospective study enrolled 15,807 women aged 40–79 years from
1993 to 1997 and evaluated them for CVD events for 10.6 years,
showing an elevated risk of incident CHD [1.23 (1.06–1.43)] in
women with early AAM (<12 years) compared with those with
later menarche (5). Gallagher et al. conducted a cohort study in
Shanghai, China from 1989 to 1991 involving 267,400 women
textile workers who were followed up through 2000. Their results
indicated that women with menarche at 13 years or earlier had
an increased risk of IHD with a hazard ratio (HR) = 1.44 (95%
CI: 1–2.05) adjusted for age compared with those with later
menarche at 15 years (8). In addition, a prospective study with
34,022 Chinese females aged 45–74 at enrollment (1993–1998)
found a significant inverse association between menarcheal age
and risk for CHD mortality across different AAM categories. HRs
for CHD mortality of different age groups (≤12, 13–14, 15–16,
≥17 years old) were 1.06 (0.80–1.34), 1 (referent), 0.76 (0.65–0.9),
and 72 (0.58–0.88), respectively (p trend < 0.001) (9). Cooper
et al. also reported that the risk of IHD decreased with increasing
age of menarche onset (age-adjusted RR 0.76 per year, 95% CI:
0.6–0.95) in a cohort study involving 867 White college-educated
women (34).

Given the progress shown in our understanding of the
association between AAM and MI based on recorded cases,
previous observational studies were still limited by relatively
small sample sizes and bias due to adjustment of various
factors, which might have influenced the association of AAM
with MI risk. Several MR studies with relatively large sample
sizes had been undertaken to further genetically estimate
the association of AAM with cardiovascular risk factors and
cardiometabolic diseases (35, 36). Our results are also in
accordance with Cao and Cui, who observed that later AAM
decreased the risk of CHD (OR: 0.92, 95% CI: 0.88–0.96).
Early AAM was found to be associated with the rising trend
of HDL but lower diastolic blood pressure (DBP) combined
with lower levels of TGs, log fasting insulin, log homeostasis
model assessment of insulin resistance (HOMA-IR), and log
homeostasis model assessment of β cell function (HOMA-β)
(36). Another MR analysis from the Guangzhou Biobank Cohort
Study, which investigated the association between AAM and
cardiovascular risk factors, revealed that AAM was inversely
correlated with levels of FBG (35). However, none of the
previous observational or MR studies examined which genetically
determined mediators influenced the association of genetically
predicted AAM with genetically predicted MI and to what extent
in an MR framework.

Recent studies have indicated that early AAM might not be a
simple independent determining factor of cardiovascular adverse
events but might reflect negative metabolic imprinting during the
pre-pubescence period, such as relatively high weight or body
mass index (BMI) during childhood (37–40). There was, thus,
an imperative need to investigate whether genetically predicted
increased AAM is associated with genetically predicted lower risk
of MI among women during puberty or later adulthood through

lifestyles and cardiometabolic or other potential mediators as
long-term impacts of metabolic imprinting.

Smoking
With regard to smoking behavior, Mueller et al. enrolled 34,022
Chinese women aged 45–74 years at baseline (1993–1998) and
followed them prospectively throughout 2009. They found that
increased AAM was associated with lower risk for CHD and
CVD mortality among non-smoking females; HRs (95% CI)
for CVD mortality in non-smoking females across different age
categories of menarche (≤12, 13–14, 15–16, and ≥17 years old)
were: 1.06 (0.87–1.29), 1 (referent), 0.89 (0.79–1), and 0.8 (0.69–
0.93), respectively (p trend < 0.001), while for CHD mortality
in non-smoking females the results were 1.06 (0.80–1.34), 1
(referent), 0.76 (0.65–0.9), and 0.72 (0.58–0.88), respectively (p
trend < 0.001). However, no association was found between
AAM and CHD or CVD mortality among smokers (9). Similarly,
Gallagher et al. found that HRs (95% CI) for CVD mortality
across different AAM groups (≤13, 14, 15, 16, and ≥17) were:
1.44 (1–2.05), 1.06 (0.76–1.47), 1 (referent), 1.09 (0.82–1.45),
and 0.85 (0.65–1.12), respectively (p trend < 0.001) among non-
smoking females vs. smokers (8).

The above results differ from the findings presented here,
which showed that current smoking behavior might play a
vital role in the association of genetically predicted AAM with
genetically predicted MI. Consistent with our findings, Jacobsen
made a similar point in his study, which suggested 1-year earlier
AAM was associated with a mean 17.6% higher IHD mortality
among women who smoked compared with 5.2% in women
who never smoked (6). In addition, another cross-sectional
study including 2,030 postmenopausal females 55–81 years
old from England suggested that smoking behavior increased
free estradiol significantly only in overweight postmenopausal
females. These findings indicated that smoking-related increases
in testosterone were translated into higher levels of estradiol
through fat cells as an important peripheral conversion approach
for postmenopausal overweight women. In the meantime,
compared with lifetime smoking, current smoking behavior
was found to significantly affect sex hormone levels; however,
after a 1- to 2-year period of smoking cessation, sex hormone
levels were the same as those of never smokers (41). Thus,
relatively smaller sample size, low frequency of smoking among
enrolled participants, lack of control of number of overweight
women among enrolled participants, and inaccurate self-reported
smoking time and cessation history might explain the different
results between previous specific cohorts and our MR analyses.
Given that sex hormone levels were associated with AAM,
whether changes in current smoking behavior might modify
CVD risks in a favorable direction through modification of
endogenous sex hormones needs to be further investigated and
results should be interpreted with caution.

SBP/HbA1c/TGs
Another clear finding to emerge from our MR analyses was
that SBP, HbA1c, and TGs played vital roles in mediating the
association of early genetically predicted AAM with genetically
predicted MI, which was consistent with the results from

Frontiers in Cardiovascular Medicine | www.frontiersin.org 7 April 2022 | Volume 9 | Article 821068

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-821068 April 15, 2022 Time: 13:11 # 8

Zheng et al. An MR Study of AAM With MI

Remsberg et al., who found an inverse relationships among AAM
and SBP (β estimates:−1.24, SE: 0.27), insulin (β estimates:−0.1,
SE: 0.03), TGs (β estimates: −2.68, SE: 1.7) independent of fat-
free mass and percent body fat during adolescence. Statistically
significant associations were not found between AAM and
glucose, total cholesterol, DBP, low-density lipoprotein, or HDL,
which further supports the results from our MR analyses (12).
In addition, another study that recruited 9,097 females aged
25–64 from China in 2004–2005 revealed that early AAM was
associated with increased TGs, body fatness, and homeostasis
model assessment of insulin resistance instead of FBG after
adjusting for age (37). Lakshman et al. also reported that women
with early AAM (<12 years) had a higher risk of hypertension
[OR (95% CI):1.13 (1.02–1.24)] than those with later AAM in a
prospective study that involved 15,807 females aged 40–79 years
from 1993 to 1997 and followed for more than 10 years. Each
1-year delay of AAM was associated with 5% lower risk of
hypertension (95% CI: 3–7%) in linear models, and hypertension
risk could only be partially attenuated after adjusting for adult
BMI and waist circumference (5).

The above studies support the finding that increased levels
of HbA1c, which indicated that long-term hyperglycemia, in
contrast to FBG, were more likely to mediate the association of
early AAM with MI risk. Moreover, SBP may play a more crucial
role in mediating the association of AAM with MI compared
to DBP. Although both SBP and DBP could independently
predict cardiovascular events, a cohort study involving 1.3
million adults from a general outpatient population suggested
that SBP elevation (≥140 mmHg) had a greater effect on
cardiovascular outcomes [HR (95% CI): 1.18 (1.17–1.18)] than
DBP elevation [≥90 mmHg; HR (95% CI): 1.06 (1.06–1.07)],
which further supported the findings of our MR analyses (42).
Another interesting finding was that TGs, instead of other types
of blood lipids, served a more essential role in mediation of
the association of genetically predicted AAM with genetically
predicted MI, which was further supported by results of the
Newcastle Thousand Families Study, which recruited 1,142
children who were followed for 50 years. The study indicated
that TGs were significantly associated with BMI at age 9 and
were closely related with glucose metabolism in adult women
after adjusting for adult percentage fat (43). Thus, the specific
role of TGs and long-term impact on women need to be
further investigated.

Potential Mechanism
Although the inverse association of AAM and MI was supported
by a number of previous cohort studies, several other studies
provided a J shape or U shape association between AAM and
CVD or CHD (44–46). These inconsistent results indicated
that early or late AAM might lead to increased cardiovascular
risk by triggering different risk factors or mediators. Lee et al.
reported that early AAM was more likely to be related to
overnutrition, psychosocial stress, and metabolic syndrome,
and late AAM is usually due to polycystic ovary syndrome,
undernutrition, and excessive exercise, which might be related
to hypercortisolism and hypoestrogenism (13). Thus, SBP,
HbA1c, and TGs, which are closely related to metabolic

syndrome, might mediate the association of genetically predicted
AAM with genetically predicted MI through oxidative stress
causing vascular damage and disruption of plaques by chronic
inflammation. Simultaneously, early AAM may lead to female
precocious puberty and early onset of smoking, which could
result in insulin resistance of adipocytes, vessel damage, and
oxidative stress in adolescent girls and significant changes in
sex hormones through adipocytes in postmenopausal overweight
women as a long-term effect (47, 48). Further studies with big
data and experimental evidence might be necessary to delineate
the above possible mechanisms.

Implications for Public Health and
Clinical Management
Our study provides new insights from genetic estimates in an
MR framework to further reveal the association of genetically
predicted AAM with genetic predisposition to MI through a
series of mediators that are closely related to metabolic syndrome.
These innovative findings provided the potential targets for
future pharmaceutical therapies and practical interventions such
as lifestyle modifications on current smoking behavior and high-
fat and high-sugar diets. Furthermore, our findings will also
increase awareness of the importance of education for harmful
habit cessation especially on girls during their early puberty to
lower the MI risk by avoiding long duration of exposure to these
cardiometabolic risk factors.

Innovations and Limitations
Our study made several remarkable advances. The major
strength of our study is that it presented an MR framework
to genetically assess the association of AAM with MI and
genetically estimate the potential mediation proportion of
different risk factors in mediating this relationship. This study
provides more comprehensive and stronger evidence for further
exploring the pathogenic mechanism of early AAM in MI.
Moreover, more than 647,920 participants were involved in
the two-sample MR analyses, which had a larger sample
size than previous observational studies and MR analyses.
The greater statistical power of this study also complements
the imprecision that might arise in one-sample MR analyses
when estimating mediation proportions. In addition, as genetic
variants were immutable, naturally and randomly allocated at
conception, MR analyses provide robust estimates to reduce
bias. The genetic instruments that represented AAM and
the mediators investigate the lifetime rather than short-
term effects.

Note that our MR analyses also might be somewhat limited
in some respect. Even though the results of our MR analyses
were sufficiently robust to estimate the association of genetically
predicted AAM with genetically predicted MI, we believe that
conducting prospective cohort studies in the future will enable
us to provide valuable information about the association of
AAM with MI from more comprehensive perspectives and help
future researchers formulate a broader view for making clinical
decisions and public health policies. Additionally, not all aspects
of the exposure (AAM) phenotype can necessarily be deduced
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by these genetic variants. A notable example is that the genetic
instruments for TG and SBP might capture average levels of TG
and SBP but might not necessarily reflect the variability in serum
lipid and blood pressure. The validity of our MR analyses relied
on three key assumptions: (i) genetic variants were associated
with AAM (exposure); (ii) genetic variants were independent of
any confounder of AAM (exposure)-MI (outcome) association;
(iii) genetic variants were only associated with MI (outcome)
through gene expression instead of independent biological
pathways (49). Because the second assumption was not easy to
confirm because of potential unknown confounders, and the
third assumption could be violated by pleiotropy, we performed
various types of sensitivity analyses to further investigate whether
the presence of pleiotropy, as well as weak instrumental variables
and other invalid instrumental variables, influenced our results.
The results of the sensitivity analysis were in accordance with
those from our main IVW MR analysis. The analyses in this study
were carried out on participants mostly of European descent,
which may limit the generalizability of our findings to other
ethnicities and populations.

CONCLUSION

Our MR analyses indicate that increase in genetically predicted
AAM was associated with lower risk of genetically predicted
MI, and that this association was found at least partially
mediated through current smoking behaviors, SBP, and levels
of HbA1c and TGs. In other words, early AAM might reflect
adverse metabolic imprinting during the pre-pubertal phase.
Given the increasing number of adolescent females globally
who are currently challenged by earlier AAM currently as
a result of social-economic progress, this study may help
public health policymakers and doctors formulate more scalable
and effective strategies to reduce the incidence of MI due
to early AAM without political and social reforms. Further
interventional studies should be performed to examine whether
controlling for the above mediators in adolescent females is
effective in reducing their increased MI risk, and to develop
a clearer picture of other related mediators as well as the
interplay among them.
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