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Colchicine has been demonstrated to reduce cardiovascular death, myocardial

infarction (MI), ischemic stroke, and ischemia-driven coronary revascularization in

people with coronary artery disease (CAD). These reductions were observed even

in patients already taking antiplatelet therapy. As well as having anti-inflammatory

e�ects, colchicine demonstrates antiplatelet e�ects. We propose that colchicine’s

antiplatelet e�ects primarily target collagen-induced platelet activation via the

collagen receptor, glycoprotein (GP)VI, which is critical for arterial thrombosis

formation. In settings such as stroke and MI, GPVI signaling is upregulated. We have

demonstrated in vitro that therapeutic concentrations of colchicine lead to a decrease

in collagen-induced platelet aggregation and alter GPVI signaling. Clinical studies of

colchicine given for 6 months lead to a significant reduction in serum GPVI levels

in CAD patients, which may ameliorate thrombotic risk. Future evaluation of the

e�ects of colchicine in clinical trials should include assessment of its e�ects on

collagen-mediated platelet activation, and consideration be given to quantifying the

contribution of such antiplatelet e�ects additional to the known anti-inflammatory

e�ects of colchicine.
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Introduction

Cardiovascular diseases (CVD), including coronary artery disease (CAD) and

cerebrovascular disease, remain the main cause of death in the world (1). The contribution of

platelets to CVD initiation and progression is well evidenced and has now extended beyond

thrombosis alone to include a role in inflammation [reviewed in Gawaz et al. (2), Nording

et al. (3), and Rondina et al. (4)]. Platelets respond to both sub-endothelial collagen (upon

endothelial dysfunction/disruption) via the collagen receptors [integrin α2β1 and glycoprotein

(GP)VI], and to thrombin (generated at the site by activation of the coagulation system) via the

protease-activated receptors (PAR)-1 and -4. The platelet activation response occurs rapidly and

includes shape change, release of granular contents from both alpha- and dense-granules, and

conformational change of receptors such as GPIIb/IIIa which allows for platelet aggregation.

The dense granule release leads to secretion of adenosine diphosphate (ADP) which is involved

in the secondary wave of platelet activation which enhances the platelet activation response.
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Antiplatelet therapy in CVD [reviewed in Behan and Storey

(5) and Passacquale et al. (6)] began with inhibition of the cyclo-

oxygenase (COX)-1 pathway by aspirin, followed by inhibition of the

ADP receptor, P2Y12, as an alternative or adjunct therapy to aspirin,

and GPIIb/IIIa inhibition in acute coronary syndromes. In all cases,

more potent or extensive antiplatelet inhibition has been associated

with increased risk of bleeding. Completed (7, 8) and ongoing trials

include alternative antiplatelet targets, including a collagen receptor

(GPVI) (9, 10), and the thrombin receptors (PAR-1 and−4) [reviewed

in Abdulsattar et al. (11) and Li et al. (12)]. Anti-inflammatory

targets, including interleukin (IL)-1β and nucleotide-binding domain

leucine rich-repeat containing protein (NLRP3) (13–18) have also

been recently explored. Recent studies have identified that colchicine

may work as both an anti-inflammatory [reviewed in Martinez et al.

(19)] and antiplatelet agent (20, 21).

In this perspective, we aim to highlight the need to evaluate

collagen-mediated platelet activation in clinical environments and

in cardiovascular trials. This may clarify the potential role of this

under-investigated activation pathway in mediating the effects of

colchicine as an adjunctive CVD therapeutic agent.

Platelet function studies and CAD
clinical trials

COX-1 and P2Y12 inhibition have been the cornerstones of

antiplatelet therapy for cardiovascular disease for several decades (6,

22, 23). While dual antiplatelet therapy (e.g., aspirin and clopidogrel)

has proven to be effective in reducing cardiovascular events in

unstable angina pectoris patients and post PCI (24, 25), this treatment

has some limitations such as residual high on-treatment platelet

reactivity to ADP (26) and the bleeding complications caused by

more potent P2Y12 inhibitors (27). Importantly, trials adjusting

therapy based on testing platelet function using the level of P2Y12

inhibition were not effective in improving cardiovascular outcomes

(28–30), suggesting limitations to our conventional approaches of

assessing platelet function in patients with CVD. P2Y12 inhibition

can have additional unexpected effects on platelet reactivity to both

collagen and thrombin which are not explored during conventional

platelet testing (31). While conventional platelet function testing is

not currently recommended in patients undergoing PCI (32), there

has been some success in ACS with de-escalation based on platelet

function testing (33).

Despite the availability of diverse platelet function assays (34),

clinical trials have focused on assays such as aggregometry, and

ADP-dependent point of care assays (VerifyNow and TEG) and

vasodilator-stimulated phospho-protein (VASP) phosphorylation

[reviewed in Fontana et al. (35)]. Aggregation assays are dependent

on both the agonists and the concentrations used, such as stimulating

the P2Y12 receptor (29, 33). Additionally, results can differ according

to sample type. Light transmission aggregometry (LTA) requires the

use of platelet rich plasma (PRP), whereas impedance aggregometry

allows for the use of either PRP or whole blood, and the latter may

permit leukocyte contributions to platelet activation which may be

more physiological. VASP phosphorylation, while informative for

activity/signaling or response of the P2Y12 receptor to stimulation by

ADP and thus the secondary augmentation response, does not inform

in relation to other pathways of platelet activation. Despite platelets

being anucleate and relatively small, their signaling and activation

pathways are both complex and interconnected. The concept of

individualized therapy is receivingmore attention (29, 33), and rather

than only looking at drug responsiveness with one assay/agonist, e.g.,

ADP, inclusion of other agonists such as collagen and thrombin may

be informative.

Collagen-mediated platelet activation
and the GPVI receptor

Platelet activation through the collagen receptors (integrin α2β1

and GPVI) is critical for the formation of arterial thrombosis and

can lead to blockage of vessels resulting in myocardial infarction

(MI) or stroke. Whereas, inhibiting more traditional targets such

as GPIIb/IIIa (aka integrin αIIbβ3), P2Y12, and thromboxane A2

can lead to bleeding complications, it is possible that novel receptor

targets such as the collegen receptor will not cause bleeding (9, 10, 36).

GPVI is solely expressed on platelets, as a mixture of monomers

and dimers (37). It is the primary receptor for collagen, and collagen-

mediated platelet activation via GPVI is dependent on receptor

density (38). Binding between collagen andGPVI enhances activation

of integrins such as α2β1 which increases adhesiveness of the

platelets (39, 40). In the absence of GPVI, α2β1 is required for

collagen-mediated platelet activation (40) but under physiological

conditions GPVI is themain collagen receptor. Interestingly, collagen

stimulation (at low concentrations) via GPVI can lead to secretion

of platelet granule contents without causing other overt activation

(expression of P-selectin (CD62P) or GPIIb/IIIa conformational

change), aggregation or shape change (41). Thus, strategies leading

to partial inhibition of GPVI signaling are attractive in CVD due to

the ability to target pathological granule secretion while leaving the

major haemostatic pathways intact.

Surface levels of GPVI expression are increased in acute coronary

syndromes (ACS) independent of traditional markers of MI [e.g.,

creatine kinase (CK) and troponin T] (42). Moreover, patients who

had increased GPVI levels also had increased platelet aggregability

post coronary stenting despite dual antiplatelet therapy (42). GPVI

expression levels could also be a potential marker of MI risk prior

to the event (42–44). Additionally, ACS patients have an elevated

number of GPVI receptors on circulating platelets before (Day 0)

and after stenting (Day 1) when compared to patients with stable

angina pectoris (SAP) which lasts up to 2–4 days post-PCI, and

patients with an elevated level of GPVI at admission tended to

have a poorer clinical prognosis (42). Enhanced collagen-induced

aggregation in the presence of COX-1 inhibition (aspirin) can be

indicative of future ACS events in otherwise healthy individuals who

have a known family risk of early-onset CAD–only those individuals

whose collagen-induced aggregation remained elevated after 2 weeks

of aspirin, tested in whole blood, had an ACS event during follow-up,

further underscoring the potential importance of collagen-mediated

platelet activation in ACS (45).

During platelet activation, in response to both soluble platelet

agonists and shear, GPVI forms dimers that preferentially bind to

fibrous collagen when compared to the GPVI-monomer (46, 47).

Inhibition of the binding between the GPVI-dimer and immobilized

collagen leads to decreased platelet adhesion and aggregation (48).

GPVI-dimer expression levels, but not total GPVI levels, have also

been demonstrated to be elevated in stroke, with elevation being

noted for ≥90 days post-stroke (49). This increase was associated
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FIGURE 1

Schematic of the inhibitory role of colchicine in platelet activation. Colchicine modulates microtubule polymerization, but also leads to a reduction in

platelet activation and aggregation. Colchicine does not change GPVI surface expression levels but does result in reduced ROS generation by platelets in

response to stimulation of the GPVI receptor by CRP-XL; however, it is not known at what point within the GPVI signaling pathway ROS generation is

a�ected. While the reduction in ROS generation in response to colchicine is specific to the GPVI signaling pathway, reduced activation by colchicine,

particularly after stimulation with other agonists such as ADP, may be a microtubule depolymerization dependent e�ect. Whether colchicine directly

interacts with the platelet GPVI receptor or acts exclusively downstream of this receptor is unknown. Created with Biorender.com (20, 52, 56–58).

with increased platelet activation andwith stroke severity. Cleavage of

GPVI by metalloproteinases is a feature of collagen-mediated platelet

activation (50). This generates soluble GPVI (sGPVI), and increased

levels of sGPVI have been demonstrated in stroke (51).

Revacept, a GPVI-Fc fusion protein, has shown some promise

in reducing cerebral infarct volume and improving functional

outcomes in a stroke model without bleeding complications (36).

Revacept in combination with guideline recommended antiplatelet

therapy has now undergone phase II clinical trials in symptomatic

carotid stenosis. The clinical trial (n = 158 patients randomized to

three groups; placebo, 40 and 120mg Revacept) assessed the safety

and efficacy of the treatment with the following end points—any

cerebrovascular events (including stroke or MI) or bleeding

complications. A 54% risk reduction in the safety and efficacy end

points was observed in the highest dose (120mg Revacept) group,

demonstrating the potential of GPVI as a therapeutic target and

a clear indication of the importance of collagen-mediated platelet

activation (9).

Colchicine inhibits collagen mediated
platelet activation

While it is well-known that colchicine affects the typical

inflammatory cells such as monocytes and neutrophils, it is becoming

increasingly evident that colchicine also influences platelets. We have

recently reviewed the effect of colchicine on platelet function in both

in vitro and in vivo settings (52).

Studies examining platelet aggregation in response to in vitro

colchicine show that whereas inhibition of aggregation to several

common platelet agonists requires micromolar concentrations of

colchicine, nanomolar concentrations inhibit certain responses to

thrombin (53, 54) and calcium ionophore (55). In our studies (20),

platelet aggregation in whole blood and in platelet rich plasma in

response to collagen (but not ADP) were inhibited by nanomolar

concentrations of colchicine indicating that colchicine may be a novel

method of biased targeting of GPVI.

In our studies, stimulation of GPVI with CRP-XL (cross-linked

collagen related peptide, specific for GPVI stimulation) generated

reactive oxygen species (ROS), and colchicine led to a reduction in

ROS generation in vitro (20) (Figure 1). Colchicine did not cause a

reduction in GPVI surface expression, indicating that the observed

effect was not due to a change in GPVI receptor number but rather

a change in the signaling events downstream of the receptor binding.

Colchicine decreased CRP-XL-stimulated P-selectin expression and

trended toward a decrease in GPIIb/IIIa conformational change. A

previous study also reported on the inhibitory effects of colchicine on

collagen-mediated serotonin release from platelets (59).

In our in vitro studies, colchicine also led to a reduction in

procoagulant platelet formation in response to thrombin-collagen
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dual stimulation (20), and this reduction in procoagulant platelet

formation could be particularly important in the setting of MI

and stroke. In a sub-study of the LoDoCo2 trial, a reduction in

platelet/hemostasis relatedmarkers [GPVI, proto-oncogene tyrosine-

protein kinase Src (SRC) and CD40L] was noted (21) in response

to colchicine lending plausibility to an in vivo antiplatelet effect.

Given the already recognized anti-inflammatory effects of colchicine

(14–18), colchicine may be more beneficial than targeting the

GPVI receptor alone since it reduces both inflammatory and

thrombotic responses.

Targeting the collagen receptor may be particularly relevant

to at risk populations such as the elderly due to their risk of

developing bleeding complications with other therapies (60). Platelets

from elderly people have been shown to be hyperreactive to

low dose collagen in terms of aggregation and ATP release (61).

Colchicine inhibition of collagen-mediated platelet activation may

therefore be particularly important in this population, especially

as colchicine is not associated with increased rates of bleeding in

recent cardiovascular trials. The use of colchicine in the elderly will,

however, require particular care because of reduced renal function,

increased susceptibility to the adverse effects of polypharmacy, and

the risk of drug interactions.

Discussion

We have outlined the importance of 1) including a broader

approach to platelet function studies during clinical trials; 2)

the contribution of collagen-mediated platelet activation in

diseases/conditions such as CAD, MI and stroke; and 3) the potential

role of colchicine in targeting collagen receptor pathways.

As current antiplatelet therapy inhibits hemostasis and can

lead to bleeding complications, colchicine may represent a useful

adjunctive therapy to traditional antiplatelet therapies that does not

appear to increase the risk of bleeding, and may be of particular

benefit in clopidogrel non-responders (62). To fully understand

the mechanistic processes underlying the protective effects of any

medication, and colchicine in particular, against CVD, there is a

pressing need for future clinical trials to specifically evaluate collagen-

mediated platelet activation. This should be done in two ways. Firstly,

and most simply, studies should measure soluble GPVI which is an

indicator of prior platelet receptor activation in vivo. Secondly, and

more laboriously, platelets from patients should be stimulated ex vivo

using collagen (or CRP-XL) to indicate the residual responsiveness

of platelets to collagen. This complementary information would

allow the analysis of the effect of different agents—P2Y12 inhibitors,

antithrombins, colchicine and newer agents—on specific platelet

activation pathways via collagen that might be more revealing than

conventional agonist assays simply stimulating using ADP.

Our understanding of the effectiveness of current antiplatelet

regimes would also be enhanced by broadening the usual evaluation

of residual platelet activity to include other agonists. Because P2Y12

receptor inhibitors inhibit the secondary augmentation response,

they affect more pathways than just the P2Y12 receptor pathway,

and the inclusion of other platelet activity tests and agonists such

as thrombin and collagen receptor related pathways would clarify

how much residual non P2Y12 receptor-mediated platelet activation

is evident in different clinical or therapeutic scenarios. For example,

in ACS patients receiving both aspirin and clopidogrel, a loading

dose of clopidogrel reduced platelet aggregation, platelet activation,

and platelet-leukocyte aggregates in response to both ADP receptor

and PAR-1 stimulation (63). In vitro inhibition with cangrelor (an

intravenous reversible P2Y12 inhibitor) led not only to a decrease

in platelet responsiveness to ADP, but also to PAR-1 and PAR-

4 (thrombin receptors) agonists and CRP-XL. This diminished

response was also observed in relation to the release of dense granule

contents (ATP and ADP) after stimulation with PAR-1 agonist and

CRP-XL (31). In addition, in this study, the VerifyNow results did

not agree with the GPIIb/IIIa binding results that were established by

flow cytometric analysis, and this was attributed to the restriction of

the VerifyNow assay to the P2Y12 pathway.

Recent clinical trials targeting GPVI either directly with ACT017,

Voors-Pette et al. (10) or indirectly with Revacept, Uphaus et al.

(9) have shown great promise in reducing collagen-mediated

platelet activation and improved stroke outcome without leading

to bleeding complications (64). Colchicine reduces the risk of

hemorrhagic and ischemic stroke (65–67), which is consistent

with the reduction observed for Revacept both in a mouse stroke

model (36) and a human carotid stenosis clinical trial (9), however

colchicine has additional anti-inflammatory affects. Like ACT017

and Revacept, colchicine treatment has not been linked to bleeding

complications. Other potential GPVI related targets, undergoing

clinical trials and scientific investigation, have shown decreased

platelet responses including aggregation, P-selectin expression and

GPIIb/IIIa conformational change in response to multiple agonists,

some of these targets are in use for treatment of hematological

malignancies (68–70).

Although dual antiplatelet therapy has been effective in

reducing cardiovascular events this has been at the risk of

bleeding complications, particularly in the elderly. Colchicine and

other emerging therapies may modulate platelet function in ways

undetected by conventional platelet function assays. Diversifying our

approach to platelet activation in vivo, and considering the effect of

agents such as colchicine on platelets and not only inflammatory

pathways may reveal new clinical opportunities for patient care

without the associated bleeding risk.
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