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Background: Observational studies have shown that central obesity is

associated with adverse cardiac structure and function. However, causal

association between central obesity and left ventricular (LV) structure and

function in preserved ejection fraction (EF) population is still uncertain.

Methods: Genome-wide association studies summary data of waist

circumference adjusted for body mass index (WCadjBMI) and waist-to-hip

ratio adjusted for body mass index (WHRadjBMI) were selected as instrumental

variables from the Genetic Investigation of Anthropometric Traits (GIANT)

Consortium (n = 224,459). Outcome datasets for LV parameters including LV

end-diastolic volume (LVEDV), LV end-systolic volume (LVESV), LV ejection

fraction (LVEF), LV mass (LVM), and LV mass-to-end-diastolic volume ratio

(LVMVR) were obtained from the participants without prevalent myocardial

infarction or heart failure (LVEF ≥ 50%) in UK Biobank Cardiovascular Magnetic

Resonance sub-study (n = 16,923). Two-sample Mendelian randomization

(MR) was performed with the inverse-variance weighted (IVW) method as

the primary estimate and with the weighted median and MR-Egger as

the supplemental estimates. Sensitivity analysis was used to assess the

heterogeneity and pleiotropic bias in the MR results.

Results: In the IVW analysis, every 1-standard deviation (SD) higher

WHRadjBMI was significantly associated with higher LVMVR (β = 0.4583;

95% confidence interval [CI]: 0.2921 to 0.6244; P = 6.418 × 10−8) and

lower LVEDV (β = –0.2395; 95% CI: –0.3984 to –0.0807; P = 0.0031) after

Bonferroni adjustment. No heterogeneity and horizontal pleiotropy were
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detected in the analysis. No association of WCadjBMI was found with LVEF,

LVEDV, LVESV, LVM, or LVMVR.

Conclusion: Our findings provide evidence of significant causal association

between WHRadjBMI and adverse changes in LV structure and function in

preserved EF population.

KEYWORDS

central obesity, left ventricular structure and function, causal association, Mendelian
randomization, waist-to-hip ratio

Introduction

Heart failure (HF) is a global health epidemic and burden,
leading to increased morbidity and mortality (1). The total
number of HF patients is still rising, especially with an alarming
trend in young population, possibly related to the prevalence of
obesity (2). The link between obesity and the risk of HF was
first confirmed in Framingham Heart Study and is stronger than
those for other types of cardiovascular disease (3, 4). Obesity
predicts HF with preserved ejection fraction (HFpEF) but not
HF with reduced ejection fraction (HFrEF) among those who
develop HF (5, 6), and more than 80% of HFpEF patients in the
US are overweight or obese (7).

Obesity is commonly defined by body mass index (BMI) to
describe the total adipose accumulation. However, regional fat
distribution may play a pivotal role in the development of HF
(6). Central obesity, usually measured by waist circumference
(WC) or waist-to-hip ratio (WHR), has a more prevalence in
patients with HFpEF and a more association with increased
risk of HF hospitalization or death than general obesity (8–
10). Adverse cardiac remodeling, in the form of structural and
functional abnormalities of the heart (mainly left ventricular,
LV) in response to various stimuli, is associated with the
development of HF (11). Observational studies have shown
that central obesity is associated with cardiac remodeling
independent of BMI (8, 12). Eschalier et al. have observed
that cardiac concentric remodeling was associated with central
obesity in asymptomatic and normotensive healthy subjects
with central obesity (13). However, due to potential residual
confounding and reverse causality in observational studies,
whether a causal relationship exists between central obesity
and cardiac remodeling and dysfunction in preserved ejection
fraction (EF) population remains unclear.

Mendelian randomization (MR) is an epidemiological
technique capable of elucidating causal estimate of exposures to
outcomes, using genetic variants as instrumental variables (IVs)
(14). As genetic variants are randomly allocated at conception,
genetically predicted exposure in MR is minimally affected by
confounders or reverse causation. We conducted a MR study

to investigate the potential effects of genetic liability to central
obesity measured by WC and WHR on LV structure and
function in preserved EF population.

Materials and methods

Study design

As shown in Figure 1, a two-sample MR model was used
to evaluate the causal effect of central obesity on left ventricular
structure and function. The study was based on summary-level
data on WC adjusted for BMI (WCadjBMI), WHR adjusted for
BMI (WHRadjBMI), and parameters of left ventricular structure
and function from the published genome-wide association
studies (GWASs). The MR design fulfilled three assumptions:
(1) genetic instruments are closely related to exposures; (2)
genetic instruments are independent of confounders; (3) genetic
instruments only affect outcomes via the exposures of interest
(15).

Genetic instrument selection

Single nucleotide polymorphisms (SNPs) as instrumental
variables associated with WCadjBMI and WHRadjBMI at
the genome-wide significance level (P < 5 × 10−8) were
obtained in 224,459 European individuals from the Genetic
Investigation of Anthropometric Traits (GIANT) Consortium
(Table 1) (16). After estimating linkage disequilibrium (LD
r2 < 0.001, LD distance > 10,000 kb) among the SNPs
based on the 1000 Genomes European reference panel (17),
we extracted 65 SNPs and 38 SNPs that genetically predicted
WCadjBMI and WHRadjBMI, respectively. All SNPs were
not associated with the outcome. In order to avoid specific
confounders (e.g., hypertension, coronary heart disease, blood
pressure, pulse rate, and diabetes mellitus), we excluded 10 of 65
SNPs (rs1344674, rs7684221, rs2071449, rs12656497, rs806794,
rs6905288, rs606452, rs3786897, rs459193, rs849140) and 7 of 38
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FIGURE 1

Study design and results of MR analysis of the association between WHRadjBMI and left ventricular parameters. SNP, single nucleotide
polymorphism; WC, waist circumference; WHR, waist-to-hip ratio; WHRadjBMI, waist-to-hip ratio adjusted for body mass index; LVEF, left
ventricular ejection fraction; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular end-systolic volume; LVM, left ventricular mass;
LVMVR, left ventricular mass-to-end-diastolic volume ratio.

SNPs (rs2071449, rs7705502, rs7759742, rs998584, rs2820443,
rs1128249, rs459193) with a threshold of P < 5 × 10−8

based on the Phenoscanner database1 (18). Additionally, one
SNP (rs16957304) associated with WCadjBMI missing in the
outcome datasets was excluded for its limited influence on
the results with a small proportion. In the end, fifty-two
WCadjBMI and thirty WHRadjBMI related independent SNPs
(Supplementary Tables 1, 2) were considered as instruments
for main MR analyses after removing palindromic SNPs
(WCadjBMI: rs7162542, rs984222; WHRadjBMI: rs2276824)
(19). F statistics for the SNPs were calculated to evaluate the
strength of the instrument variables (20).

Data source for outcomes

The outcomes of the study were selected based on the GWAS
conducted by Aung et al. comprising 16,923 European UK

1 http://www.phenoscanner.medschl.cam.ac.uk/

Biobank participants without prevalent myocardial infarction
or heart failure (LVEF in every participant ≥ 50%) to
identify the genetic loci for 6 relevant cardiac magnetic
resonance (CMR)-derived LV imaging phenotypes, including
LV end-diastolic volume (LVEDV), LV end-systolic volume
(LVESV), LV stroke volume (LVSV), LV ejection fraction
(LVEF), LV mass (LVM), and LV mass-to-end-diastolic volume
ratio (LVMVR) (21). The GWAS analysis was adjusted for
age, sex, height, weight, systolic blood pressure, phenotype-
derivation method, array type, and imaging center. We used
the summary-level data of 5 parameters (except LVSV) as the
outcomes in our study.

Mendelian randomization analyses

The random effects inverse-variance weighed (IVW) was
used as the main MR method in our study while MR-
Egger, weighted median and MR-PRESSO were also performed
for more robust estimates. IVW analysis estimates the
effect of each SNP on the outcome by calculating the
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TABLE 1 Characteristics of the GWASs used in the present study.

Phenotype Sample size PMID Consortium Ancestry Adjusted covariates

Exposure

WC 231,353 25673412 GIANT European Age, age-squared, study-specific covariates and BMI

WHR 210,082

Outcome

LVEF 16,923 31554410 UK Biobank European Age, sex, height, weight, systolic blood pressure,
phenotype-derivation method, array type, and imaging
center

LVEDV 16,920

LVESV 16,920

LVM 16,920

LVMVR 16,884

GWAS, genome-wide association studies; WC, waist circumference; WHR, waist-to-hip ratio; LVEF, left ventricular ejection fraction; LVEDV, left ventricular end-diastolic volume;
LVESV, left ventricular end-systolic volume; LVM, left ventricular mass; LVMVR, left ventricular mass-to-end-diastolic volume ratio; GIANT, Genetic Investigation of Anthropometric
Traits Consortium.

Wald ratio and performs a meta-analysis for the combined
causal effect with the inverse variance of SNPs as weights
(22). MR-Egger provides the estimate with adjustment for
horizontal pleiotropy based on the assumption that the
effect of the genetic instruments is uncorrected with any
pleiotropic effect (23). Weighted median provides consistent
estimates based on the assumption but requires more than
50% of weight from valid genetic instruments (24). MR-
PRESSO method can detect and correct outlier SNPs and
provide estimates after removing outliers (25). For further
sensitivity analyses, we conduct the Cochran’s Q test to
assess the heterogeneity, the MR-Egger intercept test to
analyze the horizontal pleiotropy and leave-one-out analysis
to detect high influence points (23, 26, 27). We calculated
MR power using a wed-based tool2 according to Burgess’s
method (28).

Statistical analysis

All analyses were performed in R software (version 4.2.1)
using the packages Two SampleMR (version 0.5.6) and MR-
PRESSO (version 1.0). The association with P-value < 0.005
(0.05/10) was considered a significant association, and a
P-value < 0.05 and ≥ 0.005 was regarded as nominally
significant after Bonferroni adjustment.

Results

A total of 52 and 30 SNPs genetically associated with
WCadjBMI and WHRadjBMI were enrolled to analyze before

2 https://sb452.shinyapps.io/power/

removing outliers, respectively (Supplementary Tables 1,
2). All the F statistics (Supplementary Tables 1, 2) for
instruments were over 10, indicating a good strength of
each instrument.

Association of WCadjBMI with LV
parameters

As shown in Table 2, no causal associations were
found between WCadjBMI and LV parameters. Results of
heterogeneity and pleiotropy tests were shown in Table 3,
and there was no pleiotropy in the analysis. Scatter, leave-
one-out and funnel plots were reported in the Supplementary
Figures 1–6. One outlier (rs7970350) was identified with MR-
PRESSO when exploring the association between WCadjBMI
and LVEDV. After removing the outlier, every 1-SD increase
in genetic liability to WCadjBMI was nominally significantly
associated with lower LVEDV in the IVW analysis (β = –0.1718,
95% confidence interval [CI] –0.3311 to –0.0125; P = 0.0345)
without horizontal pleiotropy (Supplementary Tables 3, 4).

Association of WHRadjBMI with LV
parameters

In the IVW analysis, one-SD genetically determined
increase in WHRadjBMI was significantly associated with
lower LVEDV (β = –0.2395, 95% CI –0.3984 to –0.0807;
P = 0.0031) and higher LVMVR (β = 0.4583, 95% CI
0.2921 to 0.6244; P < 0.0001). Additionally, every 1-SD
increase in genetic liability to WHRadjBMI was nominally
significantly associated with lower LVESV (β = –0.2336,
95% CI –0.4194 to –0.0478; P = 0.0137) and higher LVM
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TABLE 2 MR analysis of the association between WCadjBMI and left ventricular parameters.

IVW MR Egger Weighted median

Exposure No. of SNPs Outcome β ± SE P-value β ± SE P-value β ± SE P-value

WCadjBMI 52 LVEF 0.0490 ± 0.0725 0.4997 0.1052 ± 0.3092 0.7350 0.0038 ± 0.0993 0.9695

LVEDV −0.1427 ± 0.0875 0.1029 0.2687 ± 0.3684 0.4691 −0.1758 ± 0.1005 0.0803

LVESV −0.1206 ± 0.0800 0.1317 0.1513 ± 0.3388 0.6572 −0.1347 ± 0.0959 0.1600

LVM −0.0700 ± 0.0688 0.3090 0.3566 ± 0.2868 0.2195 −0.0442 ± 0.0921 0.6314

LVMVR 0.0634 ± 0.0769 0.4102 −0.0831 ± 0.3275 0.8008 0.0041 ± 0.1024 0.9678

WCadjBMI, waist circumference adjusted for body mass index; IVW, inverse-variance weighted; LVEF, left ventricular ejection fraction; LVEDV, left ventricular end-diastolic volume;
LVESV, left ventricular end-systolic volume; LVM, left ventricular mass; LVMVR, left ventricular mass-to-end-diastolic volume ratio.

TABLE 3 Heterogeneity and horizontal pleiotropy test of the associations between WCadjBMI and WHRadjBMI and left ventricular parameters.

IVW MR-egger

Exposure Outcome Cochran’s Q P-value Cochran’s Q P-value Intercept SE P-value for
intercept

WCadjBMI LVEF 63.31 0.1155 63.27 0.0985 –0.0015 0.0078 0.8521

LVEDV 93.29 0.0003 90.89 0.0004 –0.0107 0.0093 0.2558

LVESV 77.88 0.0090 76.83 0.0087 –0.0071 0.0086 0.4129

LVM 57.40 0.2501 54.83 0.2966 –0.0111 0.0073 0.1321

LVMVR 71.65 0.0298 71.34 0.0254 0.0038 0.0083 0.6473

WHRadjBMI LVEF 37.47 0.1346 37.44 0.1095 –0.0020 0.0129 0.8776

LVEDV 27.63 0.5380 27.36 0.4988 –0.0057 0.0111 0.6092

LVESV 39.66 0.0896 39.54 0.0726 –0.0039 0.0132 0.7710

LVM 20.48 0.8774 20.38 0.8501 –0.0034 0.0111 0.7600

LVMVR 31.53 0.3410 31.28 0.3049 0.0056 0.0117 0.6392

WCadjBMI, waist circumference adjusted for body mass index; WHRadjBMI, waist-to-hip ratio adjusted for body mass index; IVW, inverse-variance weighted; LVEF, left ventricular
ejection fraction; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular end-systolic volume; LVM, left ventricular mass; LVMVR, left ventricular mass-to-end-
diastolic volume ratio.

(β = 0.1599, 95% CI 0.0008 to 0.3191; P = 0.0489). Weighted
median and MR-Egger analyses also showed similar associations
(Figure 1). No evidence supported that genetic liability to
WHRadjBMI was associated with LVEF (Figure 1). Several
sensitivity analyses showed no heterogeneity or pleiotropy
in Table 3 and no outlier was found using MR-PRESSSO.
Scatter, leave-one-out and funnel plots were reported in the
Supplementary Figures 1–6.

Discussion

This two-sample MR study described the major finding
that every 1-SD genetically determined increased WHR
is causally associated with lower LVEDV and higher
LVMVR in preserved EF population. The findings were
robust based on different kinds of MR methods and
sensitivity analyses.

Multiple population-based studies have observed that both
general obesity and central obesity are major risk factors
for the development of HF (3, 29–32). Several studies

demonstrated general obesity is causally associated with HF
(33–35). Our findings are consistent with the prior studies,
while we focused on the causal effect of central obesity
measured by anthropometrics on LV morphology and function
in preserved EF population. With the increasing evidence
in HFpEF pathogenesis, obesity has been considered as a
primary and direct cause of HFpEF, instead of comorbid
bystander, mediated via other metabolic syndromes (36).
A recent study describing LV structural characteristics of
HFpEF across different LVEF reported that individuals with
higher LVEF (> 60%) presented more concentric remodeling
and diastolic/systolic stiffness, while those with lower LVEF
(50–60%) were more characterized by eccentric myocardial
remodeling and a higher amount of myocardial fibrosis similar
to HFrEF (37). This suggested that there is a dynamic
variation of phenotypes with adverse changes in cardiac
structure and function. Although we did not investigate
the causal association of WC and WHR with the risk of
both HFpEF and HFrEF due to a lack of certain GWAS
summaries, LV remodeling with preserved LVEF is a critical
preclinical characteristic.
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Obesity cardiomyopathy increasingly attracts more
attention as epidemiological, clinical, and experimental
evidence support the existence of this unique disease
entity, which develops independent of coronary heart
disease, hypertension, and other cardiovascular diseases
(38). Alterations of LV structure and function have been
noted in obesity with the use of echocardiography and
magnetic resonance imaging during observational studies
(39–41). The Dallas Heart Study observed the impact
of longitudinal changes in adiposity on concentric left
ventricular remodeling (42). We further confirmed the
causal association of WHR with lower LVEDV and higher
LVMVR in this two-sample MR study. This also shed light
on the causal relationship of the distribution of adipose tissue
on LV remodeling.

Diastolic dysfunction has been reported in obese individuals
without meeting diagnosis of HF (38). Yagmur et al. found
transmitral deceleration time, isovolumetric relaxation time,
and peak late diastolic tissue doppler velocity values, which
reflect LV diastolic function, were significantly higher in obese
individuals compared with normal weight subjects without
significant difference in LVEF between groups (43). Similarly
in children, a cross-sectional study found higher ratio of
transmitral early diastolic filling velocity to septal peak early
diastolic myocardial velocity (E/e’) without left ventricular
hypertrophy in obese patients (44). LVMVR is a good parameter
to assess the diastolic performance (45) and we further
confirmed the causal effect of central obesity on diastolic
dysfunction reflected by higher LVMVR with increasing WHR
in our study. However, we did not find any difference in
LVEF as WHR and WC increased. On one hand, the outcome
data were all from those with preserved LVEF, which means
the systolic function might not be impaired. On the other
hand, this might suggest that central obesity mainly affects
cardiac diastolic function in the early disease process. The
CARDIA study, a multi-center prospective study that enrolled
5,115 white and black men and women aged between 18
and 30, found longstanding obesity for more than 20 years
is associated with overtly impaired LV systolic function as
well (46).

Animal studies also observed improvement in cardiac
function after weight and fat mass reduction, although
Partington et al. emphasized an improvement in left ventricular
hypertrophy rather than diastolic dysfunction possibly due
to a short follow-up duration (47, 48). Benefits of general
obesity control on left ventricular diastolic function was
reported in humans (49, 50). Sundström et al. demonstrated
that bariatric surgery leads to a lower incidence of HF
with a hazard ratio of 0.54 compared with intensive lifestyle
treatment (51). Nevertheless, no further subgroup analyses
were performed based HF phenotype, such as HFpEF and
HFrEF. For central obesity, the Look AHEAD study found
that decline in WC was significantly associated with lower

risk of HFpEF in adults with type 2 diabetes (52). The Utah
obesity study also suggested reverse cardiac remodeling and
improved cardiac function along with significant reductions
in WC after gastric bypass surgery (53). Recently, the role
of WHR, another easily available measurement of central
obesity, in cardiovascular diseases draws increasing attention
(54). Our data suggested WHR was causally associated with
more LV parameters than WC. WHR, affected by both
gluteofemoral subcutaneous adipose tissue and abdominal
visceral adipose tissue, is considered more accurate to evaluate
central obesity than WC for those with large body size.
Individuals with large body size without central obesity might
be misdiagnosed due to the high WC (55). Yet, considering
that both of WHR and WC are easily available, it is
better to assess central obesity comprehensively via measuring
both WHR and WC.

Limitations

Our two-sample MR analysis had several strengths: (1)
The MR method could minimize confounding and reverse
causality compared with conventional observational studies; (2)
all summary data were based on the population from European
descent, which effectively mitigated the bias of population
stratification; (3) to reduce pleiotropic effects, we selected the
IVs through a rigorous procedure and no significant pleiotropy
was observed via MR-Egger intercept test and MR-PRESSO
analysis. Our study had certain limitations: (1) we could not
further explore the causal association upon gender, age, etc.
via subgroup analyses because our study used the summary-
level data rather than individual-level data; (2) our study was
confined to individuals of European descent, which limits the
generalizability of the findings to other populations; (3) central
obesity in our study did not include measurement of visceral fat,
which is closely associated with cardiac structure and function
as well; (4) all exposure data from the individuals with preserved
LVEF in UK Biobank led to healthy worker effect.

Conclusion

In summary, this MR study supports the genetic causality
between WHRadjBMI and adverse changes in LV structure
and function in preserved EF population. Our findings may
strengthen our understanding of the critical role of central
obesity in cardiac remodeling.
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