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Objective: This study aimed to develop enhanced cine image-based radiomic

models for non-invasive prediction of left ventricular adverse remodeling

following transcatheter aortic valve replacement (TAVR) in symptomatic

severe aortic stenosis.

Methods: A total of 69 patients (male:female = 37:32, median age: 66 years,

range: 47–83 years) were retrospectively recruited, and severe aortic stenosis

was confirmed via transthoracic echocardiography detection. The enhanced

cine images and clinical variables were collected, and three types of regions of

interest (ROIs) containing the left ventricular (LV) myocardium from the short-

axis view at the basal, middle, and apical LV levels were manually labeled,

respectively. The radiomic features were extracted and further selected by

using the least absolute shrinkage and selection operator (LASSO) regression

analysis. Clinical variables were also selected through univariate regression

analysis. The predictive models using logistic regression classifier were

developed and validated through leave-one-out cross-validation. The model

performance was evaluated with respect to discrimination, calibration, and

clinical usefulness.

Results: Five basal levels, seven middle levels, eight apical level radiomic

features, and three clinical factors were finally selected for model

development. The radiomic models using features from basal level (Rad I),

middle level (Rad II), and apical level (Rad III) had achieved areas under the

curve (AUCs) of 0.761, 0.909, and 0.913 in the training dataset and 0.718, 0.836,

and 0.845 in the validation dataset, respectively. The performance of these

radiomic models was improved after integrating clinical factors, with AUCs of

the Combined I, Combined II, and Combined III models increasing to 0.906,
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0.956, and 0.959 in the training dataset and 0.784, 0.873, and 0.891 in the

validation dataset, respectively. All models showed good calibration, and the

decision curve analysis indicated that the Combined III model had a higher net

benefit than other models across the majority of threshold probabilities.

Conclusion: Radiomic models and combined models at the mid and apical

slices showed outstanding and comparable predictive effectiveness of adverse

remodeling for patients with symptomatic severe aortic stenosis after TAVR,

and both models were significantly better than the models of basal slice. The

cardiac magnetic resonance radiomic analysis might serve as an effective tool

for accurately predicting left ventricular adverse remodeling following TAVR in

patients with symptomatic severe aortic stenosis.

KEYWORDS

radiomics, aortic stenosis, left ventricular remodeling, cardiac magnetic resonance,
TAVR, cine

1 Introduction

Aortic valve stenosis (AS) is one of the most prevalent
heart valve diseases worldwide, with gradually increased
morbidity with aging (1–3). Progressive pressure overload of
the left ventricular to drive blood flow through the restricted
left ventricular outflow tract, responsible for heart failure,
is the threshold for myocardial decompensation, including
myocardial cell damage and diffuse myocardial fibrosis, which
exacerbates heart failure (3, 4). Then, the onset of symptoms
is related to the rapidly increasing mortality of patients with a
dismal prognosis (5). Valve replacement, providing a treatment
method for advanced AS patients with complex physical
environments, can prevent the further deterioration of heart
function and improve myocardial remodeling even in the
early stage (6–8). However, not all patients can benefit from
valve replacement. Considering that advanced age, different
underlying disease environments, long-term AS progression
process, as well as diffuse myocardial fibrosis and impaired
strain in patients with severe AS, the postoperative progress
prediction based on a single image or clinical data remains
uncertain (9–11).

The functional parameters of the left ventricle, especially left
ventricular ejection fraction (LVEF), are important indicators
for the evaluation of a patient’s preoperative status, perioperative
risk, and postoperative recovery (12). In addition, myocardial
strain, assessed by TTE, multiphase computed tomography, or
cardiac magnetic resonance (CMR) cine sequence, can quantify
percent change in myocardial length from relaxed to contractile
state and reflect global and regional contractile function in
longitudinal, circumferential, or radial directions (13, 14). CMR
cine images have become the gold standard for left ventricular

function and strain measurement, which is superior to
transthoracic echocardiography (TTE) with restricted window
width and more significant operator-to-operator differences.
However, in fact, the biological information contained in
the cine image is far more than the doctor can see
with the naked eye.

Recently, R. Schofield et al. found that texture analysis
based on cine images is of significance for the identification
of the etiology of left ventricular hypertrophy (15), and Elham
et al. made it clear that the radiomic signatures from cine
images have the potential to detect myocardial ischemia, with
the best area under the curve (AUC) of 0.93 (16). On account
of computing power development and process standardization,
the application potential of radiomics is being constantly mined
in the cardiac field, including etiology determination, diagnosis
confirmation, and prognosis prediction (17–21). For mechanical
learning, a large amount of invisible biological information
included in medical images was transformed into objective and
quantitative digital information (22, 23). The research of Nam
et al. has explored the excellent diagnostic efficacy of radiomics
based on calcified plaques of the aortic valve for severe aortic
stenosis with the highest AUC of 0.921 (20). Previous studies
had also investigated the value of texture analysis in detecting
left ventricular remodeling in cardiac computed tomography
and CMR T1 mapping images (24, 25). However, whether the
left ventricular remodeling following TAVR in patients with
symptomatic severe AS could be predicted by radiomic analysis
on enhanced cine images remained unclear.

In this study, our study aimed to develop a model
for predicting left ventricular remodeling following TAVR
in patients with symptomatic severe AS using the radiomic
signatures from enhanced cine images.
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2 Materials and methods

This study involving human participants was reviewed and
approved by the Ethics Committee of West China Hospital.
The need for informed patient consent was waived due
to the retrospective nature of the analysis and the use of
anonymized data.

2.1 Study population

We included 204 patients who underwent CMR before
aortic valve replacement for symptomatic severe AS between
October 2014 and June 2021. All patients performed heart-
related symptoms such as dyspnea, angina, syncope, and
dizziness (3). Additionally, all patients underwent TAVR. The
author queried the patient’s echocardiographic recording from
the Electronic Medical Records and searched for CMR images
in the Picture Archiving and Communication Systems, and the
time of CMR examination was within 7 days before TAVR, TTE
within 3 days, and laboratory tests within 7 days. Excluding
patients with TTE follow-up of less than 3 months and without
adequate image quality, there were 156 patients.

Each enrolled patient met the following exclusion criteria,
and the exclusion criteria included: (1) history of valve
surgery, (2) recent myocardial infarction <1 month, (3)
congenital aortic stenosis, (4) moderate or severe aortic
regurgitation, mitral regurgitation, or mitral stenosis, (5)
inadequate clinical data, and (6) estimated glomerular filtration
rate <30 ml/min/1.73 m2. Consequently, 69 patients, complying
with our inclusion and exclusion criteria, consisted of study
cohorts. All patients had follow-up TTE of more than 3 months,
and the median follow-up duration was 12 months, ranging
from 3 to 81 months. The patient selection workflow is shown
in Figure 1.

2.2 Assessment of severe aortic valve
stenosis

The severity of AS was assessed by echocardiography.
Comprehensive transthoracic or transesophageal
echocardiography examination was given to all patients.
According to the recommendations of the current guidelines:
mean gradient ≥40 mm Hg or peak aortic jet velocity ≥4.0 m/s
and aortic valve area ≤1 cm2 (indexed aortic valve area by
body surface area <0.6 cm2/m2 were diagnosed as severe aortic
stenosis) (26).

2.3 TTE information

For patients with advanced aortic stenosis, accompanied
by left ventricular decompensation, the patient manifests as a

gradually enlarged left ventricle and a continuously reduced
ejection fraction, and valve replacement is the only effective
intervention (3, 26). After the TAVR, left ventricular remodeling
is divided into three states, including adverse remodeling,
relatively stable, and beneficial remodeling, and our study
predicts further deterioration of left ventricular function during
continuous follow-up, which is defined as adverse remodeling.

The measurements of the LVEF, left ventricular end-systolic
diameter (LVESD), left ventricular end-diastolic diameter
(LVEDD), left ventricular end-systolic dimension (LVESV),
and left ventricular end-diastolic dimension (LVEDV) in
preoperative and last follow-up TTE were collected. Patients
with a relative increase of 15% in LVEDV or a relative decrease in
LVEF of 10% were classified as subgroup 2 (with left ventricular
adverse remodeling); otherwise, patients were categorized as
subgroup 1 (with left ventricular non-adverse remodeling) (27).

2.4 Collection of clinical variables

A total of 14 clinical variables were collected from
the electronic medical records, including two demographic
characteristics (age and gender), one laboratory indicator
(B-type natriuretic peptide [BNP]), three imaging features
(myocardial hypertrophy, late gadolinium enhancement (LGE),
and first-Pass perfusion), and eight cardiac function indicators
measured in CMR (LVEF, LVEDV, LVESV, LVSV, RVEF,
RVEDV, RVESV, and RVSV). The serum concentration of
BNP was measured by electrochemical luminescence detection
technology, and for patients with BNP serum concentration
above the measurable extreme value of 35,000 pg/ml, we
recorded it as 35,000 pg/ml.

Late gadolinium enhancement images were analyzed
independently by a chest radiologist (with 5 years of experience
with cardiac magnetic resonance) and then reviewed by another
chest radiologist (with 12 years of experience with cardiac
magnetic resonance). LGE is defined as a region with high signal
within the myocardial region on LGE images and is clearly not
due to image quality, artifacts, and partial volumetric effects.

2.5 Cardiovascular imaging – TTE and
CMR

2.5.1 Transthoracic echocardiography
Conventional two-dimensional TTE was performed using

commercially available equipment. LV dimension and other
echo parameters were obtained according to the guidelines of
the American Society of Echocardiography (28). LVEDV and
LVESV were measured in apical two- and four-chamber views,
and LVEF was calculated using Simpson’s rule. The aortic valve
area was calculated using the continuity equation, and the mean
pressure gradient was calculated by averaging instantaneous
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FIGURE 1

The patient selection workflow.

FIGURE 2

Representative ROIs segmentation in basal level (A), middle level (B), and apical level (C).

gradients over the ejection period on the continuous wave
Doppler recordings.

2.5.2 CMR protocol – Imaging acquisition
Participants underwent CMR examination in a supine

position. CMR images were acquired using a 3-T whole-body
scanner (MAGNETOM Skyra; Siemens Healthcare, Erlangen,
Germany) with an 18-channel phased-array body coil. Contrast
medium (gadobenate dimeglumine; MultiHance; 0.5 mmol/ml;
Bracco, Milan, Italy) was injected into the right antecubital
vein with a power injector (Stellant; MEDRAD) at a flow rate
of 3.0 ml/s, which was followed by injection of 20 ml saline.

After first-perfusion images were collected, the enhanced cine
sequence images were further scanned. With a standard ECG-
triggering device, data were acquired during the end-inspiratory
breath-hold period. A segmented breath-hold balanced steady-
state free precession (bSSFP) sequence was used to obtain 8–14
continuous cine images from the base to the apex in the short-
axis view and LV two- and four-chamber cine images in the
long-axis view. The bSSFP parameters were as follows: TR/TE
3.3/1.22 ms; flip angle 41◦; slice thickness 8 mm; field of view
360 mm × 320 mm; and matrix size 208 × 166. LGE images
were obtained after contrast injection using a segmented phase-
sensitive inversion recovery (PSIR) turbo FLASH sequence over
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a mean duration of 10–15 min. The PSIR sequence parameters
were as follows: TR/TE 3.0/1.24 ms; flip angle 40◦; slice thickness
8 mm; field of view 340 mm × 284 mm; and matrix size
256 × 184.

2.6 Image selection and segmentation

2.6.1 Image selection
The cine sequence images of CMR are time series images at

different levels, and the nature of non-spatial sequence images
makes it difficult to segment wholeheartedly. Zahra et al. found
that radiomic features from LV myocardium showed better
repeatability in end-diastole rather than end-systole images (29).
Therefore, we selected the enhanced cine images from the short-
axis view at the basal, middle, and apical levels of the left
ventricle in end-diastole. The definition of the basal, middle, and
apical levels of the left ventricle at the short-axis view: (1) the
first level of the appearance of left ventricular papillary muscle
from the basal direction to the apical direction is defined as the
basal level; (2) the second level below the basal level is defined
as the middle level; and (3) the last level of the papillary muscle
can be seen is defined as the apical level.

2.6.2 Extraction and selection of radiomic
features

The cine images in DICOM format from selected patients
were segmented using “Radiomics” (Syngo. via Frontier, Vision
1.0.0, Siemens, Germany), a dedicated prototype software, and
this program employs an embedded 3D-printing technique in
a semiautomatic manner to label the preoperative soft tissue.
The overall procedures of this analysis scheme were composed
of two major steps: first, segmentation was conducted manually;
and thereafter, texture features were calculated automatically.
The manual segmentation was performed independently by
a chest radiologist. The region of interest was depicted
around the border of each level. After segmenting a three-
dimensional volume of interest (3D-VOI), texture features
were automatically calculated and extracted. Additionally, all
cine images were segmented by two chest radiologists (with
6 and 12 years of experience with chest CT, respectively)
working together. We completely outlined the left ventricular
endocardial and epicardium at basal, middle, and apical levels
and excluded the papillary muscles (Figure 2).

Before performing feature extraction, the 3D-VOIs were
resampled to a pixel pitch of 1.0 mm in three anatomical
directions to reduce the impact of pixel size and thickness.
Through “bin the feature,” “radiomics” automatically
transformed the grayscale of the image into discrete integer
values, which were recognizable by a computer. In the original
VOIs, different filters would be applied, such as the Laplacian
of Gaussian filtering, wavelet filtering, non-linear intensity
transformation, and others. We further excluded all shape- and

TABLE 1 Clinical characteristics and echocardiographic parameters
of the study cohort.

Age, years 71.0 (66.0–75.0)

Male gender 37 (53.6%)

Body mass index (Kg/m2) 23.2 (20.4–26.1)

Body surface area (m2) 1.7 (1.6–1.8)

Heart rate (bpm) 79.0 ± 2.7

Systolic blood pressure (mmHg) 129.7 ± 2.7

Diastolic blood pressure (mmHg) 72.3 ± 1.8

Tricuspid aortic valve 59 (85.5%)

Past medical history

Atrial fibrillation 2 (2.9%)

Diabetes mellitus 8 (11.6%)

Hypertension 25 (36.2%)

Pulmonary hypertension 9 (13.0%)

Hyperlipidemia 3 (4.4%)

Chronic obstructive emphysema disease 8 (11.6%)

Smoker 18 (26.1%)

Drinker 12 (17.4%)

B-type natriuretic peptide (pg/ml) 3,445.8 (371.8–3,879.5)

Estimated glomerular filtration rate (ml/min/1.73 m2) 71.1 ± 2.1

Creatinine (umol/L) 98.1 (75.5–100.5)

Diameters of aortic root and ascending aorta

Diameter of aortic annulus (mm) 32.5 ± 0.6

Diameter of sinus of Valsalva (mm) 22.1 ± 0.4

Diameter of ascending aorta (mm) 40.1 ± 0.7

Baseline echocardiographic parameters

LVEF (%) 62.0 (45.5–68.0)

LVEDV (ml) 137.3 (102.0–171.0)

LVESV (ml) 50.0 (32.5–86.5)

LVEDD (mm) 50.0 (47.0–59.0)

LVESD (mm) 32.0 (28.0–42.0)

Interventricular septum (mm) 13.5 ± 0.3

Left ventricular posterior wall (mm) 11.5 ± 0.2

Left atrium size (mm) 40.1 ± 0.7

Em (m/s) 4.0 (3.0–5.1)

Am (m/s) 7.0 (5.9–9.3)

Emv/Em 17.0 (14.0–27.0)

Parameters of grade of aortic stenosis

Max velocity of AV (m/s) 4.7 ± 0.3

Mean pressure gradient of AV (mmHg) 56.0 (45.0–68.0)

AVA (cm2) 0.7 ± 0.04

LVEF, left ventricular ejection fraction; LVEDV, left ventricular end-diastolic dimension;
LVESV, left ventricular end-systolic dimension; LVEDD, left ventricular end-diastolic
diameter; LVESD, left ventricular end-systolic diameter; AV, aortic valve; AVA,
aortic valve area.
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size-related features as we only labeled isolated slices. Finally, a
total of 1,302 radiomic features were extracted from each VOI,
including 92 features extracted from the original image, and
there were 93, 93, 93, 93, and 744 features extracted using the
square, square root, logarithm, and exponential and wavelet
filters, respectively.

The least absolute shrinkage and selection operator (LASSO)
was used to reduce computation complexity and prevent
overfitting. The key radiomic features most closely associated
with the left ventricular adverse remodeling were selected
with penalty parameter tuning conducted via a 10-fold cross-
validation approach in the whole dataset.

2.7 Model development and evaluation

Two types of models were developed in this study, including
three radiomics models based on the selected radiomic features
and three combined models based on both selected radiomic
features and clinical factors. The logistic regression classifier
was applied for model construction, and the predictive models
were developed and validated through leave-one-out cross-
validation. Additionally, a final determined model could be
generated by calculating the mean of the predictions by
the models from each fold on a separate and independent
validation dataset.

The performance of the predictive models was evaluated
through the receiver operating characteristics (ROC) and
quantified by the AUC. The sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV) of
each model were also calculated under the optimal threshold
according to the maximum Youden index. Since the imbalance
sample ratio in our study (18 adverse remodeling vs. 51 non-
adverse remodeling), the accuracy and F1 score could lead
to misleading results due to the lack of consideration for
the ratio between positive and negative cases. Instead, as a
robust index against class imbalance, the Matthews correlation
coefficient (MCC) was used for binary classification evaluation
in this study (30). The MCC ranged from −1 to 1, where
−1 and 1 stood for complete misclassification and perfect
classification, respectively, while 0 suggested that the model had
no discriminatory ability.

2.8 Calibration and decision curve
analysis

The consistency between the predicted adverse remodeling
probability and the actual rate was assessed using the Hosmer–
Lemeshow test, and the calibration curve was plotted using
the 1,000 bootstrapping resampling method (31). The decision
curve analysis (DCA) was applied to evaluate and compare the
clinical usefulness of different models by estimating the net
benefits across a reasonable range of threshold probabilities (32).

TABLE 2 Comparison of clinical and CMR features between adverse
and non-adverse subgroups.

Non-
adverse

remodelling
(n = 51)

Adverse
remodelling

(n = 18)

Age, years 69.5 ± 10.1 69.3 ± 8.5 0.066

Male gender (%) 38 (74.5%) 9 (50%) 0.055

Heart rate (bpm) 76.0 (66.0–82.0) 72.5 (65.0–85.3) 0.806

Systolic blood
pressure (mmHg)

126.9 ± 21.7 132.9 ± 13.5 0.177

Diastolic blood
pressure (mmHg)

70.9 ± 14.1 75.4 ± 9.5 0.213

NYHA

I 4 (7.8%) 3 (16.7%)

II 16 (31.4%) 8 (44.4%) 0.162

III 21 (41.2%) 5 (27.8%)

IV 9 (17.6%) 2 (11.1%)

B-type natriuretic
peptide (pg/ml)

2,586.0
(607.5–4,555.3)

576.0
(285.5–1,686.5)

0.005

LVEF 47.4 ± 19.5 56.1 ± 17.3 0.099

LVEDV (mL) 180.8
(126.1–227.4)

131.3
(107.2–206.8)

0.084

LVESV (mL) 86.3 (45.3–158.9) 57.0 (31.2–140.2) 0.159

LVSV (mL) 79.2 ± 23.4 77.5 ± 21.9 0.793

RVEF 54.3 (47.6–61.7) 55.4 (42.7–61.9) 0.929

RVEDV (mL) 95.5 (84.1–129.8) 85.6 (71.0–113.8) 0.060

RVESV (mL) 49.1 (29.4–66.2) 43.0 (29.1–60.9) 0.360

RVSV (mL) 51.5 ± 17.6 45.6 ± 15.5 0.209

Myocardial deformation

0 27 (52.9%) 12 (66.7%)

1 8 (15.7%) 3 (16.7%) 0.250

2 16 (31.4%) 3 (16.7%)

Myocardial
hypertrophy

20 (39.2%) 12 (66.7%) 0.045

LGE (+) 23 (43.1%) 8 (44.4%) 0.445

LGE distribution

Basal 12 (23.5%) 7 (38.9%) 0.350

Mid 16 (31.4%) 8 (44.4%) 0.317

Apical 7 (13.7%) 3 (16.7%) 0.713

Septum 15 (29.4%) 8 (44.4%) 0.245

Free wall 16 (31.4%) 6 (33.3%) 0.878

Abnormal
first-pass perfusion

3 (6%) 0 (0%) 0.704

Ascending aortic
dilation

34 (66.7%) 8 (44.4%) 0.097

Calcification of
ascending aortic
wall

16 (31.4%) 8 (44.4%) 0.317

CMR, cardiac magnetic resonance; NYHA, New York Heart Association; LVEF, left
ventricular ejection fraction; LVEDV, left ventricular end-diastolic dimension; LVESV,
left ventricular end-systolic dimension; LVSV, left ventricular stroke volume; RVEF,
right ventricular ejection fraction; RVEDV, right ventricular end-diastolic dimension;
RVESV, right ventricular end-systolic dimension; RVSV, right ventricular stroke
volume; LGE, late gadolinium enhancement.
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FIGURE 3

Selection of the radiomic features using LASSO regression. Selection of the optimal tuning parameter lambda through 10-fold cross-validation
with the minimal mean-squared error criteria for the basal level (A), middle level (C), and apical level (E) radiomic features. (B) The coefficient
profile plot of 5 in basal level (B), 7 in middle level (D), and 8 in apical slice (F) non-zero coefficients against the optimal log(lambda) sequence.
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FIGURE 4

Heatmap analysis of the selected radiomic features. Each column corresponds to one patient, and each row represents one radiomic feature.

2.9 Statistical analysis

Statistical analysis was performed using the SPSS software
(version 21.0). The differences between the continuous and
dichotomous clinical variables were evaluated using the Mann–
Whitney U test and the chi-squared test, separately (33).
Delong’s test was applied for the comparison between the AUCs
of two different models. The calibration curve and decision
curve analysis were performed using the R language with the
“rms” package and the “rmda” package, respectively. A two-
sided p-value of <0.05 was considered statistically significant.

3 Results

3.1 Baseline clinical and TTE imaging
parameters

We enrolled 69 patients (37 males) with symptomatic severe
AS who underwent TAVR. The median and interquartile range
for the age of all patients was 71.0 (66.0–75.0 [years]). The
baseline characteristics of the study population are reported
in Table 1. The median and interquartile ranges for LVEF
and LVEDV were 62.0 (45.5–68.0) and 137.3 (102.0–171.0
[ml]), respectively. Additional TTE parameters and AV flow
measurements are listed in Table 1.

The median duration time from TAVR to last follow-
up TTE was 12 months (interquartile range 6–13 months).
Finally, according to the set criteria, 18 patients were defined
as left ventricular adverse remodeling and 51 as non-
adverse remodeling.

3.2 Comparison of CMR parameters
between adverse and non-adverse
subgroups

Compared with non-adverse remodeling subgroups,
patients in the adverse remodeling subgroup showed a lower
proportion of men, lower BNP levels, greater LVEF, smaller
LVEDV, smaller LVESV, and smaller RVEDV, although there
was no significant statistical difference in parameters other
than BNP (p = 0.005). At the same time, the incidence
of left ventricular hypertrophy was higher in the adverse
remodeling subgroup. Other parameters did not show obvious
distribution differences between the two subgroups. More
detailed information is shown in Table 2.

3.3 Selection of radiomic features

Based on the optimal log (lambda) sequence (−3.3155 for
basal level features, −2.3908 for middle-level features, and
−3.2976 for apical level features), 5 basal level features, 7
middle-level features, and 8 apical level features were selected
for further analysis (Figure 3). The heat map of these selected
key radiomic features was also plotted according to the
normalized radiomic feature values (Figure 4).

3.4 Selection of clinical factors

To select the clinical variables mostly associated with
pathological response, univariate regression analysis was
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performed (Table 3). Three clinical factors including BNP,
LVEDV, and RVEDV showed a p-value < 0.05 and were selected
for model development.

3.5 Comparison among three radiomic
models

The performance of the radiomic models based on selected
features from the basal (Rad I model), middle (Rad II model),
and apical (Rad III model) LV regions of interest (ROIs) is
compared using ROC analysis in both training and validation
datasets (Figure 5). The AUCs of the Rad I model, the Rad II
model, and the Rad III model were 0.761 (95% CI, 0.643–0.856),
0.909 (95% CI, 0.816–0.965) and 0.913 (95% CI, 0.820–0.967)
in the training dataset and were 0.718 (95% CI, 0.597–0.820),
0.836 (95% CI, 0.727–0.914), and 0.845 (95% CI, 0.738–0.921)
in the validation dataset, respectively. Compared with the Rad
I model, the AUCs of the Rad II model (p = 0.040) and Rad
III model (p = 0.012) were significantly higher in the training
dataset. A similar tendency was observed in the validation
dataset; although not statistically significant, the AUCs of the
Rad II model (p = 0.126) and the Rad III model (p = 0.103) were
higher than that of the Rad I model.

3.6 Comparison between the radiomic
model and combined model

Based on the ROC analysis, the incorporation of clinical
factors could improve the diagnostic capability of the radiomic
models (Figure 6). Compared with the Rad I model, the AUCs
of the Combined I model had increased to 0.906 (95% CI, 0.812–
0.963) in the training dataset (p = 0.008) and 0.784 (95% CI,
0.669–0.874) in the validation dataset (p = 0.364). Compared
with the Rad II model, the AUC of the Combined II model
had increased to 0.956 (95% CI, 0.877–0.991) in the training
dataset (p = 0.038) and 0.873 (95% CI, 0.770–0.941) in the
validation dataset (p = 0.296). Compared with the Rad III

TABLE 3 Univariable analysis of clinical-radiological variables.

Variable Univariate regression analysis

Odds ratio 95% CI P-value

Age 0.9948 0.9429–1.0496 0.8486

Gender 0.6000 0.2071–0.7380 0.3465

BNP 0.9995 0.9991–0.9999 0.0203

LVEF 1.0309 0.9992–1.0636 0.0563

LVEDV 0.9785 0.9802–0.9992 0.0333

RVEDV 0.9785 0.9586–0.9988 0.0376

BNP, B-type natriuretic peptide; LVEF, left ventricular ejection fraction; LVEDV, left
ventricular end-diastolic dimension; RVEDV, right ventricular end-diastolic dimension.

model, the AUC of the Combined III model had increased to
0.959 (95% CI, 0.882–0.992) in the training dataset (p = 0.040)
and 0.891 (95% CI, 0.792–0.953) in the validation dataset
(p = 0.091). The Combined II model and Combined III model
showed improved performance than the Combined I model;
however, no significant differences in AUCs were found across
the combined models in the training dataset (Combined I vs.
Combined II, p = 0.125; Combined I vs. Combined III, p = 0.180;
Combined II vs. Combined III, p = 0.922) and the validation
dataset (Combined I vs. Combined II, p = 0.109; Combined I
vs. Combined III, p = 0.090; Combined II vs. Combined III,
p = 0.750). The detailed sensitivity, specificity, PPV, NPV, and
MCC of these models are summarized in Table 4.

3.7 Clinical utility evaluation in the
validation dataset

All the predictive models showed good consistency between
the predicted left ventricular adverse remodeling probability and
actual rate (Figure 7), and the non-significant statistic of the
Hosmer–Lemeshow test suggested that there was no significant
deviation from an ideal fitting of the Rad I model (p = 0.421),
Rad II model (p = 0.328), Rad III model (p = 0.850), Combined
I model (p = 0.903), Combined I model (p = 0.160), and
Combined I model (p = 0.680) in the validation dataset.

The decision curve analysis demonstrated that all the
predictive models performed better than the treat-all and treat-
none strategies (Figure 8). In addition, both the Rad II and Rad
III models showed higher net benefit than the Stenosis I model
across the majority range of threshold probabilities (Figure 8A).
The net benefit of each combined model also increased
compared with that of the corresponding Rad model, indicating
that the incorporation of clinical factors could improve the
clinical usefulness of the predictive model (Figures 8B–D).

4 Discussion

In the present study, ML-based texture analysis of enhanced
cine images could accurately predict left ventricular adverse
remodeling in patients with symptomatic severe AS after TAVR
with AUCs ranging from 0.761 to 0.959 and 0.718 to 0.891 in
training and validation cohorts, respectively. Of all the models,
the apical level-based combined models exhibited the highest
AUCs in both training and validation cohorts. Furthermore, the
radiomic model based on apical slice exhibited the highest AUCs
(0.913 in the training cohort and 0.893 in the validation cohort)
and sensitivities (100.0% in the training cohort and 89.5% in
the validation cohort) in training and validation cohorts of the
three radiomic models in different levels. After adding three
clinical features, three combined models in the basal, middle,
and apical levels in the training set all showed better predictive
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FIGURE 5

Receiver operating characteristic (ROC) analysis for performance comparison of the Rad I (basal level), Rad II (middle level), and Rad III (apical)
models in the training dataset (A) and the validation dataset (B).

performance than pure radiomic models in corresponding
levels, which had higher AUCs (0.906 vs. 0.761, 0.965 vs. 0.909,
0.959 vs. 0.913), and performed similar trend in the validation
set (0.784 vs. 0.718, 0.836 vs. 0.836, 0.891 vs. 0.873). These results
confirmed that multivariate radiomic analysis is the potential
to predict left ventricular adverse remodeling after TAVR in
patients with symptomatic severe AS.

The excellent diagnostic effectiveness of our radiomic
models may be the result of the excellent information-mining
potential of radiomic analysis. Many past radiomic studies have
found that radiomic signatures can catch differences in cell
level, protein level, as well as gene level in tumors and non-
tumor diseases (34–37). Both Roger et al. and Laurene et al.
investigated tumor-infiltrating CD8 cells in different neoplasms
through radiomics based on enhanced computed tomography
and PRT-CT images (34, 35). Actually, in the process of left
ventricular remodeling caused by aortic stenosis, changes in
the molecular level, cell level, and interstitial level are the
consequence of gene expression, which are further expressed
as shape, size, as well as functional changes of the heart
in the macro level (38). In clinical, due to various factors
such as examination technology, iatrogenic trauma caused by
examination, and patients’ willingness, it is difficult for doctors
to distinguish the microscopic differences in patients with severe
AS. Through imaging techniques such as CMR and TTE, we
can quantify myocardial changes at the macroscopic level.
Furthermore, due to the rapid development of CMR technology
and its characteristic high tissue resolution, it has become
a reality to non-invasively assess the microscopic changes in
myocardial fibrosis (39, 40). LGE can characterize alternative

fibrosis, which is the consequence of necrotic cardiomyocytes
replaced by interstitial components (11). Additionally, T1
mapping as well as derived ECV technologies can quantify
diffuse myocardial fibrosis degree, and both of them offer good
consistency with myocardial biopsy (40). However, defects are
also obvious. Myocardial interstitial fibrosis is not a simple
increase in the number or volume of fiber structures but is
accompanied by changes in fiber composition including the
increase in the ratio of type 1 collagen fibers to type 3 collagen
fibers and disorder of fiber arrangement structure (41). The
models of myocardial fibrosis are not only diffuse fibrotic
and alternative fibrotic models but also other models, such as
alternative fibrosis and interstitial fibrosis mixing, are also being
investigated (41, 42). The myocardial evaluation through CMR-
related technologies has not yet reached this step. Differently,
radiomic analysis based on cine images could detect myocardial
infarction, with the best AUC of 0.93 and the best accuracy
rate of 86% (16). The study by D. Alis et al. investigated
ventricular tachyarrhythmia in hypertrophic cardiomyopathy
by texture analysis of LGE images, with an AUC of 0.92
(43). The abovementioned study has verified that the texture
characteristics based on CMR images can accurately capture
patient-specific clinical information, which is of great value for
patients’ personalized treatment planning. This may also be
the reason why our radiomic models have excellent diagnostic
efficiency. Unfortunately, since the nature of retrospective
research, it is difficult for us to further verify our model at the
gene level, cell level, or interstitial level, which is also a limitation
of the research.
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FIGURE 6

ROC analysis of the radiomic models and corresponding combined models. (A,B) Comparison of the Rad I (basal level) model and the
Combined I model in the training and validation datasets. (C,D) Comparison of the Rad II (middle level) model and the Combined II model in the
training and validation datasets. (E,F) Comparison of the Rad III (apical) model and the Combined III model in the training and validation datasets.
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TABLE 4 Prediction effectiveness of radiomics and combined models in the training and validation cohorts.

Dataset Model AUC (95% CI) SEN SPE PPV NPV MCC

Training cohort Rad I 0.761 (0.643–0.856) 57.9% 90.0% 68.8% 84.9% 0.507

Combined I 0.906 (0.812–0.963) 89.5% 82.0% 65.4% 95.3% 0.659

Rad II 0.909 (0.816–0.965) 73.7% 94.0% 82.4% 90.4% 0.702

Combined II 0.956 (0.877–0.991) 94.7% 88.0% 75.0% 97.8% 0.776

Rad III 0.913 (0.820–0.967) 100.0% 74.0% 59.4% 100.0% 0.663

Combined III 0.959 (0.882–0.992) 100.0% 84.0% 70.4% 100.0% 0.769

Validation cohort Rad I 0.718 (0.597–0.820) 47.4% 94.0% 75.0% 82.5% 0.488

Combined I 0.784 (0.669–0.914) 73.7% 76.0% 53.8% 88.4% 0.458

Rad II 0.836 (0.727–0.914) 79.0% 76.0% 55.6% 90.5% 0.503

Combined II 0.836 (0.727–0.914) 89.5% 80.0% 63.0% 95.2% 0.636

Rad III 0.873 (0.770–0.921) 89.5% 70.0% 53.0% 94.6% 0.533

Combined III 0.891 (0.792–0.953) 84.2% 84.0% 66.7% 93.3% 0.640

AUC, area under the curve; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; MCC, Matthews correlation coefficient.

FIGURE 7

Calibration analysis of the Rad I model (A), Rad II model (B), Rad III model (C), Combined I model (D), Combined II model (E), and Combined III
model (F) in the validation dataset.

As a predictive factor for left ventricular remodeling after
aortic valve replacement, global longitudinal strain (GLS)
has a significant value, while LVEF has no clear predictive
value (44–46). In AS, many scholars have found that GLS
is mainly led by oriented longitudinally fiber shortening

in the subendocardial layer where an early and selective
alteration tends to happen (3). However, GLS measurement
is influenced by complex factors, such as load, changes in
cardiac morphology, and fluctuations in blood pressure as well
as emotion (13).
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FIGURE 8

Decision curve analysis of the predictive models in the validation dataset. (A) Comparison across three radiomic models. (B) Comparison
between the Rad I model and the Combined I model (basal level). (C) Comparison between the Rad II model and the Combined II model
(middle level). (D) Comparison between the Rad III model and the Combined III model (apical level).

In our study, three clinical factors including BNP, LVEDV,
and RVEDV (all p-value < 0.05) were independent predictors
of adverse remodeling of the left ventricle. Lower BNP levels,
smaller LVEDV, and smaller RVEDV, associated with less
myocardial injury, were found in the adverse remodeling
subgroup. Giovanna et al. thought that BNP has a close
relationship with AS severity, symptoms’ development,
perioperative mortality, as well as ventricular remodeling (30).
Previous findings that advanced myocardial disease with lower
LVEF and lower GLS are associated with myocardial recovery
demonstrate the potential benefit of TAVI (9, 47, 48). We
conjectured that AS patients with serious myocardial damage
who can withstand surgical trauma and perioperative period
can acquire better benefits after the pathogenic factors are
relieved. This phenomenon may be related to the characteristics
of the patient’s own body.

Our study has a small study cohort, which may cause
models to overfit in the training dataset. To alleviate this
problem and completely use our data set, the leave-one-out
cross-validation was applied to the modeling and verification
process: one sample is taken as a validation dataset each time,
the rest is used as a training dataset to train the model, and
finally, the model was evaluated based on the validation results.
SMOTE has not been used in our research to improve the
distribution balance between groups. On the one hand, leave-
one-out cross-validation was adopted in our models, and when
newly amplified data through SMOTE was used as a validation
set, the training set has the original data corresponding to
the amplified data, which is equivalent to leaking part of
the results to the artificial Intelligence in advance. On the
other hand, in the research of D. Alis et al., there were
similar problems of small sample size and uneven grouping,
and their radiomic models with or without SMOTE showed
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excellent and comparable diagnostic effectiveness in ventricular
tachyarrhythmia assessment with AUCs of 0.91 and 0.92,
respectively (43). Therefore, we suggest that it is not a trivial
step to solve the uneven distribution between groups in our
study through SMOTE, which may have an impact on modeling.
At the same time, in order to more accurately evaluate the
predictive effectiveness of the model, we used MCC instead of F1
score or accuracy to evaluate the model to reduce the problem of
inaccuracy caused by uneven distribution between groups (30).

The following limitations in our study should be
acknowledged. First, selection bias may come from the
research nature, a retrospective study from a single center.
Second, since the acquisition method of CMR cine images is
through slice-by-slice periodic acquisition, each image in any
slice is the biological information of the myocardial tissue at
the same level but at different points in the cardiac cycle, so
our segmentation methods are to outline the left ventricle at a
separate slice. Compared with the segmentation of the complete
heart, our method may be relatively lacking in characteristic
stability. Third, our research was only conducted on enhanced
MRI images, and due to the influence of Gadolinium contrast
agents, partial characteristics of the left ventricular myocardium
may be buried. Fourth, as a result of a too small cohort, our
research cohort was both used for training and validating
models. The method of leave-one-out cross-validation was used
to minimize the risk of overfitting. Modeling methods that
have significant overfitting in the training set were excluded.
Finally, we only included symptomatic severe AS patients with
preoperative CMR, preoperative TTE and postoperative TTE
follow-up of more than 3 months, and this may have resulted
in selection bias because we excluded symptomatic severe
AS patients with no preoperative CMR and TTE or without
postoperative TTE follow-up.

5 Conclusion

The present study demonstrates that enhanced cine image-
based texture analysis using logical regression algorithms is a
promising tool for postoperative adverse remodeling prediction
in patients with symptomatic severe AS. Logical regression-
based quantitative analysis in apical slices with AUCs of 0.913
and 0.873 in training and validation groups was able to predict
postoperative adverse remodeling in patients with symptomatic
severe AS in the present study.
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