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Background: Cardiovascular disease (CVD) and cancer are the first and

second causes of death in over 130 countries across the world. They

are also among the top three causes in almost 180 countries worldwide.

Cardiovascular complications are often noticed in cancer patients, with nearly

20% exhibiting cardiovascular comorbidities. Physical exercise may be helpful

for cancer survivors and people living with cancer (PLWC), as it prevents

relapses, CVD, and cardiotoxicity. Therefore, it is beneficial to recommend

exercise as part of cardio-oncology preventive care.

Objective: With the progress of deep learning algorithms and the

improvement of big data processing techniques, artificial intelligence

(AI) has gradually become popular in the fields of medicine and

healthcare. In the context of the shortage of medical resources in

China, it is of great significance to adopt AI and machine learning

methods for prescription recommendations. This study aims to develop

an interpretable machine learning-based intelligent system of exercise

prescription for cardio-oncology preventive care, and this paper presents the

study protocol.
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Methods: This will be a retrospective machine learning modeling cohort

study with interventional methods (i.e., exercise prescription). We will recruit

PLWC participants at baseline (from 1 January 2025 to 31 December 2026)

and follow up over several years (from 1 January 2027 to 31 December

2028). Specifically, participants will be eligible if they are (1) PLWC in Stage

I or cancer survivors from Stage I; (2) aged between 18 and 55 years; (3)

interested in physical exercise for rehabilitation; (4) willing to wear smart

sensors/watches; (5) assessed by doctors as suitable for exercise interventions.

At baseline, clinical exercise physiologist certificated by the joint training

program (from 1 January 2023 to 31 December 2024) of American College of

Sports Medicine and Chinese Association of Sports Medicine will recommend

exercise prescription to each participant. During the follow-up, effective

exercise prescription will be determined by assessing the CVD status of

the participants.

Expected outcomes: This study aims to develop not only an interpretable

machine learning model to recommend exercise prescription but also an

intelligent system of exercise prescription for precision cardio-oncology

preventive care.

Ethics: This study is approved by Human Experimental Ethics Inspection of

Guangzhou Sport University.

Clinical trial registration: http://www.chictr.org.cn, identifier

ChiCTR2300077887.

KEYWORDS

exercise prescription, machine learning, cardio-oncology, physical activity,
interpretable artificial intelligence, prescription recommendation

1. Introduction

Globally, cardiovascular disease (CVD) ranks as the
first leading cause of death, while cancer ranks as the
second in around 130 countries (1). These two factors are
also among the top three killers in almost 180 countries
worldwide (2). People living with cancer (PLWC) usually
exhibit cardiovascular complications resulting from so-
called “cardio-toxicity” (3) (which is defined as any heart
damage arising from cancer treatments) as well as the
overlap of risk factors of cancer and CVD, including
an unbalanced fat diet, alcohol abuse, and physical
inactivity (4).

Interventions using some common prevention strategies
for these risk factors exist. For example, regularly engaging
in physical activity (i.e., exercise prescription) is an efficient
prevention strategy for cardio-oncology (5) because physical
exercise can reduce not only cardio-toxicity but also the
adverse effects of chemotherapy, including lymphoedema,
fatigue, and immunological disorders (6). As a result,

among PLWC or cancer survivors, physical exercise is a
valuable tool for CVD prevention. Therefore, it is beneficial
to recommend exercise prescription in cardio-oncology
preventive care (5).

Artificial Intelligence (AI) has been widely employed in
healthcare and medicine, especially since great advancements
in deep learning algorithms and significant improvements
to big data processing techniques (7). The fields of mental
health (8), internal medicine (9), infectious diseases
control (10), heart failure (11, 12), and diabetes (13),
among others employ AI. In the context of the shortage
of medical resources in China, developing prescription
recommendation systems using AI and machine learning
methods is promising (14). Wang et al. have proposed
a reinforcement learning-based dynamic prescription
recommendation system (15).

As for a dynamic recommendation system of exercise
prescription, Tuka and Linhart discussed the possibility
of utilizing AI and machine learning approaches for
personalized exercise prescription recommendations for
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patients (16). More specifically, Chen et al. presented a
hierarchical learning framework for Chinese kids’ physical
exercise prescription (17). However, there is no existing
studies have examined machine learning-based exercise
prescription recommendations for cardio-oncology preventive
care. Therefore, we aim to develop an interpretable
machine learning-based intelligent system of exercise
prescription for cardio-oncology preventive care and present
the study protocol.

2. Methods and analysis

2.1. Design

This will be a cohort study with retrospective machine
learning modeling. The study timeline is presented in Figure 1.

From 1 January 2023 to 31 December 2024, we will train
our exercise prescription doctors in the training program for
clinical exercise physiologist (CEP). This training program is
jointly supported by American College of Sports Medicine
(ACSM) and Chinese Association of Sports Medicine
(CASM). Candidates who are admitted to this training
program should either hold a bachelor’s degree (or above) in
medicine/public health or have at least 3-year professional
clinical experience in healthcare. Additionally, candidates are
supposed to have a vast knowledge of physical education and
sports training as well. In this training program, candidates
need to complete reading materials, online courses, offline
tutorials, practice, and examinations. The offline training
activities will take place at Zhuhai, China, where a certificated
training base of ACSM-CASM CEP programs locates on.
After completion of all modules, our exercise prescription
doctors will be certificated jointly by ACSM and CASM
as CEP. From 1 January 2025 to 31 December 2026, we
will recruit 600 participants who are PLWC (in Stage I)
or cancer survivors (from Stage I) for this study. The
baseline characteristics including demographics, cancer-
related information, exercise habits and lifestyle, health-related
physical fitness, and CVD-related items will be collected
based on physical examination or biomedical testing, where
necessary. Then the exercise prescription doctors certificated
by ACSM-CASM will recommend exercise prescription to
each participant based on the abovementioned variables.
During the 2-year exercise intervention period, we will
monitor each participant’s completion status through wearable
devices, which can record one’s physical activity every day.
Additionally, our health management team will keep track
of participants every week to ensure their adherence. We
will undertake the follow-up study between 1 January 2027
and 31 December 2028, re-examining CVD-related items
for all participants. Finally, effective exercise prescription

will be assessed based on the changes in CVD-related
items from the baseline to the follow-up, and interpretable
machine learning models will be adopted in effective
exercise prescription. The intelligent exercise prescription
recommendation system will be developed based on some
machine learning models with both good interpretability and
high performance.

2.2. Selection of subjects

This protocol involving human participants was reviewed
and approved by the Ethics Committee of Guangzhou Sport
University. The participants will be provided with their written
informed consent to participate in this study.

2.2.1. Inclusion criteria
Participants will be eligible if they are (1) PLWC in Stage I or

cancer survivors from Stage I; (2) aged between 18 and 55 years;
(3) interested in physical exercise for rehabilitation; (4) willing to
wear smart sensors/watches; (5) assessed by doctors as suitable
for exercise interventions.

2.2.2. Exclusion criteria
Participants will be ineligible for inclusion if they have: (1)

current or recent serious sports injuries; or (2) existing severe
CVD; or (3) other conditions that may not be suitable for
exercise interventions, as assessed by doctors.

2.3. The sample size

We will recruit 600 participants for this study. Generally,
the minimum sample size for machine learning modeling is
200 (18). We estimate the loss rate in the follow-up is 47%
according to a finding that 53% cancer survivors do not follow
the recommended physical activity guidelines (19). We infer that
65% of exercise prescriptions will be assessed as effective for
cardio-oncology preventive care after the follow-up and used for
machine learning modeling. This assumed value is based on the
effectiveness rate of exercise prescriptions in reducing the risk
of cardiovascular events among cancer patients (20). Therefore,
at least 200÷ 65%÷ 53% = 580.55 participants are needed.
As a result, we decide to recruit 600 participants in the baseline
to ensure the guarantee the minimum sample size for machine
learning modeling at last.

2.4. The baseline and follow-up

In the baseline and the follow-up, five aspects of
characteristics/variables will be collected: demographics,
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FIGURE 1

The timeline of this study.

cancer-related information, exercise habits and lifestyle, health-
related physical fitness (21), and CVD-related items. Table 1
illustrates these variables in detail.

Specifically, demographics, cancer-related information,
exercise habits and lifestyle, and health-related physical
fitness are used for exercise prescriptions, while CVD-
related items are used to evaluate the effectiveness
of exercise prescriptions after comparing them with
the follow-up data.

2.5. Interventional methods

The interventional method for all participants is the
exercise prescription, prescribed by our ACSM-CASM
certificated exercise prescription doctors. The exercise
intervention strategies are prescribed based on each participant’s
baseline characteristics including demographics, cancer-related
information, exercise habits and lifestyle, and health-related
physical fitness.

From the professional perspective, exercise prescription
doctors will determine the exercise dose considering three
aspects: frequency, duration, and intensity (26). To be specific,
doctors prescribe an exercise dose such as “3 times of exercise
per week, 150 minutes in total, in moderate intensity” or “5
times of exercise per week, 75 minutes for each time, in high-
intensity.” Frequency is the number of times of exercise per
week, duration is the length of time in total, and intensity is
decided to be high, moderate, or low. Furthermore, we can
employ the concept of metabolic equivalent of task (MET)
in exercise dose when considering frequency, duration, and
intensity (54). For example, the above-mentioned two exercise
doses are equivalent to each other, and both represent 7.5 MET-
h/week.

During the 2-year exercise intervention period, wearable
devices will be applied to monitor each participant’s
completion status. In addition, our professional health
management team (including certificated CEPs by ACSM-
CASM programs and several assistants who hold a degree
in public health, sports training, physical education, social
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TABLE 1 Characteristics of participants in the baseline and at follow-up.

Category Variables Measurement/method References

Demographics Age Electronic health record (EHR) (22)

Sex EHR (23)

Marital status Self-reported (24)

Education level Self-reported (25)

Cancer-related information Cancer types EHR (26–31)

Years living/diagnosed with cancer EHR

Cancer treatment EHR

Current medication (drugs used) EHR

Exercise habit and lifestyle Smoking status Self-reported (32)

Alcohol use Self-reported (33)

Physical activity IPAQ-L: International physical activity questionnaire (34) (35)

Diet DHQ: diet history questionnaire (36) (37)

Sleep PSQI: Pittsburgh sleep quality index (38) (39)

Health-related physical fitness (21) Body composition-anthropometry Body mass index (BMI), body weight, height, muscle mass, fat mass,
percentage of body fat, etc., by Inbody Device (40)

(41)

Cardiorespiratory fitness (CRF) Cooper 12 min run test (42) (43)

Muscle strength Grips (44) (45)

Body flexibility Sit-and-reach (46) (47)

CVD-related items Blood pressure Medical test (48)

BPV: blood pressure variability Medical test (49)

Resting heart rate Medical test (50)

24-h ECG: premature beat, etc. Medical test (51)

Echocardiography Medical test (52)

Other relevant biochemical
parameters

Medical test (53)

work or psychology) will keep track of participants every week
to ensure their adherence. The employment of wearable
devices will be charged a deposit fee at the beginning
which will be returned after the follow-up. Participants
who are kept in track by our health management team
during these 2 years will be given sports equipment
(e.g., badminton rackets, yoga mats, foam rollers) for
free every 6 months.

2.6. Data analysis and interpretable
learning

Effective exercise prescriptions will be selected based on pre-
and post-intervention data analysis of CVD-related items. For
example, if the blood pressure variability decreases or at least
does not increase, the exercise prescription can be considered
effective. We will employ interpretable machine learning models
to the learnings on exercise prescription recommendations for
all effective prescriptions.

Demographics, cancer-related information, exercise
habits and lifestyle, health-related physical fitness will be
input variables, while frequency, duration, and intensity of
exercise prescription will be output variables. We formulate
the prescription learning process as a machine learning
classification task. Explainable machine learning models such
as logistics regression, support vector machine, decision tree,
random forest, k-nearest neighbor, and naive Bayes classifiers
will be utilized. Specifically, in the logistics regression machine
learning model, the estimated values of coefficients and their
standard deviations, P-values, and 95% confidence intervals,
will provide us with the interpretability. The process of feature
selection and kernels when using support vector machine may
reveal the model interpretability (55). Figure presentation of
trees and importance ranking of features for decision tree and
random forest can lead to good explanations (56). In k-nearest
neighbor algorithm, showing the k-nearest neighbors might also
be explainable (57). As for Naive Bayes, it can be interpreted on
the modular level and the conditional probability, then thus it
will be very clear for us to understand how much each feature
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contributes toward a certain class prediction (58). Generally,
these machine learning models may all have good potential for
interpretability.

Some deep learning models will also be employed to
evaluate the classification performance (accuracy, precision,
recall, F-1 score, area under curve) in fivefold cross-validations,
comparing them with the above-mentioned explainable
machine learning models. Explanations of deep neural
networks can be challenging (59), and hence to ensure that our
deep learning models (convolutional neural networks, eXtreme
gradient boosting, multilayer perceptron, deep residual
network, DeepGBM) are more interpretable, an explainability
tool named SHapley Additive exPlanations (SHAP), (60) will
also be included. Recent advances in interpretability study
for deep learning models have demonstrated the explainable
potential for such models utilizing SHAP. For example, Zhao
et al. proposed a novel SHAP scores computing algorithm for
convolutional neural networks in classification (61). Meng et al.
developed an integrated framework with better interpretability
based on SHAP and eXtreme gradient boosting (62).

Since the intervention duration will be 2 years, there might
be a great chance of loss-to-follow-up. Therefore, we set our
sample size as 600 instead of 580, to cope with a higher loss rate
or lower effectiveness rate than our initial estimations. If the final
sample size for machine learning modeling still fails to reach the
minimum bound (18), we will employ some few-shot learning

algorithms (63) in such small size machine learning task to deal
with this potential problem.

2.7. Intelligent system development

Considering both the model performance and the
model interpretability, the intelligent exercise prescription
recommendation system will be developed based on some
machine learning models with both good interpretability
and high performance. Figure 2 depicts an example of this
intelligent system. It is noteworthy that our designed intelligent
system will explain why it recommends specific exercise
prescriptions.

3. Discussion

All cancer patients need to consider a multidisciplinary
approach during treatment, which includes physical training,
psychological support, and lifestyle advice (26). The concept of
cardio-oncology rehabilitation has been introduced by both the
American Heart Association and the American Cancer Society
(64). Cardio-oncology rehabilitation is to identify PLWC who
are at high risk for cardiac dysfunction as well. Physical activity
intervention, that is exercise prescription, is an important
component of cardio-oncology rehabilitation and can prevent or

FIGURE 2

A demonstration of the intelligent system of exercise prescription.
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moderate cardiovascular events in cancer patients or survivors.
It has been demonstrated that heterogeneous responses to
the same physical training can enhance cardio-respiratory
fitness in cancer therapy (65). There is some theoretical and
experimental evidence as to why physical exercise can help
reduce cardiovascular events in cancer patients or survivors.
For example, the so-called “cancer-induced cardiac cachexia,”
which refers to a multi-organ/tissue syndrome affecting the
brain, liver, and heart, can exist in cancer patients because of
the tumor environment (66). Previous studies have revealed
that physical exercise can restore muscle strength and improve
endurance, thus counteracting cardiac cachexia (67). Exercise
prescription can act as an aid and therapy for cardio-oncology
preventive care. Therefore, our study on interpretable machine
learning of exercise prescription for cardio-oncology prevention
is of significance.

Some limitations of our study need to be mentioned.
First, only PLWC in cancer Stage I or cancer survivors from
cancer Stage I are taken into account. Although considering
more participants (e.g., expansion to Stage II or Stage III)
may improve our approach’s coverage, we decide to focus
on participants with milder intensities of cancer. Second,
there is always a trade-off between model interpretability and
model performance. Black-box deep learning models may
outperform explainable machine learning models in evaluation
metrics such as accuracy and area under curve (AUC).
Therefore, we plan to adopt both in this study and select a
balanced one for intelligent system development. Third, we
will only employ internal cross-validation methods in training
and testing as an initial validation choice. To fill in this
gap, after the interpretable machine learning-based intelligent
system of exercise prescription has been developed and used
in real case for a period, we will then conduct a quasi-
experimental trial for external validation in another study,
just like other machine learning-based medical studies did
for external validation (68–70). Furthermore, with external
validation and more dataset in the future, we can continuously
update the intelligent system of exercise prescription through
dynamic optimization of parameters of the interpretable
machine learning model.

In conclusion, physical exercise is a promising
interventional strategy for cancer patients or survivors
during and after medical treatment and may also be effective in
counteracting some adverse effects of the tumor environment
or drugs on their cardiovascular system. When prescribing
exercise, we need to take the cancer patients’ or survivors’
individual characteristics, cancer drugs/medications, personal
lifestyle history, and health-related physical fitness into
consideration. Such a tailored exercise prescription process
can be learned by interpretable models using machine learning
approaches and can generate an intelligent recommendation
system of exercise prescription for cardio-oncology preventive
care in the future.
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