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d-loop transposition of the great arteries (d-TGA) and congenitally corrected

transposition of the great arteries (cc-TGA) feature a right ventricle attempting

to sustain the systemic circulation. A systemic right ventricle (sRV) cannot

support cardiac output in the long run, eventually decompensating and

causing heart failure. The burden of d-TGA patients with previous atrial

switch repair and cc-TGA patients with heart failure will only increase in the

coming years due to the aging adult congenital heart disease population and

improvements in the management of advanced heart failure. Clinical data

still lags behind in developing evidence-based guidelines for risk stratification

and management of sRV patients, and clinical trials for heart failure in these

patients are underrepresented. Recent studies have provided foundational

data for the commencement of robust clinical trials in d-TGA and cc-TGA

patients. Further insights into the multifactorial nature of sRV failure can

only be provided by the results of such studies. This review discusses the

mechanisms of heart failure in sRV patients with biventricular circulation and

how these mediators may be targeted clinically to alleviate sRV failure.

KEYWORDS

systemic right ventricle, heart failure, dextro-transposition of the great arteries,
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1. Introduction

Right ventricular (RV) dysfunction is a key prognostic determinant of patient
status in various cardiac diseases, including pulmonary hypertension (PHTN), cor
pulmonale, left-sided heart failure, valvular heart disease, and coronary artery disease.
Congenital heart diseases (CHDs) such as tetralogy of Fallot, transposition of the great
vessels (TGA), Ebstein’s anomaly, and Eisenmenger syndrome are important causes
of RV dysfunction (1). About 10–12% of all CHDs feature a systemic right ventricle
(sRV) (2). When made to pump against the high afterload of the systemic circulation,
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FIGURE 1

Tricuspid regurgitation, myocardial fibrosis, perfusion defects,
and ventricular dyssynchrony all play a role in sRV failure. These
four mechanisms may be highly interlinked. Studies have shown
that ventricular dyssynchrony results from hypertrophy,
ischemia, and heart failure. Cardiac fibrosis is also a significant
predictor of ventricular dyssynchrony. These observations hint
at a highly interlinked pathophysiology of sRV failure. We
created the figure with biorender.com.

the sRV undergoes various structural and mechanical changes to
maintain cardiac output (Figure 1). These changes chronically
become maladaptive, resulting in heart failure (3). d-loop TGA
arteries (d-TGA) after atrial switch repair and congenitally
corrected TGA (cc-TGA) are two frequently encountered CHDs
that feature an sRV, with chronic pressure and volume overload
expectedly causing sRV dysfunction. Furthermore, commonly
associated lesions, such as ventricular septal defect, arrhythmias,
tricuspid regurgitation (TR), and conduction abnormalities
compound sRV dysfunction in TGA patients (4).

d-TGA features isolated ventriculoarterial discordance,
resulting in venous return to the right heart being pumped back
into the systemic circuit by the right ventricle and oxygenated
blood returning to the left atrium (LA) being pumped back
into the pulmonary circulation by the left ventricle (LV).
d-TGA patients present with neonatal cyanosis and require
emergent surgical correction. Left untreated, d-TGA carries a
90% mortality risk in the first year of life (5, 6). The atrial
switch operation, in which systemic blood is baffled to the LV,
and pulmonary venous blood to the right, restores physiologic
blood circulation in d-TGA but does not anatomically correct
the sRV. While this was historically the procedure of choice in
the 1970s–1980s, it has now been replaced by the arterial switch
operation. The arterial switch connects the aorta and pulmonary
trunk to their anatomically correct ventricles, thereby offering
anatomical repair and excellent clinical outcomes (7). On long-
term follow-up, d-TGA patients undergoing the arterial switch
have a post-operative hazard for death resembling that of the
general population (8). However, the widespread use of atrial
switch repair in the 1970s and 1980s, along with improvements
in medical and invasive therapy for cardiac complications, has
created an aging post-atrial switch d-TGA population with an
sRV that is at an annually increasing risk of major cardiac

complications. Only 60% of d-TGA patients treated with an
atrial switch remain alive 30 years after the procedure (9). SCD
is the most common cause of death in d-TGA patients after
the atrial switch surgery, especially in adolescence and early
adulthood (10).

In contrast, cc-TGA exhibits discordant atrioventricular
and ventriculoarterial connections. The right atrium (RA) is
connected to the subpulmonary LV through the mitral valve,
while the LA empties blood into the sRV via the tricuspid
valve. Therefore, as physiologic blood circulation is preserved,
cc-TGA infants do not present with cyanosis and can be
asymptomatic at birth. However, associated anomalies such as
a ventricular septal defect, an Ebsteinoid malformation of the
tricuspid valve, subpulmonic stenosis, accompany cc-TGA in
80% of cases and may necessitate surgery during infancy (11).
In the absence of associated lesions, cc-TGA patients remain
asymptomatic, presenting in adulthood with sRV dysfunction
manifesting clinically as valvular disease, heart block, and heart
failure. However, unlike d-TGA, heart failure in cc-TGA is not
uniform in late adulthood; some elderly individuals with cc-
TGA can remain completely asymptomatic. The likelihood of
clinical deterioration and mortality in cc-TGA patients greatly
depends on the presence of tricuspid insufficiency (11).

Therefore, the pathophysiology of sRV failure is
multifactorial, and the unclear prognosis of sRV patients
hinders effective management. Furthermore, clinical trials
evaluating traditional heart failure drugs, such as angiotensin-
converting enzyme inhibitors (ACEis), angiotensin-receptor
blocker (ARBs), and others, have yielded disappointing results.
Recommendations for managing arrhythmias and conduction
abnormalities in TGA patients are also unclear. Lastly, only a
handful of single-center data have been published regarding
the role of mechanical circulatory support (MCS) devices
in advanced sRV failure patients. Therefore, in this review,
we summarize the primary mechanisms of sRV failure and
review the latest studies on the stratification and management
of sRV patients.

2. Mechanisms of systemic right
ventricle failure

2.1. Myocardial fibrosis

Myocardial fibrosis is a pathological process induced by
many cardiac pathologies, including those characterized by a
pressure overload, such as aortic stenosis and hypertension.
Myocardial fibrosis has proven predictive value in determining
the risk of heart failure progression and mortality (12, 13).
Detecting late-gadolinium enhancement (LGE) on cardiac
magnetic resonance imaging (CMR) is the gold standard for
detecting and characterizing myocardial fibrosis. Studies have
also used T1 mapping and calculating extracellular volume
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(ECV) fraction, which correlates histologically with edema and
interstitial expansion of the myocardium (14, 15). A fragmented
QRS (fQRS) complex on electrocardiography (ECG) indicates
inhomogeneous ventricular depolarization due to myocardial
fibrosis (16).

sRV patients also experience a state of chronic pressure
overload as the sRV pumps blood against the afterload of
the systemic circulation, suggesting that myocardial fibrosis
may be a prominent structural alteration in sRV patients.
Indeed, compared with other CHDs, such as tetralogy of
Fallot and cyanotic diseases, sRV patients feature the highest
fibrotic indices (17). The presence of LGE varies between
different cohorts from 41 to 56% (18, 19). sRV LGE is
associated with reduced sRV ejection fraction and worsening
clinical presentations, including tachyarrhythmia, heart failure-
related hospitalization, transplantation, and death (18). Helsen
et al. retrospectively studied 89 d-TGA patients post-atrial
switch (median follow-up ∼16.9 years) and concluded that
the presence of fQRS complexes in d-TGA patients (29%) was
significantly associated with the combined primary outcome
of cardiovascular mortality, MCS device implantation, or heart
transplantation (20). However, the presence of fQRS was not
correlated with radiological findings of sRV fibrosis/scarring,
such as LGE or increased ECV.

Serum levels of collagen turnover markers have been used
as indicators of myocardial fibrosis. A hallmark of fibrosis is
the transformation of cardiac fibroblasts into myofibroblasts
expressing a-smooth muscle antigen (α-SMA) (21). α-SMA-
expressing myofibroblasts deposit collagen (22), leading to a
vicious cycle of collagen turnover with an imbalance in the
levels of metalloproteinase-1 (MMP-1) and tissue inhibitor of
MMP-1 (TIMP-1) levels (21). In d-TGA patients after the atrial
switch procedure, serum levels of procollagen type III amino-
terminal propeptide (PIIINP) and collagen type I carboxy-
terminal telopeptide (CITP) are significantly associated with
a higher sRV mass, with the latter also associated with sRV
LGE (23). Furthermore, an increased serum pro-MMP-1:TIMP-
1 ratio is associated with sRV wall stress and ejection fraction,
LGE on CMR, and adverse clinical outcomes on follow-up,
including New York Heart Association (NYHA) functional
class ≥ 3, clinically significant arrhythmias, and death (23, 24).
These markers may help stratify d-TGA patients according to
the risk of adverse clinical outcomes and dictate appropriate
management strategies.

From a mechanistic standpoint, RV pressure overload
induces collagen deposition by fibroblasts and myofibroblast
proliferation and contraction (Figure 2) (21). These changes
are associated with increased expression of β1 integrin on
fibroblasts, which is a receptor for transforming growth factor-β
(TGF-β) (21, 25, 26). Volume overload causes TGF-β secretion
by myofibroblasts, which, in turn, activates myofibroblasts
in an autocrine fashion and mediates fibrosis (27). TGF-
β pathways may therefore be beneficial as a therapeutic

target. For example, treatment with allicin—derived from
garlic—prevented RV fibrosis in rat models of pulmonary
arterial hypertension (28). Neurohormones, such as aldosterone,
angiotensin II, epinephrine, and norepinephrine, also activate
cardiac myofibroblasts and stimulate collagen production
(29, 30).

Other data argue against a significant role of myocardial
fibrosis in sRV failure. For example, Fratz et al. found no
myocardial fibrosis or scarring, assessed by LGE and positron
emission tomography (PET) scan, respectively, in 18 d-TGA
patients over 20 years after the atrial switch operation, even in
patients with reduced sRV ejection fraction and wall motion
abnormalities (31). Similarly, no myocardial fibrosis or scarring
was detected in cc-TGA patients with reduced sRV ejection
fraction or wall motion abnormalities (31). Priem et al. tested
the hypothesis that myocardial fibrosis underpins sRV systolic
dysfunction in 20 patients (32). The study found myocardial
scarring in only one patient, while 90% of patients had NYHA
class I or II sRV failure, 95% had TR, and 65% arrhythmias,
indicating that myocardial fibrosis and scarring do not play
causal roles in sRV dysfunction and complications (32).

Cheung et al. utilized T1 mapping on CMR to assess sRV
and subpulmonary LV fibrosis in d-TGA patients after the atrial
switch operation and found the LV to be significantly more
fibrotic than the sRV, but neither correlated with the ejection
fractions of the respective ventricles (33). Another recent study
assessing 13 adult sRV patients (8 d-TGA patients after the
atrial switch and 5 cc-TGA patients) also showed that fibrosis—
assessed by ECV fraction—disproportionately involved the LV.
Differences in RV ECV between sRV patients and healthy
controls were not statistically significant, whereas an elevated LV
ECV correlated significantly with a lower LV ejection fraction
(34). Indeed, a study investigating subpulmonary LV and sRV
dysfunction in 157 sRV patients (89 d-TGA and 68 cc-TGA)
found that subpulmonary LV systolic dysfunction assessed by
echocardiography was strongly predictive of NYHA class 3–
4 heart failure (35). These findings suggest that myocardial
fibrosis differentially involves the LV, which reduces LV ejection
fraction and contributes to heart failure in sRV patients,
whereas sRV fibrosis may not play a major role in precipitating
sRV failure. sRV fibrosis and scarring may not play major
roles in precipitating sRV failure. However, the prognostic
importance of monitoring LV fibrosis as part of monitoring
disease progression remains investigational.

2.2. Myocardial ischemia and perfusion
defects

Myocardial ischemia and perfusion defects are crucial
players in heart failure with preserved (HFpEF) and reduced
ejection fractions (HFrEF) (36). For instance, reduced coronary
flow reserve (CFR) is independently associated with diastolic
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FIGURE 2

Myocardial fibrosis is detected in many sRV patients and increases the risk of adverse cardiac outcomes such as heart failure. Cardiac fibroblast
and myofibroblast activation is an essential mediator of fibrosis in left ventricular fibrosis, but this remains to be demonstrated in sRV. TGF-β

secretion by myofibroblasts sets up a positive feedback loop that promotes tissue fibrosis. Abnormalities in MMP:TIMP ratio may also result in
dysregulated collagen turnover. Lastly, neurohormonal activation is detected in sRV patients: aldosterone, angiotensin II, epinephrine, and
norepinephrine are elevated in sRV patients and stimulate collagen production in the myocardium. However, clinical trials thus far have failed to
show a beneficial effect of inhibiting the sympathetic and RAAS systems in sRV patients. We created the figure with biorender.com.

dysfunction, conferring a fivefold increased risk of HFpEF-
related hospitalizations (37). Impaired CFR in cc-TGA and
d-TGA post-atrial switch patients has been detected on
PET scans (38, 39). In one study, 33% of d-TGA patients
had moderate-to-severe perfusion abnormalities at rest.
Another 20% demonstrated reduced CFR upon exercise, which
correlated positively with worse sRV and subpulmonic LV
function (38). Another study of 5 cc-TGA patients revealed
fixed perfusion defects in the entire cohort and reversible
myocardial ischemia in 4 patients (40).

These findings indicate that monitoring for ischemic
myocardial damage may identify sRV patients at risk of adverse
effects, including heart failure. High-sensitivity Troponin-T
(hsTnT) is a diagnostic marker for acute coronary syndrome
(ACS). It has also been used as a biomarker for cardiac
dysfunction in adult CHDs. Profound hsTnT elevations above
the 99th percentile are detected in sRV patients and CHDs with
PHTN (41). hsTnT levels also correlate with higher degrees
of systolic dysfunction, non-sinus rhythm, a higher NYHA

heart failure classification, and elevated NT-proBNP levels (41).
Kowalik et al. associated higher serum hsTnT levels with worse
echocardiographic parameters of cardiac function and higher
NYHA functional class, but, due to the cross-sectional nature
of this study, a temporal relationship in which hsTnT elevations
precede cardiac dysfunction could not be established (42). The
same authors later conducted a prospective study and reported
that hsTnT levels were the best predictor of a composite clinical
outcome of worsening of heart failure, vascular events, TR,
clinically relevant arrhythmias, MCS device implantation, heart
transplant, and death (HR = 6.25, P = 0.02) (43).

A variety of mechanisms underlie myocardial ischemia and
perfusion defects in sRV patients (Figure 3). Vasoreactivity to
adenosine is impaired in both d-TGA and cc-TGA patients (39,
44). sRV hypertrophy may also play a role in the development
of myocardial ischemia by creating a mismatch between O2

demand and blood supply by the right coronary artery (3).
Lastly, perfusion to the sRV is diastole-dependent, in contrast
to the congenitally normal heart where the subpulmonic RV
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FIGURE 3

Myocardial ischemia and an impaired coronary flow reserve is independently associated with cardiac dysfunction and heart failure in systemic
LV and sRV failure. sRV patients also show impaired vascular reactivity to adenosine (a vasodilator) during stress. A hypertrophied sRV may
effectively outgrow its blood supply, creating an oxygen demand and supply mismatch and consequent ischemia. The RV is usually supplied
throughout all phases of the cardiac cycle, but this may change in sRV, as some reports hypothesize that sRV perfusion is diastole-dependent,
causing ischemia. Therefore, myocardial ischemia in sRV may be ischemia in sRV may be explained by various mechanisms, some of which may
be amenable to treatment. We created the figure with biorender.com.

receives coronary blood flow throughout the cardiac cycle
(45). However, whether sRV hypertrophy produces clinically
measurable cardiac dysfunction is controversial. Grothoff et al.
found positive septal movement due to disproportionate sRV
hypertrophy supported sRV function without impairing LV
function (46), whereas Hornung et al. reported a correlation
between the degree of sRV hypertrophy and dysfunction of both
ventricles (40). It is worth noting that both studies assessed
patients with similar median post-operative intervals (21.5 and
24 years, respectively). In short, sRV hypertrophy may play a role
in causing myocardial perfusion defects and consequent sRV
dysfunction, although further studies are needed.

2.3. Tricuspid regurgitation

In sRV, the tricuspid valve becomes the systemic
atrioventricular (SAVV) instead of the mitral valve, chronically
causing tricuspid dysfunction. The tricuspid valve is ill-
equipped to serve as the SAVV due to morphological differences
between it and the mitral valve, predisposing it to TR (47).
TR is a common complication in TGA patients and causes
volume overload, leading to sRV dilatation, and eventual
heart failure (48). Indeed, TR is a significant independent
predictor of adverse cardiac events in d-TGA and cc-TGA
patients (discussed below). Szymański et al. identified three
distinct types of TR in sRV patients: annular dilatation, valvular
prolapse, and valve tethering (48). Asymmetric tethering occurs
in ventricular interdependence resulting in right-to-left septal
shift and consequent TR (49). Compared to valvular prolapse
and annular dilatation, sRV with tricuspid valve tethering

had a more spherical RV, increased RV cavity area, lower RV
fractional area change, and lower annular velocities in Doppler
tissue imaging (48). These patients also had significantly greater
BNP levels than patients with valve prolapse (48). These results
indicate that TR due to valve tethering is associated with a
considerably greater degree of sRV dysfunction than annular
dilatation or valve prolapse.

Moderate and severe TR was found in 27.5 and 20% of
d-TGA patients post-atrial switch repair (50–52), developing
∼12 years after the procedure (51). A risk prediction model
was recently devised by Woudstra et al. to stratify patients
according to their likelihood for event-free survival, which
included age > 30 years, > 1 year after Mustard/Senning
surgery, prior ventricular arrhythmia, right or left ventricular
dysfunction, and severe TR (53). Severe TR significantly
increased the risk of death in d-TGA patients (HR = 7.00,
p < 0.001) (53). d-TGA patients suffer from functional TR,
secondary to annular dilatation of the sRV, rather than from
intrinsic morphologic abnormalities of the tricuspid valve (11).
Therefore, management focuses on restoring sRV function—
tricuspid valve replacement is not warranted. Interestingly,
at least moderate post-operative TR after the atrial switch
significantly predicted shorter overall survival and transplant-
free survival, pointing to TR as a potential cause rather than a
consequence of sRV dysfunction (54).

One of the unique features of cc-TGA distinguishing it
from d-TGA is the intrinsically abnormal tricuspid valve in
the former. Studies have found that 94% of patients with
cc-TGA suffered from intrinsic tricuspid valve abnormalities,
including Ebstein anomaly, dysplasia, straddling, stenosis, and
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overriding (55). Indeed, heart failure due to severe TR and
sRV dysfunction is the most common presentation of adults
diagnosed with cc-TGA (56). Around 30% of patients with
simple cc-TGA and 60% of those with associated lesions develop
heart failure by 45 years of age. TR is a key prognostic
determinant of the overall survival of cc-TGA patients (11). For
instance, long-term survival (20 years) was 47% for patients
with at least moderate TR and 93% for those without TR
(57). TR was also the only independent risk factor for death
in the multivariate analysis (57). TR in cc-TGA is mainly
due to intrinsic tricuspid valve abnormalities, although chronic
sRV dilatation and dysfunction also play a role (55, 57, 58).
Therefore, tricuspid valve replacement surgery is often indicated
in these patients (discussed below).

In summary, SAVV regurgitation in sRV has been
incorporated into several prognostic prediction models to
stratify cc-TGA and d-TGA patients. However, considering the
multifactorial pathophysiology of sRV failure, it is difficult to
delineate the exact contribution of TR in this context.

2.4. Mechanical dyssynchrony and
arrhythmias

Approximately 25% of adult CHD-related admissions are
due to arrhythmias (59). Bradyarrhythmias, tachyarrhythmias,
and SCD are not uncommon in sRV patients and are potentially
fatal. The recent Broberg et al. study showed atrial arrhythmias
and ventricular arrhythmias to correlate with the primary
clinical outcome of death, transplantation, or MCS device
requirement in d-TGA patients after the Mustard/Senning
procedure (60). Ventricular arrhythmias were also part of a 5-
year risk prediction model of the primary outcome (60). Indeed,
d-TGA patients after atrial switch surgery are among the CHD
patient groups at the highest risk of sudden cardiac death (SCD)
(4, 61), with numerous potential triggers (62). On long-term
follow-up (33.6 years), SCD is the most common cause of death
in d-TGA post-atrial switch, especially in adolescents (63). The
atrial switch surgery for d-TGA may damage the sinoatrial
node/atrial conduction tissue or temporarily decrease blood
flow to the sinoatrial node, causing post-operative sinus node
dysfunction—estimated prevalence ≤ 60% at 20-year follow-up
(51, 64). Intra-atrial re-entrant tachycardia (IART)—an atypical
form of atrial flutter on ECG—is the most common type of
supraventricular tachycardia after the atrial switch procedure,
seen in 25% of patients on long-term follow-up (61). It likely
arises because of fibrosis from the presence of suture lines and
patches within the RA after surgery. IARTs must be recognized
and treated promptly, as secondary ventricular tachycardias and
fibrillation can develop because of increased atrioventricular
conduction (64). Primary ventricular tachycardias frequently
complicate sRV failure and cause SCD in d-TGA and cc-TGA
patients (4, 62). Arrhythmias may also develop because of

TR and secondary atrial dilatation. Atrial arrhythmias are also
linked with SCD in d-TGA patients post-atrial switch (62).

Cardiac dyssynchrony is defined as non-synchronous peak
myocardial fiber shortening caused by a delay in the electrical
and mechanical activation of the heart (65). Mechanical
dyssynchrony impairs efficient ventricular contraction,
reducing cardiac output and contributing to heart failure
progression. Cardiac dyssynchrony contributes to progressive
heart failure and mortality in congenitally normal patients
with left bundle-branch block (LBBB) (66–68). Right bundle-
branch blocks (RBBBs) frequently develop after atrial-switch
surgery for d-TGA, causing delayed activation-induced sRV
electromechanical dyssynchrony and dysfunction (69–71).
Reportedly, 10% of d-TGA patients, after the atrial switch
procedure, develop conduction disturbances with significant
QRS prolongation > 120 ms, a marker of electromechanical
dyssynchrony (53). Electromechanical dyssynchrony induces
sRV dysfunction in d-TGA patients and correlates with
exercise intolerance and major adverse cardiac events,
including heart failure (72). Broberg et al. recently showed
QRS prolongation > 120 ms as an independent 5-year predictor
of a composite primary outcome of death, transplantation, or
MCS device implantation (60). Cardiac fibrosis may damage the
conduction system, leading to dyssynchrony. Indeed, fibrosis
is associated considerably with delayed septal shortening,
lengthening, and prolonged sRV isovolumic contraction times
in sRV patients post-atrial switch (73). Myocardial perfusion
defects also induce ventricular dyssynchrony (73–75).

A key distinction between cc-TGA and d-TGA regarding
clinical presentation is the predisposition for AV block in the
former. AV conduction abnormalities are widespread in cc-
TGA patients because of malalignment of the atrioventricular
septum and a longer course taken by the conduction system to
reach the ventricles (11, 76). A ventricular septal defect is the
most commonly associated lesion with TGA, and its closure
may precipitate an iatrogenic AV block (61, 77). Congenital
conduction abnormalities with heart block can also occur but
run a low mortality risk (78). Huhta et al. reviewed data
on 107 cc-TGA patients and found that 23 patients (22%)
had complete AV block and an annual risk of developing
de novo AV block of approximately 2% (79). Complete AV
block is the initial presentation of 10% of cc-TGA patients,
while 20–30% present with second-degree AV block (80).
In the absence of associated abnormalities, cc-TGA patients
remain asymptomatic throughout early life and present later
with progressive heart block, attributed to fibrosis-induced
discontinuity of the abnormally long conduction system (76).
Improvements in pharmacotherapies and invasive treatment
for sRV patients have prolonged the life of individuals with
an sRV, increasing the risk of chronic sRV dysfunction-related
conduction abnormalities; the incidence of complete AV block
in cc-TGA patients is 30–50% by 50 years of age (79–81).
Lastly, as discussed above, TR affects many cc-TGA patients,
requiring tricuspid valve surgery. However, AV conduction
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abnormalities are common after tricuspid valve surgery (82).
Nederend et al. reported that 41% (9/22) of cc-TGA patients
developed new-onset AV block after tricuspid valve replacement
(83). Together, these findings demonstrate sRV dyssynchrony
to be very prevalent in cc-TGA patients, secondary to a variety
of etiologies, including fibrosis, perfusion defects, associated
lesions, and tricuspid valve replacement.

Such conduction abnormalities are often treated with
chronic subpulmonary LV (i.e., univentricular) pacing.
However, pacing-induced dyssynchrony is a well-known
phenomenon that worsens sRV dysfunction and contributes to
sRV failure. Indeed, LV pacing is a risk factor for progressing
sRV dysfunction in cc-TGA patients (84). For instance, patients
receiving chronic subpulmonary pacing have a significantly
longer QRS complex duration, higher NT-pro-BNP, and
pronounced sRV systolic dysfunction than patients with
no conduction abnormalities (83). sRV patients receiving
chronic pacing post-tricuspid valve surgery are also at higher
risk of mortality, ventricular assist device implantation, and
requirement for cardiac resynchronization therapy (CRT)
compared to patients with native AV conduction (83).
Moore et al. retrospectively analyzed 106 adult CHD cases,
including TGA. They found 25% of patients suffer from
univentricular pacing-induced cardiomyopathy, with a higher
risk of admission due to heart failure than those without (44%
vs. 15%) (85). Notably, only individuals with a high pacing
burden (when ventricular pacing exceeded 70%) developed
pacing-induced cardiomyopathy develop; no patients with
ventricular pacing < 70% developed pacing-induced ventricular
dysfunction (85). Mechanistically, univentricular pacing
may cause a septal shift toward the subpulmonary LV, with
consequent annular dilatation of the sRV and TR, which, in
turn, causes volume overload and exacerbates sRV dilatation
(86), leading to a vicious cycle of progressive TR and sRV
dysfunction. For these reasons, current recommendations
suggest upgrading to CRT in patients receiving univentricular
pacing or using primary CRT in patients being considered for
pacing. Clinical studies investigating CRT vs. univentricular
pacing as the primary treatment modality are required to
validate these suggestions.

3. Management of the failing
systemic right ventricle

3.1. Medical therapy

Evidence-based guidelines on pharmacologic treatment of
sRV failure have not been established (87). Drugs available
for systemic LV failure are usually used to treat patients with
sRV failure, with largely disappointing results. For example,
current data do not support using β-blockers, ACEis, ARBs, or
aldosterone receptor antagonists in cc-TGA or d-TGA patients

(19, 87–95). Dos et al. recently reported that 14 sRV patients
treated with the aldosterone-receptor antagonist eplerenone
showed reduced collagen turnover biomarkers, but whether this
correlated with an improvement in sRV function could not be
determined (87).

The first sRV failure patient cohort (n = 18) treated
with sacubitril/valsartan, an angiotensin receptor/neprilysin
inhibitor (ARNI), reported significant improvements in
6-min walking distance, cardiac function assessed by
echocardiography, and quality of life (96). Larger scale
studies with longer follow-up times are needed to appreciate
the effect of ARNI use in sRV patients. Also, data on whether
ARNI reduces cardiovascular mortality and heart failure-related
hospitalizations in sRV patients is lacking. A recent single-
center study recruited a cohort of 18 sRV patients prescribed
ARNI for a median duration of 13 months and compared
blood pressure, cardiopulmonary stress testing, imaging, and
NYHA functional class at baseline vs. after treatment (97).
A significant decrease in NYHA functional class was noted, but
all other findings were statistically insignificant, including heart
failure-related hospitalizations (97).

Sodium-glucose cotransporter 2 (SGLT2) inhibitors, such
as empagliflozin and dapagliflozin, decrease cardiovascular
mortality and hospitalizations related to heart failure with
reduced LV ejection fraction (98). SGLT2 inhibitors also
relieve subpulmonic RV pathology and reduce mortality in
experimental models of PHTN (99), suggesting that they
might be effective in treating pressure overload-induced sRV
dysfunction. A recent case report by Egorova et al. was the first
published report describing dapagliflozin use in a 28-year-old
woman with cc-TGA and NYHA class II-III sRV failure who did
not tolerate ARNI therapy (100). Dapagliflozin use significantly
improved the patient’s subjective and objective functional
status, similar in magnitude to the ARNI regimen (100).
Mechanistic pathways by which SGLT2 inhibitors mitigate
cardiac dysfunction may involve decreases in renin-angiotensin-
aldosterone system activation and sympathetic outflow (101).
These findings suggest that SGLT2 inhibitors may be beneficial
in sRV failure management, but larger-scale clinical trials are
needed to validate these findings. Lastly, the anti-fibrotic drug
pirfenidone has been shown to moderately reduce myocardial
fibrosis—assessed by ECV fraction—in HFpEF patients after a
year of follow-up in the recent PIROUETTE trial. However,
anti-fibrotic medications have not yet been used in sRV patients
with heart failure.

3.2. Pacemakers and implantable
cardioverter-defibrillator placement

Arrhythmia prevention strategies in sRV patients
are not well defined. Indeed, the burden of implantable
cardioverter-defibrillator (ICD) placement in TGA patients
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is considerably greater than that of the current population;
TGA is only second to tetralogy of Fallot for ICD implantation
for adult CHDs. As per the European Society of Cardiology
(ESC) 2020 guidelines on the management of adult CHDs,
ICD implantation may be considered for secondary prevention
of SCD in the setting of severe sRV dysfunction (ejection
fraction < 35%) in the presence of additional risk factors, such
as NYHA functional class II/III, severe SAVV regurgitation,
and wide QRS duration ≥ 140 ms (102). Adjunctive therapies
with antiarrhythmics that slow down heart rate and AV nodal
conduction—such as β-blockers and amiodarone—are also
beneficial in restoring 1:1 conduction in IARTs and other
supraventricular tachycardias (81). Nevertheless, identifying
sRV patients at risk of SCD remains challenging. The benefit
of ICD as primary prevention of SCD in sRV is also unclear.
Furthermore, current guidelines for ICD implantation in
CHD patients often lead to over-implantation in low-risk
and under-implantation in high-risk groups (103). Ladouceur
et al. developed a risk stratification score to identify high-risk
sRV and inform ICD guidelines (104). The score assesses
patients’ future risk according to age, history of heart failure,
syncope, severe sRV dysfunction, and left ventricular outflow
obstruction (104).

Pacing is often required for d-TGA post-atrial switch repair
patients with bradycardia and cc-TGA patients with heart
block (4). However, as discussed above, univentricular pacing
can worsen long-term sRV function. Therefore, biventricular
pacing/CRT should be initiated in such patients or as a
primary measure to prevent pacing-induced dyssynchrony.
CRT has recently been shown to also significantly improve
cardiac function in adult CHDs featuring a systemic LV
(105). Janousek et al. demonstrated that CRT for spontaneous
conduction abnormalities or pacing-induced dyssynchrony
significantly improved sRV function on echocardiography and
NYHA functional class (106). Similarly, Hofferbath et al.
upgraded 14 cc-TGA patients receiving univentricular LV
pacing to biventricular CRT due to sRV dysfunction and
observed significant improvements in cardiac function (107).
For comparison, 11 primary CRT recipients for AV block did
not develop sRV dysfunction on short-term follow-up (107).
Lastly, Yeo et al. compared 22 cc-TGA patients receiving
subpulmonary LV pacing to 7 primary CRT recipients (108).
Patients receiving univentricular pacing were more likely to
experience progressive sRV dysfunction, TR, and deterioration
in NYHA class compared to the CRT group (108). However, the
indications of CRT in sRV patients need to be precisely defined.
Egbe et al. recently compared the benefit of CRT, medical
therapy, and tricuspid valve replacement in preventing sRV
dysfunction. Only valve replacement was significantly beneficial
before the onset of sRV dysfunction (84). A multicenter study
assessed CRT response in 36 TGA patients (20 cc-TGA and
16 d-TGA) and found less successful reverse sRV remodeling
than systemic LV remodeling after CRT (109). Baruteau et al.

suggested that regurgitation of the systemic tricuspid valve
may be less amenable to CRT than the mitral valve (80),
underscoring the importance of decision-making regarding
optimal management on a case-by-case basis while considering
the patient’s underlying anatomical abnormalities.

These findings indicate that early tricuspid valve
replacement may prevent future sRV dysfunction and heart
failure. An international multicenter study by Kharbanda
et al. showed that CRT significantly reduced NYHA class and
QRS duration in sRV patients on pre-existing univentricular
pacing, but primary CRT had no significant benefit (110).
Therefore, the best pacing strategy in sRV patients in terms
of longevity, safety profile, and magnitude of improvement
in sRV function remains yet to be defined; more comparative
observational studies on univentricular pacing upgraded to CRT
vs. primary CRT use are needed. Studies thus far have utilized
echocardiography to document changes in sRV function after
univentricular pacing or CRT. Using CMR to characterize the
structural and functional changes in the heart after pacing
would strengthen such studies. New pacing techniques, such
as conduction system pacing and leadless pacing, are used in
congenitally normal cardiac patients. However, experience in
CHDs, including sRV, is limited (111).

3.3. Tricuspid valve replacement

Precipitants of sRV failure may require invasive treatment.
Treatment for patients with mild or moderate TR aims to
reduce ventricular afterload and prevent arrhythmias (112).
Patients with severe TR may be considered for TV replacement;
valve repair has shown inferior outcomes (higher recurrence
rates) compared to replacement (113, 114). However, SAVV
replacement is a high risk procedure in patients with severely
impaired sRV function. Transcatheter edge-to-edge valve repair
with clip implantation has been used to treat mitral and
TR in congenitally normal hearts. Case reports and series
implanting clips in the SAVV tricuspid position in d-TGA and
cc-TGA have also reported good clinical and echocardiographic
improvement (115). Albeit more extensive studies with longer
follow-ups are needed for validation, this percutaneous-based
clip implantation may be suitable for sRV patients at high
surgical risk (116).

The major determinant of post-operative sRV function
after SAVV replacement is preoperative sRV ejection fraction.
At a follow-up of ∼8 years, 63% of cc-TGA patients
with preoperative sRV EF ≥ 40% maintained sRV function,
compared to only 10% with a preoperative sRV EF ≤ 40%
(117). In agreement with these findings, Egbe et al. attributed
a significant survival benefit to early SAVV replacement in
cc-TGA performed before the onset of sRV dysfunction,
whereas CRT and medical therapy yielded no statistically
significant benefits (84). Likewise, immediate post-operative
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SAVV regurgitation after the atrial switch operation negatively
affects the survival of d-TGA patients (54). The ESC
2020 guidelines revised their 2010 recommendations for the
management of adult CHDs, upgrading the indication for SAVV
replacement in cc-TGA patients with SAVV regurgitation and
mildly impaired sRV function (EF ≥ 40%) from class IIa to I
(102), underscoring the importance of early intervention.

3.4. Heart transplantation and
mechanical circulatory support devices

Patients with decompensated sRV failure unresponsive to or
unsuitable for CRT and refractory to medical therapy should
be referred to a transplant center (112). However, a scarcity of
donors coupled with adult CHD patients facing more prolonged
waiting times on transplant lists increases the risk of major
adverse events, such as heart failure-related hospitalizations,
multi-organ failure, and death (118–120). sRV patients are
also at risk of developing PHTN, which relates to worse
prognostic outcomes and increases the perioperative risk of
a heart transplant, precluding such patients from transplant
eligibility (121, 122). Even after a transplant, short-term survival
in adult CHD transplant recipients is still inferior compared
to congenitally normal patients (10, 123–125). Paradoxically,
however, CHD transplant recipients tend to fare better on long-
term follow-up than congenitally normal patients (10, 123–125).

Ventricular assist devices (VADs) are increasingly used
to manage advanced heart failure patients as either a bridge
to transplant, bridge to candidacy, or destination therapy—
indications are based on the INTERMACS profile (122). LVAD
placement in advanced chronic heart failure cases prolongs
survival and improves the quality of life. On a much smaller
scale, VAD implantation has been beneficial in managing
advanced sRV—even congenitally complex cases—in isolated
case reports and small case series (126–132). Studies thus far
have shown demonstrable reductions in pulmonary arterial
pressure and pulmonary capillary wedge pressure after VAD
implantation, rendering patients eligible for a transplant;
further decreases in these parameters are noted after the
transplant (133). Fernandez et al. recently demonstrated better
hemodynamic and cardiac functional outcomes following VAD
implantation and concomitant SAVV replacement (133). Larger
single-center and multi-institutional data representative of a
heterogenous sRV patient population are needed to corroborate
these findings and inform the development of evidence-based
guidelines for VAD implantation in sRV patients.

4. Conclusion

The guarded prognosis of sRV is due to the lack of
evidence-based prognostic markers and treatment guidelines,

particularly regarding pharmacologic management. We
divided the mechanisms underpinning sRV dysfunction into
myocardial fibrosis, ischemia/perfusion defects, arrhythmias
and dyssynchrony, and TR. This classification encompasses
the multifactorial nature of sRV dysfunction. Nevertheless,
most data on the mediators of sRV dysfunction stem from
studies on congenitally normal hearts. Mechanistic differences
between sRV and LV failure need to be anticipated, exemplified
by the poor efficacy of approved heart failure medications
in relieving the radiologic and functional deterioration of
sRV patients. Although the recent studies discussed above
have significantly contributed to the scientific literature, the
sRV patient population still seems to be an underrepresented
community in clinical trials compared to heart failure in the
systemic LV. Advancements in pediatric cardiology and surgery
have ensured that 88% of children—including those with an
sRV—reach adulthood, producing an aging sRV population
with an annually increasing risk of cardiac complications,
including heart failure (50, 134). An evidence-based consensus
regarding the many avenues of managing sRV is still lacking.
Future robust clinical trials based on the foundational clinical
data presented above are needed to better delineate the clinical
care of the failing sRV.
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