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Great strides have been made in past years toward revealing the pathogenesis

of acute myocardial infarction (AMI). However, the prognosis did not meet

satisfactory expectations. Considering the importance of early diagnosis in

AMI, biomarkers with high sensitivity and accuracy are urgently needed.

On the other hand, the prevalence of AMI worldwide has rapidly increased

over the last few years, especially after the outbreak of COVID-19. Thus,

in addition to the classical risk factors for AMI, such as overwork, agitation,

overeating, cold irritation, constipation, smoking, and alcohol addiction, viral

infections triggers have been considered. Immune cells play pivotal roles

in the innate immunosurveillance of viral infections. So, immunotherapies

might serve as a potential preventive or therapeutic approach, sparking new

hope for patients with AMI. An era of artificial intelligence has led to the

development of numerous machine learning algorithms. In this study, we

integrated multiple machine learning algorithms for the identification of novel

diagnostic biomarkers for AMI. Then, the possible association between critical

genes and immune cell infiltration status was characterized for improving the

diagnosis and treatment of AMI patients.
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Introduction

Acute myocardial infarction (AMI) is a medical emergency
caused by acute occlusion of the coronary arteries resulting in
hypoperfusion and ischemic necrosis of myocardial cells. The
pathophysiology of AMI is complex involving hemodynamic
and circulatory dysfunction, organ failure, and even crosstalk
between inflammation and immune disorders. The high
incidence and mortality of AMI cause a serious social and
healthy economic burden and affect the quality of human life
(1, 2). It is vital to diagnose and treat AMI as soon as possible to
reduce myocardial injury and malignant consequences, reduce
mortality to a certain extent, and improve the patient’s prognosis
(3). As of now, the evaluation of myocardial enzyme (CKMB)
and cardiac troponin I (cTnI) remains the gold standard for
the diagnosis of acute myocardial infarction. Nevertheless,
some researchers have pointed out that patients with chronic
kidney disease and heart failure also have elevated cTnI levels,
making the diagnosis of AMI based on these biomarkers still
unsatisfactory due to their low specificity and sensitivity (4–6).
In addition, with an aging global population and an increasing
life expectancy, it has become more crucial than ever to diagnose
and prevent AMI.

In recent years, new technologies such as next-generation
sequencing have allowed us to make great advances in
diagnosing cardiovascular disease and identifying therapeutic
biomarkers. With the rapid development of bioinformatics,
novel methods are being developed for the prediction of AMI.
It is worth noting that traditional differential gene expression
analysis (DEGs) is mainly used to identify hub genes, but may
lead to the loss of intrinsic biological information. Furthermore,
although multi-biomarker approaches have been reported to
significantly improve the diagnostic accuracy of AMI, they still
lack robust capabilities due to complex genetic structures and
inadequate methods (7–9). Many predictive models with poor
accuracy and low efficiency may not enough for screening
and early detection of AMI. Fortunately, the development of
machine-learning algorithms, such as random forest (RF) and
support vector machine-recursive feature elimination (SVM-
REF), have been successfully applied to biomarker discovery and
to build accurate prognostic risk models (10, 11).

Hence, in the present study, we integrated weighted gene
co-expression network analysis (WGCNA) and DEGs analysis
to identify candidate genes related to the pathogenesis of
AMI. Then by combining the utilization of multiple machine-
learning algorithms including the least absolute shrinkage and
selection operator (LASSO), RF, and SVM-REF, we finally
obtained seven optimal feature genes. Then we evaluated their
predictive performance of them using the receiver operating
characteristic (ROC) curve. Thereafter, the mechanism by
which they contribute to AMI was investigated by functional
enrichment analyses such as GO, KEGG, DO, and GSEA.
Besides, immune-related algorithms such as ssGSEA were

conducted to assess of the levels of infiltration of different
immune cell types and functions. In conclusion, we found that
seven powerful diagnostic efficacy genes were present in patients
with AMI, indicating that they may provide new potential
targets for diagnosis and prognosis of AMI, thus leading to
improved outcomes.

Materials and methods

Data collection and processing

The study flowchart is presented in Figure 1. AMI-
related raw gene expression profiles data were downloaded
from the Gene Expression Omnibus database (GEO).1 Two
microarray datasets GSE48060 (GPL570, Control: 21, AMI: 31)
and GSE66360 (GPL570, Control: 50, AMI: 49) were included in
subsequent bioinformatics analysis. Three microarray datasets
GSE19339 (GPL570, Control: 4, AMI: 4), GSE97320 (GPL570,
Control: 3, AMI: 3), and GSE61145 (GPL6106, GPL6884,
Control: 17, AMI: 31) were used as independent validation sets.
Information on the datasets was displayed in Supplementary
Table 1. It should be noted that if a gene has multiple probe loci
during the conversion of probe ID and gene symbol, we use the
average value of probe loci as the gene expression level. A further
step was taken to convert the probe IDs to the gene symbols
based on the annotation files from the respective platforms
and to remove the probes which did not correspond to the
gene symbols. Next, the microarray data were transformed into
log2 values for further analysis. And we integrated them using
Combat algorithm implemented in R package “sva” (12) and
removed batch effects to form a merged dataset.

Differential expression analysis

Differential expression analyses between AMI and control
samples were conducted to identify DEGs using R package
“limma” (criteria: | logFC| > 0.75, P-value < 0.05). Significantly
upregulated genes and downregulated genes were visualized by
volcano plot and heatmap.

Weighted gene co-expression network
analysis

Weighted gene co-expression network analysis was
performed via the R package “WGCNA” to identified
potential functional modules that could characterize the
biological function of the AMI samples (12). It was checked

1 http://www.ncbi.nlm.nih.gov/geo
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FIGURE 1

The workflow of this study.

to ensure that no anomalous samples had escaped clustering
of samples and were excluded from the merged gene matrix.
In brief, on the basis of weighted correlation adjacency
matrices and cluster analyses, genes with similar expression
patterns were assigned to co-expression modules. From the
adjacency matrix, a topological overlap matrix (TOM) was
derived, based on which genes were divided into modules
according to the degree of dissimilarity between them in
the TOM. The cut height, minimal module size, and soft-
thresholding power were set as 0.25, 50, and 24 (scale-free
R2 = 0.9), respectively. Finally, gene importance (GS) and
module membership (MM) were calculated. Then spearman
correlation coefficients as well as the corresponding P-value
between control, AMI groups, and functional modules were
calculated by using the Spearman method. Finally, the hub
module extracted the corresponding genes were selected for
in-depth analysis.

Functional enrichment analysis and
protein-protein interaction network

To identify the putative significant functional terms
between the AMI and control groups, we applied the

gene sets enrichment analysis (GSEA) using GSEA software
with reference gene set (c2.cp.kegg.v11.0.symbols) and the
significance levels for enriched gene sets were determined at q-
value [false discovery rate (FDR)] < 0.05 and P < 0.05 (13).
The upregulated pathways had a normalized enrichment score
(NES) greater than zero, whereas the downregulated pathways
had a NES less than zero. We further obtained the overlapped
candidate genes between DGEs and module genes based on
above mentioned analyses. Venn diagrams were created using
the Venn Diagrams software2 to display the overlap genes. Gene
ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG), and Disease ontology (DO) enrichment analyses were
performed using “clusterProfiler” and “DOSE” R packages to
explore the function and pathways of the overlapped candidate
genes (14). Besides, we mapped a protein-protein Interaction
(PPI) network to explore the interaction of overlapped candidate
genes using the online mapping tool “STRING.3” The co-
expression network was plotted by using R package “igraph” to
explore the correlation intensity between score genes.

Screening optimal feature genes

We applied a combination of machine learning algorithms
(LASSO, SVM-REF, and RF) to predict disease status
and identify significant prognostic variables. The LASSO
regression analysis tool selects variables and regularizes them
simultaneously to improve the predictive capability of statistical
models (14). The SVM, a supervised machine learning method,
is used for regression and classification; the FRE algorithm
was used to prevent overfitting while producing interpretable
results (15, 16). As a result, the SVM-RFE algorithm was
used to identify the gene sets with the highest discriminatory
powers that would be used to identify the most appropriate
feature genes. The classification tree is the basis for the RF
method, which is one of the most popular approaches to
various prediction problems (17). The optimal tree number
was determined by the tree number with the lowest error
rate and the best stability among 1–500 trees. Following this,
an RF was constructed based on the selected parameter, and
the important genes were selected as the key genes for AMI
diagnosis based on the decreasing accuracy method (Gini
coefficient). Considering the gene importance greater than 2 is
a common screening criterion in the RF algorithm, which has
been used in similar studies (18), the top 10 important genes
(importance > 2) were chosen as the novel gene signatures for
predicting prognosis in AMI. Finally, the commonly shared
genes from the intersection of a couple of machine learning
algorithms were the optimal feature genes.

2 http://bioinformatics.psb.ugent.be/webtools/Venn/

3 https://string-db.org/cgi/input.pl
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The expression and diagnosis
significance of optimal feature genes

The expression levels of the optimal feature genes in
AMI samples and control samples were calculated using
Wilcoxon rank-sum test. We further validated the predictive
value of the optimal feature genes using receiver operator
characteristics (ROC) curves.

Assessment of hallmark gene sets and
immune cell infiltration

The CIBERSORT algorithm is a deconvolutional arithmetic
on the foundation of genetics expressions, and it can be used
to assess variations in a gene group within a specimen in
comparison with the variations in the rest of the genes (19).
The CIBERSORT algorithm was used to identify the infiltration
of 22 immune cells in normal and AMI samples, and box
plots were used to illustrate the immune cell composition of
patients with varying immune patterns. The Wilcoxon rank-
sum test was used to evaluate the differences in immune
cell proportions, and P < 0.05 was considered statistically
significant. Additionally, the relative levels of the 50 hallmark
gene sets (h.all.v7.5.1.symbols.gmt) in the merge dataset were
quantified using the ssGSEA algorithm (20). Additionally,
Spearman’s correlations for the 50 hallmark genes sets and the
optimal feature genes were calculated.

GSEA and correlation analysis of
optimal feature genes

In addition, GSEA was utilized to determine the biological
significance of optimal feature genes, utilizing the gene set
of “c2.cp.kegg.v11.0.symbols” from the Molecular Signature
Database4 as a reference. A gene set permutation with 1,000
times was conducted for each analysis in order to obtain a
normalized enrichment score. An FDR < 0.05 was regarded as
significant enrichment. Besides, correlations between optimal
feature gene expression levels were calculated using Pearson
correlation analysis.

Sample collection

Six AML patients and six healthy subjects of peripheral
blood was stored inside 1.5 ml RNase-free tubes at −80◦C
until use. All blood samples were randomly sampled from the
Baotou Central Hospital from August 2021 to September 2022.

4 http://software.broadinstitute.org/gsea/msigdb

Diagnosis of AMI was based on the Fourth Universal Definition
of Myocardial Infarction. This study was approved by the Ethics
Committee of the Baotou Central Hospital and was conducted
in accordance with the Declaration of Helsinki.

RNA extraction and quantitative
reverse transcription PCR (qRT-PCR)

RNA was extracted from blood samples using Trizol reagent
and then cDNA was synthesized by reverse transcription using
the PrimeScriptTM RT Reagent Kit (RR037, TaKaRa, China)
based on the manufacturer’s protocol. GAPDH was used as the
internal references, then qRT-PCR was conducted using the
SYBR Green PCR Kit (RR820, TaKaRa, China) based on the
manufacturer’s protocol. The expression level was quantized by
2−11CT mode. All reactions were repeated in triplicate. The
primers used are shown in Supplementary Table 2.

Statistical analysis

All data processing, statistical analysis, and plotting were
conducted in R software (version 4.1.1) and GraphPad Prism
(version 8.0.2). Wilcoxon rank-sum test or Student’s t-test
was utilized for analyzing the difference between the two
groups. The correlation between the variables was determined
using Pearson’s or Spearman’s correlation test. All statistical
P-values were two-side, and P < 0.05 was regarded as
statistical significance.

Results

Identification of DEGs between control
and AMI samples

In this study, we merged two microarray datasets including
GSE48060 and GSE66360 datasets from the GEO database
and totally obtained 71 control and 80 AMI samples. Before
data analysis, we removed the batch effect from different
batches between the datasets (Figure 2A). Next, a total of 118
DEGs (Supplementary Table 3) including 11 downregulated
genes and 107 upregulated genes were identified, which were
intuitively presented in the heatmap (Figure 2B). Among
them, some genes were significantly upregulated, such as
ACSL1, S100A12, NFIL3, THBD, NR4A2, IL1R2, BCL6, IRAK3,
S100P, PELI1, NAMPT, CLEC4E, MMP9, CLEC4D, CDA, IL1B,
RNASE2, PTX3, EIF1AY, etc. While genes like XIST, TSIX
were significantly downregulated (Figure 2C). To further clarify
the differences in functional and biological pathways between
AMI and control samples, we performed GSEA analysis of
KEGG and screened significant enriched signaling pathways
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FIGURE 2

Identification of DEGs and functional annotation. (A) Gene expression level statistics of the integrated dataset after removed batch effect.
(B) The heatmap of AMI-related DEGs expression levels: blue-low gene expression; red-high gene expression. (C) The volcano plot of
AMI-related DEGs expression. (D) Ridgeline plot of GSEA results. (E,F) The main signaling pathways that are significantly enriched in the AMI
group (E), and in the control group (F).

(Supplementary Table 4). Ridgeline plot showed that there
were changes in various immune-related biological functions
and processes in AMI, such as the activation of IL-17,
NF-kB, and TNF signaling pathways, and the formation of

centriole extracellular traps (NETs) (Figure 2D). Additionally,
IL-17 signaling pathway, starch and sucrose metabolism, and
pantothenate and CoA biosynthesis were significantly enriched
in the AMI group (Figure 2E). In contrast, basal transcription
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factors, DNA replication, mismatch repair, fanconi anemia, etc.
were significantly enriched in the control group (Figure 2F).

WGCNA and screening of hub modules

The co-expression network was constructed by WGCNA.
A total of 21,654 genes, 71 control and 80 AMI samples
were preferred to cluster the samples and exclude the
obviously aberrant samples by setting a threshold, as shown
in Figure 3A. Then, based on scale-free R2 = 0.9 and a
high average connectivity, we set the soft power threshold
to 24 (Figure 3B). In total, seven modules were identified
for further study after the strongly associated modules were
merged according to a 0.25 clustering height limit. The
primed and merged modules were eventually displayed under
the clustering tree (Figure 3C). The correlation between
modules was assessed, and the results revealed that there
was no significant association between them (Figure 3D).
The reliability of modules delineation was demonstrated
by transcription correlation analysis within modules, which
revealed no substantial linkage between modules (Figure 3E).
Similarly, an examination of the correlation between ME values
and clinical features was conducted using frontal correlations
to investigated the relationships between ME values and clinical
symptoms. The cyan module showed a strong correlation with
AMI (R = 0.42, P < 6.3e-39) (Figures 3F, G). In total 519
candidate genes in the cyan module were included in the
subsequent analysis (Supplementary Table 5).

Functional enrichment analysis of
overlapping DEGs

In total 96 overlapping genes (Supplementary Table 6)
were screened from above mentioned DEGs and cyan module
hub genes, which were also named candidate feature genes
(Figure 4A). To reveal the possible biological function and
enrichment pathways of the candidate feature genes, GO,
KEGG, and DO analyses were carried out, subsequently.
Among them, GO analysis consisted of three categories:
biological process (BP), cellular component (CC), and molecular
function (MF). In the BP category, the candidate feature
genes were mainly enriched in neutrophil degranulation,
neutrophil activation involved in immune response, neutrophil
mediated immunity and neutrophil activation, etc. For the CC
category, the candidate feature genes were enriched in many
aspects, such as tertiary granule, ficolin-1-rich granule, specific
granule and secretory granule membrane. For the MF category,
the candidate feature genes were significantly enriched in
immune receptor activity, pattern recognition receptor activity,
chemokine activity and carbohydrate binding (Figure 4B).
In addition, these genes were particularly associated with

IL-17 signaling pathway, TNF signaling pathway, lipid and
atherosclerosis, toll-like receptor signaling pathway, C-type
lectin receptor signaling pathway, legionellosis, osteoclast
differentiation, rheumatoid arthritis and NF-kappa B signaling
pathway in the KEGG enrichment analysis (Figures 4C–
E). DO analysis showed that the candidate feature genes
mainly enriched in arteriosclerotic cardiovascular disease,
bacterial infectious disease, arteriosclerosis and atherosclerosis
(Figure 4F). The above functional enrichment analyses show
that the immune system of AMI patients has changes in multiple
dimensions, and it may have a common pathological process
with the occurrence and progression of other autoimmune
diseases. Then, to further reveal protein-protein interactions
in the pathogenesis of AMI, we analyzed the protein-protein
interaction (PPI) network of the candidate feature genes and
constructed a PPI network using the String website. The PPI
network for these proteins was shown in Figures 4G, H. Taken
together, candidate feature genes play an important role in the
pathogenesis of AMI.

Identification of optimal feature genes
by integrating multiple machine
learning algorithms

To identify the putative feature genes, three different
machine learning algorithms were employed. Specifically, we
identified 30 feature genes as the diagnostic markers for AMI
form the aforementioned 96 candidate feature genes obtained
from the LASSO analysis (Figure 5A and Supplementary
Table 7). Furthermore, using the SVM-REF algorithm, 60
feature genes were selected after 5-fold cross-validation of
the 96 candidate feature genes (Figure 5B, Supplementary
Table 8). Besides, for the RF algorithm, top 10 feature genes
with importance >2 were determined, including MCEMP1,
SLC11A1, IRAK3, THBD, MMP9, NFIL3, IL1R2, ACSL1, BCL6,
and GABARAPL1 (Figures 5C, D). Finally, the intersection
of the feature genes obtained from the above three machine
learning algorithms was taken and a total of seven optimal
feature genes were identified, including ACSL1, GABARAPL1,
IL1R2, IRAK3, MCEMP1, NFIL3, and THBD, that could be used
as potential diagnostic markers for AMI and may be critical
genes involved in AMI progression (Figure 5E).

Assessment of the expression and
diagnosis significance of optimal
feature genes

We further validated the expression levels of the 7 optimal
feature genes in 80 AMI samples and 71 normal samples.
Additionally, the expression levels of the 7 genes were
significantly upregulated in the AMI samples, indicating their

Frontiers in Cardiovascular Medicine 06 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1059543
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-1059543 December 21, 2022 Time: 14:43 # 7

Li et al. 10.3389/fcvm.2022.1059543

FIGURE 3

Weight correlation network analysis. (A) Sample clustering dendrogram with tree leaves corresponding to individual samples. (B) Analysis of the
scale-free fit index (R2) and the mean connectivity for various soft-thresholding powers. (C) The original and combined modules under the
clustering tree with cut-off values height of 0.25. (D) Collinear heat map of module feature genes. Red color indicates a high correlation, blue
color indicates the opposite results. (E) Clustering dendrogram of module feature genes. (F) Heat map of module–trait correlations. Red
represents positive correlations and blue represents negative correlations. (G) MM vs. GG scatter plot of AMI for cyan module.

potential roles during the progression of AMI (Figures 6A–

G, P < 0.01). Besides, to quantitatively assess the diagnostic

and predictive value of the optimal feature genes, we conducted

a ROC curve analysis (Figure 6H). The AUC values of ROC

curves were ACSL1 of 0.827 (Figure 6I), GABARAPL1 of

0.841 (Figure 6J), IL1R2 of 0.849 (Figure 6K), IRAK3 of 0.845

(Figure 6L), MCEMP1 of 0.844 (Figure 6M), NFIL3 of 0.833

(Figure 6N), THBD of 0.843 (Figure 6O), demonstrating that
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FIGURE 4

Identification and functional enrichment analyses of overlapping candidate genes. (A) Venn diagram showed the intersection of DEGs and
module genes of WGCNA. (B–F) GO (B), KEGG (C–E), and DO (F) enrichment analysis of the overlapping candidate genes. (G) Protein-Protein
Interaction (PPI) network of overlapping candidate genes. (H) The co-expression network showing correlation intensity of hub genes from
overlapping candidate genes.

these optimal feature genes enable to estimate the progression

and had a high diagnostic value for AMI.

In addition, for accurate and reliable results, we further

validated the expression levels of the optimal feature genes

in external validation dataset including 38 AMI samples and

24 control samples. The GSE19339, GSE97320, and GSE61145

datasets were also normalized before analysis (Supplementary
Figure 1). As shown in Figures 7A–G, the expression of the

seven optimal feature genes were significantly upregulated in

the AMI samples relative to the control samples (all P < 0.05).
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FIGURE 5

Three machine learning algorithms were integrated to identify the optimal feature genes. (A) LASSO coefficient profiles of the candidate optimal
feature genes and the optimal lambda was determined when the partial likelihood deviance reached the minimum value. Each coefficient curve
in the left picture represents a single gene. The solid vertical lines in right picture represent the partial likelihood deviance, and the number of
genes (n = 30) corresponding to the lowest point of the cure is the most suitable for LASSO. (B) The SVM-RFE algorithm was used to further
candidate optimal feature genes with the highest accuracy and lowest error obtained in the curves. The x-axis shows the number of feature
selections, and the y-axis shows the prediction accuracy. (C) Relative importance of overlapping candidate genes calculated in random forest
(Top 10 genes’ importance > 2). Importance indexes on the x-axis and genetic variables are plotted on the y-axis. (D) Random forest for the
relationships between the number of trees and error rate. The x-axis represents the number of decision trees and the y-axis is the error rate.
(E) Venn diagram showing the seven optimal feature genes shared by LASSO, Random Forest, and SVM-REF algorithms.

Meanwhile, the external validation dataset also presented high

AUC values: ACSL1 (AUC: 0.705), GABARAPL1 (AUC: 0.664),

IL1R2 (AUC: 0.747), IRAK3 (AUC: 0.737), MCEMP1 (AUC:

0.783), NFIL3 (AUC: 0.671), THBD (AUC: 0.716) (Figures 7H–
O). The results of external validation strongly proved that all

optimal feature genes are involved in AMI and have a high

diagnostic value for AMI.

Identification of the function of seven
feature genes

Since these seven characteristic genes have a high guiding

significance for judging prognosis, we then performed

GSEA analysis on them to clarify their potential biological

functions. Based on median expression levels of the optimal
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FIGURE 6

Verification of expression and diagnostic efficacy in predicting AMI progression of optimal feature genes. (A–G) Box plots showing the
expression of ACSL1 (A), GABARAPL1 (B), IL1R2 (C), IRAK3 (D), MCEMP1 (E), NFIL3 (F), and THBD (G) in control and AMI samples. Statistic tests:
Wilcoxon rank-sum test. (H–O) Roc curves (H) estimating the diagnostic performance of ACSL1 (I), GABARAPL1 (J), IL1R2 (K), IRAK3 (L),
MCEMP1 (M), NFIL3 (N), and THBD (O).
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FIGURE 7

Verification of expression and diagnostic efficacy for optimal feature genes using external validation dataset. (A–G) Box plots showing the
expression of ACSL1 (A), GABARAPL1 (B), IL1R2 (C), IRAK3 (D), MCEMP1 (E), NFIL3 (F), and THBD (G) in control and AMI samples. Statistic tests:
Wilcoxon rank-sum test. (H–O) Roc curves (H) estimating the diagnostic performance of ACSL1 (I), GABARAPL1 (J), IL1R2 (K), IRAK3 (L),
MCEMP1 (M), NFIL3 (N), and THBD (O).
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FIGURE 8

Gene sets enrichment analysis (GSEA) identifies signaling pathways in the optimal feature genes. (A–G) Top five signaling pathways that are
significantly enriched in the high expression of ACSL1 (A), GABARAPL1 (B), IL1R2 (C), IRAK3 (D), MCEMP1 (E), NFIL3 (F), and THBD (G).

feature genes, we divided AMI samples into two groups,
respectively. Additionally, immune-related pathways such
as B cell receptor signaling pathway, graft-vs.-host disease,
legionellosis, leishmaniasis, and rheumatoid arthritis were
significantly enriched in the high ACSL1 subgroup (Figure 8A),
while metabolism-related pathways such as butanoate

metabolism, linoleic acid metabolism, and taurine and
hypotaurine metabolism were significantly enriched in the
low ACSL1 subgroup (Supplementary Figure 2A). Allograft
rejection, graft-vs.-host disease, legionellosis, leishmaniasis
and type I diabetes mellitus were significantly enriched
in the high GABARAPL1 subgroup (Figure 8B), whereas
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metabolism of xenobiotics by cytochrome P450, aminoacyl-
tRNA biosynthesis, butanoate metabolism, and valine, leucine
and isoleucine degradation were significantly enriched in the
low GABARAPL1 subgroup (Supplementary Figure 2B).
B cell receptor signaling pathway, fc gamma R-mediated
phagocytosis, legionellosis, leishmaniasis and osteoclast
differentiation were significantly enriched in the high IL1R2
subgroup (Figure 8C), whereas linoleic acid metabolism,
taurine and hypotaurine metabolism, and maturity onset
diabetes of the young were significantly enriched in the low
IL1R2 subgroup (Supplementary Figure 2C). Epithelial cell
signaling in helicobacter pylori infection, graft-vs.-host disease,
legionellosis, leishmaniasis and pertussis were significantly
enriched in the high IRAK3 subgroup (Figure 8D), while
aminoacyl-tRNA biosynthesis, primary immunodeficiency,
and RNA polymerase were significantly enriched in the low
IRAK3 subgroup (Supplementary Figure 2D). B cell receptor
signaling pathway, epithelial cell signaling in helicobacter
pylori infection, legionellosis, leishmaniasis and rheumatoid
arthritis were significantly enriched in the high MCEMP1
subgroup (Figure 8E), whereas taste transduction and olfactory
transduction were significantly enriched in the low MCEMP1
subgroup (Supplementary Figure 2E). B cell receptor signaling
pathway, graft-vs.-host disease, legionellosis, leishmaniasis and
osteoclast differentiation were significantly enriched in the
high NFIL3 subgroup (Figure 8F), whereas drug metabolism
- cytochrome P450, Linoleic acid metabolism, and nicotine
addiction were significantly enriched in the low NFIL3
subgroup (Supplementary Figure 2F). Asthma, legionellosis,
leishmaniasis, osteoclast differentiation and pertussis were
significantly enriched in the high THBD subgroup (Figure 8G),
whereas alanine, aspartate and glutamate metabolism, primary
immunodeficiency, and ribosome were significantly enriched
the low THBD subgroup (Supplementary Figure 2G).
Interestingly, we noticed that B cell receptor signaling pathway
was enriched multiple times, especially was enriched in the
apical position in NFIL3, MCEMP1 and IL1R2 high expression
groups.

Hallmark gene sets and immune cell
infiltration

To further assess the differences in the immune cell
infiltration and hallmark gene sets between AMI and control
samples, the CIBERSORT algorithm was employed. The
results for differential immune cell infiltration are shown in
Figures 9A, B. Relative to control samples, the proportions
of monocytes, mast cells activated and neutrophils were
significantly upregulated in AMI samples, while the proportion
of T cells CD4 memory resting and T cells gamma delta was
significantly downregulated. Additionally, correlation analysis
for the immune cell types with the seven optimal feature genes

suggested that all seven optimal feature genes were significantly
positively correlated with infiltration of neutrophils, mast
cells activated, monocytes, NK cells resting, while correlated
negatively with the infiltration of T cells CD4 memory resting
and mast cells resting (Figures 9C–I). For example, ACSL1 gene
is positively correlated with neutrophils (R = 0.65, P < 2.2e-16),
but highly negatively correlated with T cell CD4 memory resting
(R = −0.48, P = 6.4e-10) (Supplementary Figure 3). Gene
correlations were also examined, as shown in Figures 9J, K.
These seven optimal feature genes showed a significant positive
correlation. For example, the correlation coefficient between
ACSL1 and IL1R2 was 0.85, indicating that seven optimal
feature genes had a significant functional similarity.

To further investigate whether the enrichment of
hallmark gene sets differs between the AMI group and the
control group, we judged the significance of the difference
between the two groups for 50 hallmark gene sets based
on the enrichment score by using ssGSEA algorithm. The
detailed distribution of the 50 hallmark gene sets between
AMI and control samples was illuminated in Figure 10A.
A number of hallmark gene sets exhibited a significant
difference, including KRAS-signaling-up, IL2-STAT5-
signaling, angiogenesis, UV-response-up, P53-pathway,
glycolysis, xenobiotic-metabolism, inflammatory-response,
epithelial-mesenchymal-transition, complement, hedgehog-
signaling, apical-surface, apical-junction, myogenesis,
estrogen-response-late, estrogen-response-early, apoptosis,
IL6-JAK-STAT3-signaling, mitotic-spindle, cholesterol-
homeostasis, hypoxia, and TNFα-signaling-via-NFKB. So, we
can infer that compared with the normal group, these hallmark
gene sets were over-activated in the AMI group. Additionally,
we can find that the seven optimal feature genes are generally
consistent in the majority of hallmark gene sets. For instance,
all of the seven optimal feature genes were positively correlated
with the inflammatory-response hallmark gene set. However,
across a small subset of hallmark gene sets, the seven genes were
not consistently correlated. For example, GABARAPL1 was
positively correlated with the G2M checkpoint, while the other
six genes are negatively correlated with the G2M checkpoint
(Figure 10B). These data will require us further reinforce the
comprehensive interrogation of the various roles of the optimal
feature genes in AMI pathogenesis.

qRT-PCR validation of optimal feature
genes

We examined the relative expression of seven optimal
feature genes in AMI patients and healthy subjects. The detailed
baseline information was summarized in Supplementary
Table 9. Compared to healthy subjects, the expression of
ACSL1 (Figure 11A), GABARAPL1 (Figure 11B), IL1R2
(Figure 11C), IRAK3 (Figure 11D), MCEMP1 (Figure 11E),
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FIGURE 9

Visualization of immune cell infiltration. (A) The relative proportions of 22 immune cells types between control samples and AMI samples. Panel
(B) representative boxplot shows the differences of infiltrated immune cells between control samples and AMI samples. Statistic tests: Wilcoxon
rank-sum test. (P < 0.05*; P < 0.01**; P < 0.001***; ns, no significance). (C–I) Correlation between immune cells and optimal feature genes
ACSL1 (C), GABARAPL1 (D), IL1R2 (E), IRAK3 (F), MCEMP1 (G), NFIL3 (H), and THBD (I); the larger the dots, the stronger the correlation. The color
of the dots represents the P-value; the greener the color, the lower the P-value. (J,K) Correlation analysis of seven optimal feature genes in AMI
samples.
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FIGURE 10

Analysis of hallmark gene sets. (A) The specific distribution of the 50 hallmark gene sets in AMI and control samples. (B) Correlation analysis of
the 50 hallmark gene sets with seven optimal feature genes. Statistic tests: Wilcoxon rank-sum test (P < 0.2#; P < 0.05*; P < 0.01**;
P < 0.001***; ns, no significance).

NFIL3 (Figure 11F), and THBD (Figure 11G) were significantly
up-regulated in AMI patients (all P < 0.05), which was in line
with the bioinformatics analysis.

Discussion

The core pathological process of AMI is currently
considered to be an imbalance between myocardial oxygen
demand (oxygen consumption) and actual oxygen supply (21,
22). Although existing studies have pointed out that the
sensitivity of the troponin-dependent AMI diagnostic method

has been greatly improved, and it has shown that it can be
valuable for the prognosis of AMI patients, it is a pity that this
detection method is currently used for precise diagnosis and
treatment (23). AMI still has some deficiencies, especially in the
face of complex subtypes of AMI. Based on previous research
experience, biomarkers based on the gene level are often more
accurate in distinguishing the disease state of patients and can
also more deeply explain the mechanism behind the disease, to
guide more reasonable and effective clinical treatment strategies.
Therefore, in this study, we downloaded the genetic data of AMI
patients from the GEO database, used the WGCNA algorithm
to find the differential genes most related to the progression
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FIGURE 11

The relative expressions of optimal feature genes were validated by qRT-PCR. (A–G) The expressions of ACSL1 (A), GABARAPL1 (B), IL1R2 (C),
IRAK3 (D), MCEMP1 (E), NFIL3 (F), and THBD (G) between AMI patients and healthy subjects. Statistic tests: Student’s t-test (P < 0.01**;
P < 0.001***; P < 0.0001****).

of AMI disease, and comprehensively used machine algorithms
such as LASSO regression, SVM-REF, and Random Forest.
Finally, seven optimal feature genes (ACSL1, GABARAPL1,
IL1R2, IRAK3, MCEMP1, NFIL3, and THBD) that were verified
to be closely related to the diagnosis and maybe, progression, of
AMI were found, and further functional enrichment analyses of
these genes were carried out.

To explore the role of these seven optimal feature genes in
AMI, we reviewed previous studies. Among the seven genes
closely related to AMI identified in this study, three genes,
ACSL1, IL1R2, and THBD, have more preliminary studies in
AMI. ACSL1 (chain acyl-CoA synthase 1) encodes an enzyme
that plays an important role in the activation of triglyceride
synthesis (24). Early studies have shown that high expression
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of this gene in mouse cardiomyocytes often leads to the
consequence of high myocardial triglyceride deposition, so
this gene is also considered a risk factor for AMI (25). In
a 2020 study, Tingting Li et al. pointed out that the same
triglyceride deposition phenomenon also occurs in leukocytes
overexpressing ACSL1 in the peripheral blood of AMI patients,
and this process is likely to be achieved through the PPARγ

pathway (26). In addition, except for participating in lipid
metabolism, Yuanlong Li et al.’s study also found that the
high regenerative activity of the myocardium in neonatal mice
was also regulated by ACSL1 within 7 days. In the neonatal
mouse MI model, mice knocked out of this gene showed more
good recovery (27). IL1R2 is considered to mediate the anti-
inflammatory response in the traditional inflammatory response
(28). Surprisingly, the study of Amit Saxena et al. also pointed
out that IL-1 can cause the infiltration of leukocytes at the AMI
site and thereby prevent fibroblasts from entering the body (29).
The contractile phenotype is transformed to provide a better
survival microenvironment for mesenchymal stem cells, thereby
improving the recovery of damaged myocardium in AMI.
Similar findings were also mentioned in a clinical study by Hilde
L Orrem et al. (30). It is worth mentioning that the latest study
by Mingzhe Li et al. directly regarded IL1R2 as a suppressor of
ischemic myocardial fibrosis and found that the main reason for
the inactivation/downregulation of this gene after AMI is that its
promoter region is blocked by POU2F1 (31). In addition, some
research methods based on gene sequencing also pointed out
that IL1R2 is closely related to AMI process (32). Interestingly,
we found that the study by Enfa Zhao et al. simultaneously
identified IL1R2, IRAK3, and THBD as prognostic diagnostic
markers for acute myocardial infarction and found a high
enrichment of the IL-17 pathway in the functional analysis,
which was consistent with ours (33). The results are consistent
with ours. In addition, an earlier study by Wei Chen et al. also
demonstrated that another gene in the IRAK family, IRAK-M
knockout mice, developed more severe ventricular remodeling
and systolic dysfunction after MI (34). THBD (thrombomodulin
gene) belongs to the protein C anticoagulation system, which is
of great significance in maintaining the balance of hemorrhage
and hemostasis in the body. Current research believes that
the variation of THBD is one of the important causes of
thrombosis, and coronary microthrombi Formation is also an
important risk factor in the pathogenesis of AMI (35). In 2011,
a clinical study by Ilaria Guella et al. pointed out that SNPs at
12 loci, including THBD, showed a high correlation with an
increased risk of death after AMI (36). Unfortunately, there
is still a lack of basic experimental research on the gene and
the pathogenesis of AMI, but the existing clinical studies have
demonstrated the potential value of this gene in AMI. The
relationship between the remaining few genes and AMI has
not been thoroughly studied, but some indicative studies have
emerged. For example, the study of Fan Qiu et al. pointed out
that GABARAPL1, by interacting with STBD1, counteracted the

energy protection provided by glycoautophagy and mitophagy
of OGD-treated cardiomyocytes, and aggravated myocardial
injury after ischemia (37). This is consistent with the results
we obtained in the ssGSEA single-gene association test. While
NFIL3 (38) and MCEMP1 (39) currently with only a few omics
studies demonstrated their potential relationship with AMI, our
study points to the potential clinical value of both, which may
be a viable direction for future research. It is worth noting
that the expression levels of these key genes were verified
by qRT-PCR, and the results were consistent with the results
of bioinformatics.

In the analysis of immune infiltration, we found that B cells
and neutrophils were deeply related to AMI. When single-gene
GSEA analysis was performed, we found that the B cell receptor
signaling pathway was enriched in the apical position in NFIL3,
MCEMP1 and IL1R2 high expression groups. As one of the
resident immune cells in the heart, during myocardial ischemia,
B cells can release a variety of cytokines (including CCL2, CCL7,
etc.) that chemoattract monocytes and neutrophils, thereby
greatly increasing peripheral blood leukocytes myocardial
infiltration (40). As early as 2013, research by Yasmine Zouggari
et al. pointed out that this recruitment of B cells after MI
aggravates further damage to ischemic myocardium (41). The
mechanism behind this phenomenon was recently pointed out
by Margarete Heinrichs et al. through the CXCL13-CXCR5 axis
(42). And recently, researcher Claudia Monaco believes that B
cells may be an important “middleman” in the formation of
distal atherosclerosis after MI. He believes that the necrosis
of cardiomyocytes can lead to the release of specific antigens
that are not recognized and induce humoral immunity through
B cells. Immunoglobulin deposition, which in turn leads to
atherosclerosis after MI (43). A similar phenomenon was also
found in the study of Tin Kyaw et al. (44). However, it is
interesting that B cells are not all damaged in the biological
process after MI. For example, the study by Lan Wu et al. found
that after mice suffered AMI, there will be a special, mainly
secreted, in the pericardial fat of mice. B cell subsets of IL-10
are infiltrated, and this group of cells exhibits anti-inflammatory
and prognostic effects (45). The above studies all suggest that B
cells have a strong potential in the treatment of AMI. The three
genes identified in our study, which are closely related to the
B cell receptor pathway, may be key to balancing the double-
edged sword of B cell injury-protection. In addition, in multiple
GSEA analyses, we found that the IL-17 signaling pathway was
significantly enriched in AMI patients. As early as 2013, in the
clinical study of Tabassome Simon et al., it was pointed out
that low serum IL-17 level was the main cardiovascular time
risk correlation in AMI patients (46). In the same year, the
work of Onno J de Boer et al. also pointed out that IL-17A can
promote thrombus formation by enhancing platelet aggregation
(47). This process can feed back with the formation and release
of Nets, aggravating coronary thrombosis and thus aggravating
the progress of AMI (48). This is consistent with Our original
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GSEA analysis was consistent. Encouragingly, recent studies by
Rafael Blanco-Domínguez et al. have confirmed that Th17 cells
are a characteristic of AMI, and the microRNA mmu-miR-721
produced by them has diagnostic significance for AMI (48). The
above evidence directly or indirectly illustrates the important
role of IL-17 signaling pathway in the progression of AMI.

In addition, in the analysis of immune cell infiltration,
we also found that neutrophil infiltration was significantly
increased in patients with AMI. Neutrophils, as one of the
most important cells in the inflammatory response, have
long been considered to be involved in various stages of
myocardial ischemia and coronary injury (49, 50), especially
in reperfusion injury after myocardial ischemia (51). Some
studies in recent years believe that neutrophils are expected
to become an important target for the treatment of AMI. For
example, Qing Wan et al. found that PDE4B can mediate
neutrophil infiltration in mouse myocardium after AMI, and
induce neutrophils to release a variety of cytokines, aggravating
myocardial injury, which was obtained after administration of
PDE4B inhibitors. Improve (52); Ji’e Yang et al. found that the
neutrophil glycosylation product Nε- (carboxymethyl) lysine
can also aggravate myocardial ischemia-reperfusion injury (53).
In addition, the neutrophil extracellular traps (Nets) proposed
in recent years have linked various pathological changes
such as coronary thrombosis (54), coronary atherosclerosis,
and myocardial inflammation in series (55). However, with
further research, it has been found that neutrophils may also
exhibit anti-inflammatory, pro-angiogenic and pro-reparative
protective effects in AMI (56). Based on this, the regulation
of neutrophils after AMI must have considerable clinical
therapeutic value.

It is true that our research is based on RNA sequencing
results from existing databases, and due to the data set, there
will be some bias in our research results. In addition, our
findings rely on bioinformatics analysis methods and simply
verified the expression of these key genes by qRT-PCR, more
in vivo and in vitro experiments are needed to verify the
results. Taken together, our research aims to provide new ideas
and directions for clinical diagnosis and precise treatment
management of AMI.

Conclusion

Overall, we found that seven powerful diagnostic efficacy
genes were present in patients with AMI, indicating that
they provide new potential targets for diagnosis and maybe
progression of AMI, thus leading to improved outcomes.
Different from other similar studies, we used more machine
learning methods to enhance the accuracy of gene screening,

and focused on exploring the specific genes that have the
most obvious impact on AMI. It can also provide more
accurate direction guidance for future AMI research. Overall,
our research aims to provide new ideas and directions for
clinical diagnosis and precise treatment management of AMI.
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