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Vascular aging plays a pivotal role in the morbidity and mortality of

older people. Reactive hyperemia index (RHI) detected by pulse amplitude

tonometry (PAT) is a non-invasive measure of vascular endothelial function

and aging-induced pathogenesis of both microvascular and macrovascular

diseases. We conducted a genome-wide association study (GWAS) to

comprehensively identify germline genetic variants associated with vascular

aging in a Korean population, which revealed 60 suggestive genes underlying

angiogenesis, inflammatory response in blood vessels, and cardiovascular

diseases. Subsequently, we show that putative protective alleles were

significantly enriched in an independent population with decelerated vascular

aging phenotypes. Finally, we show the differential mRNA expression levels

of putative causal genes in aging human primary endothelial cells via

quantitative real-time polymerase chain reaction (PCR). These results highlight

the potential contribution of genetic variants in the etiology of vascular aging

and may suggest the link between vascular aging and cardiovascular traits.
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Introduction

Vascular aging is associated with the accumulation of reactive oxygen species (ROS)
and chronic low-grade inflammation, which predispose to endothelial dysfunction
and the development of atherosclerosis and stroke (1–4). In particular, oxidative
stress causes the inactivation of endothelium-derived nitric oxide (NO), promoting
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age-related depletion in endothelium-mediated dilation,
enhanced vasoconstriction, and impaired tissue perfusion
(5, 6). Thus, it is important to establish a better mechanistic
comprehension of the arterial aging process and evaluate both
lifestyle and pharmacological countermeasures to treat this
growing health issue (7, 8).

Members of families with exceptional longevity may have
benefited from the enriched distribution of alleles that protect
against diseases such as coronary artery disease (CAD), cancer,
and type 2 diabetes, which ultimately contribute to population
mortality (9, 10). While this hypothesis has been tested and
supported by the identification of causal SNPs from genome-
wide association studies (GWASs) showing robust associations
with common diseases that are the main causes of death (11),
the pursuit of genetic variants responsible for vascular aging to
date has been greatly limited.

To navigate the spectrum of age-related vascular functional
and phenotypic changes, we measured the reactive hyperemia
index (RHI) in Korean individuals, an indicator of vascular
endothelial function and cardiovascular risk factors of diabetes,
high blood pressure frequency, and obstructive CAD (12–14).
We aim to elucidate the novel pathways underlying vascular
aging by conducting a multistage study, consisting of GWAS
followed by genetic prediction in an independent population.
We also test the plasma circulating cell-free DNA (cfDNA) for
use in accurate genotyping in the case of the limited availability
of a sufficient amount of genomic DNA (gDNA) which may
be difficult to obtain for many clinical samples (15). Finally,
we show the differential mRNA expression levels of putative
causal genes in aging human primary endothelial cells which
may further highlight targets for the prevention and control of
aging-related vascular endothelial dysfunction and associated
diseases. These results together highlight that GWAS in an
underrepresented population in human genomics research,
can lead to novel associations that merit future investigation
and raise the possibility of using suggestive variants for
risk prediction.

Results

Subject characteristics

We used the data from the Namgaram project consisting
of a total of 1,010 subjects at the age of 50 or above, recruited
from the southern site (Jinju) in Korea, all the individuals
were measured for age-related qualitative and quantitative traits,
including age, grip strength, muscle strength score, and vascular
endothelial functions. Of these, 97 individuals were selected and
genotyped using serum samples at 177,236 SNPs on Illumina
Infinium SNP Genotyping Array ASA for the current study.
We observed 95.8% overall genotype concordance between
DNA extracted from gDNA (whole blood) and cfDNA (serum)

across 19 overlapping individuals, indicating confidence in the
accuracy of SNP calling from serum (Supplementary Table 1).

To assess the homogeneity of our cohort and to show that all
subjects are of eastern Asian ancestry, the principal component
analysis (PCA) was performed (Supplementary Figure 1).
Multiple logistic regression analysis revealed that gender
(P = 0.0348) and age (P = 0.0269) have statistically significant
effects on endothelial vascular function (Supplementary
Table 2). The endothelial vascular function tended to decrease
in the elderly, and the trend was significantly stronger in
women. The same analysis also showed a significant phenotypic
correlation with age-related traits, loss of muscle (P = 0.0153),
and grip strength (P = 0.0141). To carefully assess the association
between genotypes and vascular aging, given the chronological
age, we adjusted the phenotype for chronological age by simple
regression and then standardized the residuals to z-scores, in
each gender group separately.

Identification of vascular aging-GWAS
signals

A GWAS including 97 Koreans was conducted using
autosomal SNPs and RHI, adjusted for age, and standardized
to z-scores in each gender group. A total of 64 SNPs which
span 60 genes exceeded the suggestive genome-wide significance
level of P = 5 × 10−5 (Figure 1 and Table 1). Three of these
genes met the genome-wide significance level (P < 5 × 10−8).
A genomic factor of 1.067 indicated no population structure
in the cohort (Supplementary Figure 2). To confirm the
robustness of the candidates, we additionally performed an
association analysis by fitting age-related factors of grip strength
and muscle mass as covariates, which still reproduced 54
significant genes out of 60 genes identified from the initial
analysis (Supplementary Table 3). To test the bias of phenotypic
resemblance among related individuals caused by non-genetic
effects, we performed an association after the exclusion of
one of the pair of individuals (estimated relationship > 0.05,
n = 96), which retained 49 significant genes (Supplementary
Table 4). We also executed GWAS from all SNPs imputed to
the 1000 Genomes Project reference panel to increase statistical
power (16), yet no additional genes reached the genome-wide
significance (Supplementary Table 5).

Using the initial GWAS results, we then defined the
protective allele of each candidate SNP based on the
directionality of association (β), as the allele responsible for
the increase in the RHI value and thus decelerated vascular
aging rates (Supplementary Table 6). We further screened these
candidate genes for highly functional variants and identified
missense variants in MOCS2 and SPRTN genes (Supplementary
Table 7), respectively, each involved in the synthesis of
molybdenum auxiliary factors (17) and premature aging (18).
In addition, the pathogenicity assessment of these variants,
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FIGURE 1

Manhattan plot of GWAS identified in the entire genome for vascular endothelial function. The x-axis represents the chromosome number, and
the y-axis represents the p-value converted to -log. Only genes with SNPs exceeding the stringent significance threshold (P < 1.00E-05) were
included in the plot, and the rest of the candidates above the nominal threshold (P < 1.00E-05) is provided in Table 1.

assessed by using the Combined Annotation-Dependent
Depletion (CADD) database (19), is predicted to be in the top
0.9% (chr5:52398005, MOCS2) and 0.67% (rs78209580, SPRTN)
of the most deleterious single-nucleotide substitutions that can
be generated from the human genome. All 64 suggestive SNPs
were also annotated to genes whose expression is associated with
allelic variation at the variants level (cis-eQTLs) derived from
publicly available data repositories, which additionally identified
15 candidate genes (Supplementary Table 8).

Pathways putatively confer age-related
vascular function

Over-representation analysis of gene ontology (GO) terms
shows that vascular aging-associated genes are significantly
enriched for functional categories including Wnt signaling
pathway (GO:0016055) and negative regulation of canonical
Wnt signaling pathway (GO:0090090), given the emerging
roles of Wnt signaling in the regulation of angiogenesis,
vasculature, and vascular diseases including atherosclerosis (20)
(Table 2). By leveraging the human GWAS Catalog database
and previously reported trait-associated loci (21), we found
that “bilirubin measurement” and “bipolar disorder” traits
consistently showed the most significant and robust enrichment
(permutation P < 0.05) (Table 3 and Supplementary Table 9).
Bilirubin plays a role as an effective antioxidant and is a
preventive measure for the development of vascular diseases
that can be mediated by vascular aging (19, 20). The tissue-
specificity analysis further revealed the enrichment of associated
genes in the pancreas, a key organ in diabetes mellitus as

pancreatic β-cells are responsible for insulin biosynthesis and
secretion (22).

Based on the manual review of the previous literature
and OMIM database, the candidate genes are related to
the proliferation and differentiation of angiogenesis (PTPN14,
ELK3, ADAM12, WNT4, AXIN2, RNUX1, PFKFB3, PDLIM5,
and EPB41L) (23–31) and inflammatory responses in blood
vessel system (CASP12, PFKP, TLE1, HDAC4, and TAB2)
(32–36). Associated cardiovascular diseases include diabetes
(PDLIM5, HDAC4, and TLE1) (31, 35, 37), cardiac development
(PDLIM5) and myocardial aging (CASP12), hypertension (PFKP
and TAB2) (31–33, 36), and intracerebral and intraventricular
bleeding (RUNX1) and stroke (AXIN2) (24, 27).

GWAS candidates can explain the
attenuated vascular aging in the test
population

To validate the GWAS findings and evaluate the cumulative
effect of alleles from 64 candidate SNPs, we leveraged an
independent sample of subjects (test population, n = 7) with
standardized RHI values in the top 30% of all cohorts. The
test population showed significantly higher standardized RHI
values, indicative of attenuated vascular aging than the GWAS
training subjects (P = 5.9 × 10−4, t-test) (Figure 2). We
examined if the cumulative number of protective alleles of each
subject in the test population is associated with elevated RHI
values. We found that the distribution of protective alleles is
significantly higher (P = 6.96 × 10−4) in the test population than
in subjects in the bottom 30% of all Namgaram cohorts (n = 29
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TABLE 1 Genetic loci associated with vascular endothelial function
after adjusting for age and sex.

Chr bp A1 A2 Freq b se p Closest
gene

5 52398005 C T 0.059 2.255 0.382 3.68E-09 MOCS2

10 62010155 T C 0.494 −7.722 1.314 4.20E-09 ANK3

1 214659101 T C 0.494 −7.575 1.315 8.46E-09 PTPN14

1 187209108 A C 0.060 2.030 0.392 2.20E-07 LINC01036

4 6246543 C T 0.489 −4.833 0.943 3.01E-07 WFS1

14 50724996 T C 0.488 −4.777 0.946 4.45E-07 L2HGDH

17 63444990 C T 0.051 2.015 0.410 9.07E-07 AXIN2

9 84302707 A G 0.058 1.978 0.409 1.32E-06 TLE1

5 174611803 C T 0.057 1.672 0.352 1.98E-06 ARL2BPP6

17 72314399 A G 0.084 1.531 0.326 2.75E-06 DNAI2

11 35842967 A G 0.108 1.282 0.274 2.93E-06 TRIM44

7 50152510 A G 0.090 1.454 0.312 3.20E-06 ZPBP

2 125346013 A G 0.076 1.714 0.370 3.53E-06 CNTNAP5

2 240156312 T C 0.056 2.007 0.434 3.68E-06 HDAC4

8 58133642 C T 0.091 1.409 0.305 3.76E-06 LINC00588

12 133473221 T C 0.057 1.893 0.412 4.44E-06 CHFR

6 94922348 G A 0.067 1.689 0.369 4.62E-06 SNORA18

2 234910442 C T 0.065 1.671 0.366 5.07E-06 TRPM8

18 22800826 T C 0.071 1.738 0.383 5.85E-06 ZNF521

7 50182079 T C 0.092 1.473 0.325 5.98E-06 C7orf72

9 24618331 C T 0.064 1.479 0.329 7.17E-06 IZUMO3

18 9158643 A G 0.065 1.627 0.363 7.17E-06 ANKRD12

1 22472732 G A 0.104 1.335 0.297 7.18E-06 WNT4

10 129381096 A G 0.186 1.085 0.243 8.26E-06 NPS

16 60997653 T C 0.081 1.441 0.323 8.37E-06 GNPATP

6 143797752 C T 0.074 1.652 0.372 9.01E-06 PEX3

13 33757815 A G 0.067 1.481 0.338 1.16E-05 STARD13

13 110633410 C T 0.255 0.879 0.201 1.20E-05 RN7SKP10

10 6222774 A G 0.062 1.599 0.367 1.29E-05 PFKFB3

17 63437097 T C 0.085 1.444 0.332 1.37E-05 AXIN2

16 83979552 A C 0.103 1.334 0.307 1.41E-05 OSGIN1

3 24632124 C A 0.065 1.825 0.420 1.41E-05 EIF3KP2

6 149493632 A G 0.198 1.021 0.235 1.42E-05 TAB2

10 127900223 A C 0.082 1.522 0.351 1.49E-05 ADAM12

10 68371063 C A 0.071 1.825 0.424 1.67E-05 CTNNA3

21 36797083 C T 0.137 1.077 0.250 1.67E-05 RUNX1

3 111651285 A G 0.223 0.882 0.205 1.71E-05 PHLDB2

10 130247163 G A 0.124 1.283 0.300 1.89E-05 MKI67

19 53344701 G A 0.066 1.544 0.361 1.91E-05 ZNF28

6 107764862 A G 0.099 1.283 0.301 2.04E-05 PDSS2

(Continued)

TABLE 1 (Continued)

Chr bp A1 A2 Freq b se p Closest
gene

1 231488541 A G 0.070 1.786 0.420 2.14E-05 SPRTN

11 11317991 T C 0.072 1.467 0.346 2.21E-05 GALNT18

7 50145007 A G 0.090 1.393 0.328 2.23E-05 ZPBP

6 143793155 A G 0.071 1.631 0.385 2.24E-05 PEX3

10 2916766 A G 0.064 1.589 0.377 2.52E-05 PFKP

11 104461298 G A 0.053 1.810 0.430 2.53E-05 CASP12

3 175798213 A G 0.058 1.641 0.392 2.78E-05 EI24P1

10 89596013 A G 0.070 1.755 0.420 2.89E-05 CFL1P1

1 60822886 G A 0.134 1.109 0.266 2.98E-05 PGBD4P8

4 181536971 G A 0.057 1.588 0.381 3.04E-05 LINC00290

13 49944406 C T 0.058 1.782 0.427 3.06E-05 CAB39L

4 79906385 G A 0.064 1.653 0.397 3.12E-05 LINC01088

1 34684463 G A 0.158 0.970 0.233 3.21E-05 C1orf94

20 22772814 T C 0.053 1.764 0.427 3.60E-05 KRT18P3

18 5439417 A G 0.113 1.307 0.316 3.61E-05 EPB41L3

5 112179909 A C 0.131 1.172 0.285 3.82E-05 APC

20 22746255 C T 0.050 1.856 0.451 3.85E-05 KRT18P3

6 121559651 C T 0.086 1.449 0.352 3.88E-05 TBC1D32

1 182038718 A G 0.154 1.013 0.248 4.45E-05 ZNF648

3 25105548 T C 0.054 1.580 0.389 4.85E-05 RNA5SP125

12 96563954 C T 0.088 1.373 0.338 4.89E-05 ELK3

13 71789085 T C 0.059 1.677 0.413 4.93E-05 LINC00348

4 95601206 T C 0.123 1.273 0.314 4.96E-05 PDLIM5

9 111406348 T C 0.063 1.485 0.366 4.98E-05 RPL36AP35

Genome-wide association study results with additional covariates of grip strength and
muscle mass are provided in Supplementary Table 3. Chr, chromosome; Bp, physical
position; A1, minor allele; A2, major allele; Freq, frequency of the minor allele; b, SNP
effect; Se, standard error; P, P-value.

TABLE 2 The significant gene ontology terms (P < 0.05) enriched
from 60 genes putatively associated with vascular
endothelial function.

Pathway Term P-value Genes

GO:0016055 Wnt signaling pathway 7.35E-03 TLE1, APC, AXIN2,
WNT4

GO:0031398 Positive regulation of
protein ubiquitination

1.16E-02 WFS1, SPRTN, CHFR

GO:0001822 Kidney development 2.68E-02 TBC1D32, WFS1, WNT4

GO:0090090 Negative regulation of
canonical Wnt signaling
pathway

3.63E-02 TLE1, APC, AXIN2

with accelerated aging) selected from the training population
(Figure 2). The results together indicate that candidate loci have
contributed a significant proportion of the marked difference in
the rate of vascular aging.
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TABLE 3 Summary of an enrichment of vascular endothelial function associated genes that overlap loci previously linked to phenotypes
in GWAS studies.

Mapped trait N No.
overlap

No. overlap from
permutation

S.D. of No. overlap
from permutation

z-score P-value

Bilirubin measurement 974 30 2.11 7.8304 3.5616 3.69E-04

Bipolar disorder 608 10 2.01 2.3805 3.3560 7.91E-04

Eosinophil percentage of leukocytes 789 11 2.92 2.8357 2.8501 4.37E-03

Cytokine measurement 449 5 1.40 1.3468 2.6738 7.50E-03

Migraine disorder 354 5 1.12 1.9234 2.0172 4.37E-02

The Z-score represents the relative enrichment (or depletion if negative) of the number of the putative candidates overlapping loci linked to the corresponding trait relative to randomly
selected genomic regions of the same length.

FIGURE 2

The cumulative effect of candidate genes on an independent subject population. (A) The independent test population was selected with
subjects with standardized RHI values in the top 30% (n = 7, decelerated aging) of all Namgaram cohorts. (B) The distribution of the cumulative
number of protective alleles in the test population was significantly higher (P < 1 × 10−3) than in the bottom 30% of all Namgaram cohorts
(n = 29 with accelerated aging) selected in the training population.

Differential expression of genes in
aging vascular endothelium

To understand the changes underpinning the heterogeneity
of the aging process at a molecular level, we examined alterations
in expression levels of candidate genes quantified by using
real-time polymerase chain reaction (PCR) in human umbilical
vein endothelial cells (HUVECs) of varying passages: relatively
young (p4), middle (p6), and old (p11). The seven genes selected
for this experiment were PTPN14, TLE1, PFKFB3, TAB2,
HDAC4, ELK3, and RUNX1, chosen for their direct associations
with vascular function and universally high expression level
(Transcript per million, TPM > 100) in vascular tissues in GTEx
database (38). We observed the most striking and significant

decrease (75%) of TLE1 mRNA expression level in aging human
primary endothelial cells (P < 0.001) (Figure 3). Other tested
genes also showed a significant age-related decrease (PTPN14,
PFKB3, and RUNX1), increase (TAB2), and both (HDAC4) in
gene expression variation.

The ancestry-associated difference in
TLE1 protective allele frequency

The Centers for Disease Control and Prevention (CDC)
has continuously reported the measures of disparity in the
prevalence and incidence rate of medically diagnosed diabetes,
with significantly higher diabetes risk in African black ancestry
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FIGURE 3

Differential expression of candidate genes in aged human vascular endothelium cells (HUVEC). Expression levels of candidate genes were
quantified by using a real-time polymerase reaction chain (PCR) in human umbilical vein endothelial cells (HUVECs) of varying passages: young
(p4), middle (p6), and old (p11). Values are presented as mean SEM. *p < 0.05, **p < 0.01, ***p < 0.001, n.s., not significant.

compared to other ethnic groups (39). To assess the risk
imparted by candidate alleles in a diverse population, we
utilized the publicly available genotypes of individuals from
continent groups (Africa, South Asia, East Asia, America, and
Europe) (40) on the seven candidate genes tested for differential
expression for its association with diabetes. We tested the
difference in allele frequency between ethnic groups and showed
the significantly lower protective allele frequency in the TLE1
gene in African-ancestry individuals (P = 1.24 × 10−6, t-test)
(Figure 4 and Supplementary Table 10). Other significant genes
with a consistent direction of lower protective allele frequency in
African black ancestry also included RUNX1 (P = 1.32 × 10−5),
PFKB3 (P = 1.41 × 10−3), and PTPN14 (P = 1.75 × 10−2).

Discussion

The GWAS of vascular aging in a sample of Korean
revealed 60 associated genes, which provided added support
for several previously reported associations with cardiovascular
traits as well as some novel gene-based loci. At least 31 of
these significant associations implicate genes with known or
postulated roles in vascular function and cardiovascular diseases
from the GWAS Catalog, supporting heightened investigations
of pathways through which they are hypothesized to function

(Supplementary Table 11). Of 31 GWAS catalog associations,
we note that 15 and 13 are based on European and Asian
populations, respectively. Given that 52% of GWAS have been
conducted in populations of European ancestry, followed by
21% in Asians (41), our loci showed a disproportionately
high number of genetic overlaps with reported associations
from the same ethnicity. Strengths of our study thus include
the extensively phenotyped epidemiologic cohorts of non-
Europeans, the Namgaram cohort, and the novel association
identified from the current study may address the lack of
diversity in GWAS and enhance the understanding of the
genetic contribution in the pathogenesis of vascular aging from
the view of global health policy (42). In addition, the discovery of
protective and risk alleles and their cumulative effects in vascular
aging will be crucial in predicting the risk of complex traits,
particularly in the Asian population, as inconsistencies in the
directions of the effect of risk variants have been observed across
ethnic groups (43).

Angiogenesis is both a crucial adaptive response to
physiological stress and an endogenous regenerative response
after ischemic injury, which contribute to the increased
incidence of cardiovascular diseases in the elderly (44). The
genes of the ADAM family play an important role in
the blood vessel system, of which ADAM12 is associated
with angiogenesis and proliferation, and differentiation, and
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FIGURE 4

Distribution of protective allele frequency of TLE1 gene (A allele;
chr9:84302707) in diverse populations. Each represents the
protective allele frequency of the corresponding country. The
t-test describes the allele frequency differentiation between the
African continent (AFR) and the rest (SAS, South Asia; EAS, East
Asia; AMR, America; EUR, Europe).

differences in expression within vascular smooth muscle cells
were observed (26). WNT4 is expressed in bone marrow
mesenchymal stem cells (MSC) that can be differentiated
into vascular endothelial cells (EC), and this expression of
Wnt4 is involved in regulating vascular regeneration (45).
PTPN14 expresses in multiple vascular (such as capillary or
myocardial, pulmonary vein, and lung) endothelial cells and
can regulate angiogenesis and vascular remodeling (46). Net
(ELK-3, Sap-2/ERP) is one of the ternary complex factors
that acts as an inhibitor of transcription. ELK3 is included
in the Net, and during mouse development, these Nets are
observed in various parts and can be involved in and regulated
angiogenesis (29). Most of the main energy production of
endothelial cells occurs from glycolysis. PFKFB3 is involved
in this glycolysis to regulate angiogenesis. PFKFB3 inhibition
indicates a decrease in genes involved in aging, suggesting its
importance in endothelial cells (47). RUNX1 is essential for
the development of hematopoietic and is importantly involved
in blood and blood relationships. A study with RUNX1 in
Zebrafish ultimately resulted in death due to an abnormality
in the blood vessels of the embryo and showed that DNA
was similar in function to mammals or humans (27). PDLIM5
plays a differential role in various organs and is associated
with vascular remodeling and cardiomyopathy. AMPK is

activated by hypoxia, ischemia, glucose loss, or stress, and is
regulated by phosphorylation of cytoplasm. These AMPKs are
important and involved in vascular and cardiovascular disease
by phosphorylating PDLIM5 in vascular smooth muscle cells
to regulate cell migration (31). EPH41L3 regulates cell–cell
and cell–substratum interactions and cytoskeletal organization,
controlling cell growth and differentiation (48).

Age-related activation of inflammatory processes plays
a critical role in a broad range of macrovascular and
microvascular pathologies (49). The expression of TLE1 is found
in synovial sarcomas, and the TLE family can be a predictive
marker for tumor diagnosis and a marker for treatment by
indicating expression in various tumors (50). TLE1 regulates the
inflammatory response and regulates the path of NF-kB that
controls immunity and cell self-destruction and development
(34). TAB1 and 2 are proteins that bind to TAK1. TAK1 is
affected by inflammatory cytokines and corresponding IL-1
or TNF leads to NF-kB activity. TAB2, expressed in human
vascular endothelium, is associated with angiogenesis, and
NF-kB, activated with inflammatory cytokines, is involved in
cell fate and represents the importance of hematopoietic cell
development (36, 51). Autophagy has a protective mechanism
against inflammation and oxidative stress. Regulation of PFKP
may contribute to autophagy regulation of vascular smooth
muscle cells by partially engaging in PI3K-mTOR pathway
activation in studies conducted in Dansam. Similarly, HDAC4
has a significant relationship with autophagy and inflammation.
Angiotensin II (Ang II) is the main medium of cardiovascular
disease and is a phenotype that causes endothelial dysfunction.
These HDAC4s, along with Ang II, are significantly involved
in vascular inflammation in mice (33, 35). We also noted that
two of the candidate genes, EPB41L3 and CASP12 showed age-
dependent differential expression levels in the aging human
and mouse cells, respectively (23, 32). Finally, although the
molecular mechanisms of SPRTN in DNA translesional DNA
synthesis, DNA replication, and ultimately accelerated aging
have been elucidated (52), this novel association in vascular
aging may provide new avenues for understanding fundamental
cellular and molecular mechanisms of vascular aging upon
further investigation.

A parsimonious explanation for the presence of many
significant associations for a complex trait such as vascular
aging is that the different associations are part of a high-
order grouping of genes (53). Gene-set analysis additionally
identified significant enrichment in the GWAS traits including
bilirubin measurement and bipolar disorder. Bilirubin is the
final product of hemoglobin metabolism and can act as an
effective antioxidant in the body, and high levels of bilirubin
are associated with the development and risk of cardiovascular
disease and contribute to the protection of cell self-destruction
or endothelial dysfunction due to aging (54, 55). The history
of stroke in the presence of cardiovascular disease risk factors
such as diabetes and hypertension is known to affect the risk
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of Alzheimer’s disease (56). Previous studies further reported
evidence of genetic pleiotropy affecting cardiovascular disease
and schizophrenia (57, 58), suggesting the genetic paths to other
psychiatric disorders including bipolar disorder.

We hypothesized that the vascular aging phenotype can be
attributed to transcriptional changes from the candidate genes
identified in the current study. Of the seven genes investigated
by quantitative real-time PCR, the mRNA level of the TLE1 gene
showed the strongest decrease in the aged HUVECs. Disrupted
expression of TLE1 was observed in human type 2 diabetes
and is associated with an increased proportion of glucagon-
expressing cells (59). Considering that diabetes is a potent risk
factor for most geriatric syndromes (60), the dysregulation of
TLE1 in older passages can reflect the aging process. Given
that overexpression of TAB2 suppresses autophagy (61), coupled
with the evidence that autophagic activity declines with age
in diverse organisms (62), we observed an increase in TAB2
expression in the aging HUVECs. While HDAC4 was identified
as a gene with an upward expression during the aging process of
the mouse (63), we observed a contradictory result. Additional
investigation is required to test if this gene represents the
difference in the developmental trajectories of expression across
different species (64).

Given that researchers and clinicians often face the problem
of acquiring enough high-quality DNA for microarray or next-
generation sequencing analysis, the high concordance rate
between genotypes called from gDNA of whole blood and
cfDNA of serum demonstrates that this method provides a
reliable approach for the use with a common SNP genotyping
array and application in GWAS. However, as previously
reported (65), we note that there is a decrease in the total
genotype call rates with cfDNA extracted from serum/plasma.

Compared with the previous GWAS, the present study made
novel contributions to (1) understand the genetic landscape
of vascular aging via the quantitative trait of RHI in the
underrepresented population; (2) examine the out-of-sample
prediction ability of GWAS results; and (3) conduct functional
in vitro expression analysis with candidate genes. However, our
study should be received in the context of its limitations; first,
the sample size was restricted by the small number of subjects.
The consequences of this include the overestimates of effect size
and low reproducibility of results (66). However, the relevance
of genes with known cardiovascular traits and endothelial
functions, the replication analysis, and the in vitro expression
experiment together provide support and putative mechanisms
for the involvement of these genes in vascular aging. Second, it
is worth mentioning that the Korean cohort data used in this
study were sampled from a particular cohort with a specific
age range. Since genetic ancestries are known as common
confounding effects, one should be cautious to generalize these
findings to general populations or particular clinical cohorts. We
attempted to expand our findings by incorporating the genomes
of other ethnic groups and provided the one of possible genetic

mechanisms behind the ethnic disparities in diabetes. With the
addition of data from diverse genetics studies, future research
will be required to successfully address these limitations and
advance our biological understanding of vascular aging.

In conclusion, we showed by the GWAS and replication
of the association followed by the functional examination of
candidate genes which will serve as an important repository
for future GWAS of vascular aging. A thorough experimental
investigation of suggestive genes may provide possible
clues to a biological mechanism that can at least partially
underlie the common genetic architecture of age-related
cardiovascular diseases.

Materials and methods

Ethics statement

All participants provided written informed consent. This
study was approved by the Institutional Review Board of
Gyeongsang National University (approval number: GIRB-A16-
Y-0012).

Study design and phenotype

This cross-sectional study used data from the Namgaram
cohort. The cohort consisted of a group of people living in rural
communities who were aged 50 years or older and all agreed to
participate in this cohort from 2015 to 2017. All 1,010 subjects
enrolled in the Namgaram cohort answered questionnaires and
underwent physical examinations, blood tests, and radiographic
examinations. To specifically infer the vascular endothelial
function, we used a non-invasive EndoPAT device, to measure
the pulse signal amplitude at the fingertip, quantified as a RHI
value (67). We adjusted the phenotype of RHI for the age effect
using the model, y = b0 + b1 × age + e, and then standardized the
residuals to z-scores in each gender group separately by using
the “lm” function in R software (68).

Genomic data and quality control

Genomic and circulating cell-free DNAs were extracted
from 26 whole blood and 97 serum samples, respectively. For
cfDNA, Whole Genome Amplification (WGA) was performed
using a REPLI-g Qiagen kit following the protocol in the
manufacturer’s manual. The DNAs were then genotyped
by a high-density Illumina Infinium Asian Screening Array
(ASA-24v1). We excluded SNPs with missingness > 20%
(“–geno 0.20”) and minor allele frequency (MAF) < 0.05 (“–maf
0.05”) and retained a total of 177,236 autosomal SNPs (GRCh37)
by using PLINK 1.9 (69). The genotype data had been imputed
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to 1000 Genomes panel using IMPUTE2 software (70). After
applying the same quality control criteria, there were 3,084,757
autosomal genotyped/imputed SNPs. The data presented in the
study are deposited in the Figshare repository, at https://doi.org/
10.6084/m9.figshare.21323802.v2.

Genome-wide association study

The linear model implemented in the GCTA tool (71) was
used to test for association with vascular aging phenotypes.
We first estimated the genetic relationship matrix (GRM)
between all pairs of individuals from all the genotyped SNPs
(“–make-grm”) and then tested for the effect of each SNP
on the phenotypes (“–mlma” option). The same analysis was
run with the inclusion of grip strength and muscle mass
as covariates (“–qcovar”) to test for the robustness of the
initial GWAS results. In addition, we excluded one of each
pair of individuals with an estimated relationship > 0.05 to
avoid the possibility that the phenotypic resemblance between
close relatives could be because of non-genetic effects (for
example, shared environment) (72). The SNPs that achieved a
P = 5 × 10−5 were considered statistically suggestive and were
annotated to the closest genes. SnpEff was used to predict the
deleterious effect of each candidate SNP (73).

Gene set enrichment analysis

DAVID 6.81 (74) was used to determine if there was
significant enrichment of genes with specific functional
categories (GO) among GWAS candidate genes. A p-value of
0.05 was employed as the criterion for statistical significance.
GWAS Catalog (75) was also used to find significant over-
representation of particular GWAS traits. The traits with at
least 300 previously reported associated hits were retained for
the analysis. The number of 60 candidate genes overlapping
the GWAS variant was calculated. To determine if the number
of overlaps for each GWAS trait was more extreme than
expected, the same number of regions of the same sizes were
resampled from the genome 1000 times. Taken together, we
estimated the z-score, associated P-value, and false discovery
rate (FDR) using the “pnorm” and “adjust” functions of R
software (68). Five independent permutations were repeated to
test the robustness of the result.

Tissue-specific expression

The Genotype-Tissue Expression (GTEx) V82 database (38)
was used to characterize the expression landscape of each

1 https://david.ncifcrf.gov/tools.jsp

2 https://gtexportal.org

candidate gene across all available human tissues. FUMA
GWAS3 (76) (“SNP2FUNC” function) was used to identify
the tissue specificity of candidate genes. In addition, the
“SNP2GENE” function was used to annotate significant SNPs
to genes based on eQTL mapping by applying a FDR of 0.05 to
limit the results to significant variant gene pairs.

Ancestry associated allele

To assess the allele frequency in a more diverse population
(Africa, America, Europe, East Asia, and South Asia), we
utilized the 1000 genome project (77). Leveraging the whole-
genome data, PCA was further conducted using the GCTA tool
(“pca 20”) (71), and the figure was generated by the first two
principal components.

Statistical analyses and visualization

Statistical analyses were assessed by t-test to determine the
difference in allele frequency distribution between continental
groups and RHI values between discovery training and the
test populations using R software (68). A Manhattan plot and
boxplots were generated using “ggplot2,” “ggpubr,” “smplot,” and
basic built-in packages of the same software.

Measurement of mRNA level by
quantitative real-time PCR

The human endothelial cells (HUVECs) were purchased
from Gibco and cultured in Medium 199 (sigma, M4530)
supplemented with 20% FBS (GenDEPOT, F0900-050),
30 µg/ml of endothelial cell growth supplement (ECGS)
(corning, 306006) and 100 µg/ml heparin (sigma, H3149). Total
RNA was extracted using NucleoSpin RNA kit (macherey-nagel,
740955) following the manufacturer’s methods. Extracted
RNAs were synthesized into cDNA using the iScript cDNA
Synthesis kit (bio-rad, BR1708891). Quantitative real-time
polymerase chain reaction (q-PCR) was performed using the IQ
SYBR Green Supermix (bio-rad, BR1708882) with Rotor-Gene
Q-Pure Detection system (QIAGEN). The primer list used for
quantitative real-time polymerase chain reaction is provided in
Supplementary Table 12. The gene expression was quantified
relative to the reference gene (GAPDH). At least three replicates
were measured for each group. Statistical significance was
assessed by one-way analysis of variance (ANOVA) using
GraphPad Prism software v7.00 (GraphPad) were used to test
the significance of the data. P-values of < 0.05 were considered
statistically significant.

3 https://fuma.ctglab.nl
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