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Background: Coronary artery disease (CAD) is a complex illness with unknown

pathophysiology. Peripheral biomarkers are a non-invasive method required

to track the onset and progression of CAD and have unbeatable benefits in

terms of early identification, prognostic assessment, and categorization of

the diagnosis. This study aimed to identify and validate the diagnostic and

therapeutic potential of differentially expressed immune-related genes (DE-

IRGs) in CAD, which will aid in improving our knowledge on the etiology of

CAD and in forming genetic predictions.

Methods: First, we searched coronary heart disease in the Gene Expression

Omnibus (GEO) database and identified GSE20680 (CAD = 87, Normal = 52)

as the trial set and GSE20681 (CAD = 99, Normal = 99) as the validation

set. Functional enrichment analysis using protein-protein interactions (PPIs),

Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG)

was carried out on the identified differentially expressed genes. Optimal

feature genes (OFGs) were generated using the support vector machine

recursive feature elimination algorithm and the least absolute shrinkage

and selection operator (LASSO) algorithm. Furthermore, immune infiltration

in CAD patients and healthy controls was compared using CIBERSORT,

and the relationship between immune cells and OFGs was examined. In

addition, we constructed potential targeted drugs for this model through

the Drug-Gene Interaction database (DGIdb) database. Finally, we verify the

expression of S100A8-dominated OFGs in the GSE20681 dataset to confirm

the universality of our study.

Results: We identified the ten best OFGs for CAD from the DE-IRGs.

Functional enrichment analysis showed that these marker genes are crucial

for receptor-ligand activity, signaling receptor activator activity, and positive
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control of the response to stimuli from the outside world. Additionally,

CIBERSORT revealed that S100A8 could be connected to alterations in the

immune microenvironment in CAD patients. Furthermore, with the help

of DGIdb and Cytoscape, a total of 64 medicines that target five marker

genes were subsequently discovered. Finally, we verified the expression

of the OFGs genes in the GSE20681 dataset between CAD patients and

normal patients and found that there was also a significant difference in the

expression of S100A8.

Conclusion: We created a 10-gene immune-related prognostic model for

CAD and confirmed its validity. The model can identify potential biomarkers

for CAD prediction and more accurately gauge the progression of the disease.

KEYWORDS

coronary artery disease (CAD), immune-related genes (IRGs), optimal feature genes
(OFGs), bioinformatics analysis, Gene Expression Omnibus (GEO)

1. Introduction

In coronary artery disease (CAD), myocardial ischemia,
hypoxia, and necrosis are the result of narrowing or obstruction
of the lumen caused by atherosclerotic lesions of the coronary
arteries (1, 2). CAD is one of the deadliest diseases worldwide,
with 12 million people per year expected to die from CAD by
2030 (3). The morbidity and death rates associated with CAD
are rising in low- and middle-income countries and are now
on par with those in developed nations, making it an issue
worldwide (3, 4). Atherosclerosis progresses slowly over decades
and due to sub-typical symptoms, the start of CAD is frequently
overlooked (5). The pathogenesis of CAD is complicated and
remains to be fully understood. Although coronary angiography
is the most effective method for diagnosing CAD, it is intrusive
and expensive. To develop predictive, diagnostic, or prognostic
tools for CAD, more combinations of biomarkers must be
included utilizing various techniques. Over time, atherosclerosis
is suggested to be a lipid storage disease; however, it is becoming
increasingly clear that inflammation links dyslipidemia and
other risk factors to atherosclerosis formation, which ultimately
leads to the formation of coronary heart disease (6). Therefore,
it is highly feasible to analyze differences in the expression
of immune-related genes (IRGs) between CAD patients and
healthy controls to identify and validate the diagnostic and
therapeutic in CAD.

CAD patients frequently experience changes in the
immunological components of their peripheral blood
throughout their illness, which have been linked to acute
exacerbations, remission, and stability of the disease (7, 8).
Thus, these immunological components can also be used
as therapeutic targets or biomarkers for disease monitoring.
The secondary prevention of CAD depends on accurate

detection and subsequent mechanistic investigation into
these immunological components. The pathophysiology
and development of CAD are thought to be significantly
influenced by immunological diseases (9). Before the onset of
the pathogenic phenomena, specific immunological changes
occur (10). However, as the result of the current sample size
and project scope remain constrained, these novel targets are
rarely verified or mechanistically investigated further, which
restricts their translation to the clinic (11, 12). Therefore,
despite compelling data, further research is needed to fully
understand the peripheral immunological characteristics and
processes of CAD.

From the perspective of the primary prevention of CAD,
our concern is whether new risk markers for atherosclerosis can
improve CAD risk prediction. However, existing biomarkers,
including heat shock C-reactive protein (hsCRP), are
intertwined with inflammation, oxidation, hemostasis, and
other processes involving atherosclerosis, and the results are not
ideal (13). In addition, many histopathologies have also shown
that inflammation is closely related to CAD, and monocytes
and mast cells play a crucial role in the chronic inflammatory
response (14). Therefore, it is of clinical significance to establish
an immune-related prognostic model to identify and validate
the diagnostic and therapeutic in CAD. In this study, we
developed a new diagnostic model of optimal feature genes
(OFGs) using differentially expressed immune-related genes
(DE-IRGs) in CAD patients. We then performed correlation
analysis and testing, which demonstrated that the model,
particularly the S100A8 gene, has strong potential as a target for
diagnostic and therapeutic interventions. This study aimed to
identify and validate the diagnostic and therapeutic potential of
DE-IRGs in CAD, which will aid in improving our knowledge
on the etiology of CAD and in forming genetic predictions.
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2. Materials and methods

2.1. Data preparation

Gene expression information for CAD and standard
samples was retrieved from the Gene Expression Omnibus
(GEO) database. The GSE20680 dataset, which has 139 models
overall and includes 52 standard samples and 87 CAD
samples, was used as the training set for the study’s principal
analysis (15). We then verified the expression of marker genes
using the GSE20681 dataset. The Immunology Database and
Analysis Portal (immPort) database provided the 1793 IRGs
(Supplementary Table 1) used in this study (16). Drugs that
target marker genes were predicted using the Drug-Gene
Interaction Database (DGIdb) (17). Additionally, the DrugBank
database was used to collect structural data on drugs that
target marker genes.

2.2. Identification of DE-IRGs

We screened for DE-IRGs between CAD and controls using
the “LIMMA” package in the R software using the combined
datasets (P < 0.05). Genes were categorized as being up-
regulated or down-regulated based on their log2FC values (18),
which are displayed on a Volcano plot.

2.3. Functional enrichment analysis

Many related human pathologies, including cancer,
neurodegenerative diseases, and infectious diseases, are the
result of abnormal protein-protein interactions (PPIs) that alter
molecular recognition mechanisms and binding partner affinity
under given conditions. Highly complex interactome diagrams
are increasingly being used to decipher disease-specific protein
associations and characterize the effects of splicing and genetic
variation on these systems (19). We confined the confidence
(combined score) > 0.4 as a condition when examining the PPI
to establish the validity of this interaction.

The Gene Ontology (GO) project provides a comprehensive
source for functional genomics. There are three separate
aspects: (i) development and maintenance of the ontology,
(ii) annotation of gene products, and (iii) development and
continuous improvement of tools and training that facilitate the
creation, maintenance, and use of the ontologies (20). The Kyoto
Encyclopedia of Genes and Genomes (KEGG) is a knowledge
base for the systematic analysis of gene functions, linking
genomic information with higher order functional information.
The PATHWAY database represents the higher order functions
in terms of the network for the interacting molecules (21). As
a result, with the help of the “ClusterProfiler” package in R,
GO was used to identify characteristic biological attributes, and

KEGG pathway enrichment analysis was performed to identify
functional attributes. Significance was set at P < 0.05.

2.4. Identifying CAD-related OFGs

In biomedical research, it is important to select the variables
most associated with the studied outcome and to determine
the strength of this association. Least absolute shrinkage
and selection operator (LASSO) Cox regression analyses and
support vector machines-recursive feature elimination (SVM-
RFE) analyses are powerful tools to analyze data with a number
of predictors approximately equal or larger than the number
of observations. The “glmnet” package was used to obtain
the LASSO algorithm to minimize the dimensionality of the
data. By locating distinct genetic biomarkers of CAD using
the LASSO technique, which were compared by the average
misjudgment rates of their 10-fold cross-validations, models
of DE-IRGs between CAD patients and normal samples were
created (22). A SVM-RFE model was created at the same
time using the “SVM” package, and its average false positive
rate was also compared using a 10-fold cross-validation (23).
To create OFGs for CAD, genes from both algorithms were
overlapped. By determining the receiver operating characteristic
(ROC) curve and computing the area under the curve (AUC),
accuracy, sensitivity, and selectivity, the diagnostic potency of
OFGs was evaluated. Similarly, the diagnostic power of the
logistic regression model was evaluated using ROC curves.

2.5. Single sample gene set enrichment
analysis (ssGSEA) and single-gene gene
set variation analysis (ssGSVA)

Gene set enrichment analysis (GSEA) is a popular
framework for condensing information in gene expression
profiles into pathways or signature summaries. While GSEA
is often considered the endpoint of bioinformatics analysis,
gene set variation analysis (GSVA) has an increased ability to
detect subtle pathway activity changes in sample populations
compared to GSEA, which constitutes the starting point
for building pathway-centric biological models (24). The
background gene set for this study was the KEGG pathway
set, and each marker gene underwent GSVA analysis using the
“GSVA” package in the R software. Simultaneously, we utilized
the “LIMMA” package to examine the variations in GSVA scores
between the marker gene groups with high and low expression.
Based on the filtering criteria of |t| > 2 and P < 0.05, if
t > 0, we regarded the pathway to be activated in the high
expression group, and if t < 0, we considered the pathway to
be activated in the low expression group. Furthermore, with
the help of the “LIMMA” package, we performed Single sample
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gene set enrichment analysis (ssGSEA) to further understand the
functions of the OFGs.

2.6. Evaluation of CAD immune cell
infiltration

CIBERSORT is a type of deconvolution algorithm, by which
the normalized gene expression matrix can be transformed
into the composition of infiltrating immune cells. Through
the CIBERSORT package, we examined the proportion of 28
infiltrating immune cell types in CAD patients and healthy
controls. We presented them as risk heat maps and violin plots
to better understand the infiltration of immune cells in the
samples in the dataset (25). Additionally, we examined the
immune cell infiltration associated with each gene and visualized
it as a correlation heatmap (26).

2.7. Statistical analysis

R version 4.1.3 was used to complete all analyses. Using
Student’s t-tests, comparisons between the two groups were
made. The association between DE-IRGs was discovered using
Pearson correlation analysis. Targeted drugs were displayed
using Cytoscape. Differences were deemed significant at
P < 0.05.

3. Results

3.1. Recognition of DE-IRGs

The network is described in Figure 1. With the help of the
“LIMMA” package, 82 of the 1,793 IRGs, which consisted of 35
up-regulated and 47 down-regulated genes, were differentially
expressed between CAD and healthy controls according to
differential analysis of the GSE20680 data (Supplementary
Table 2). To show the differential expression of the 82 genes
between CAD and control samples, we generated a volcano plot
to show genetic differences and marked the three genes that
were the most significantly up-regulated and down-regulated
(P < 0.05) (Figure 2A).

3.2. Functional analysis of the DE-IRGs

We built a PPI network to investigate the connection
between the IRGs and the biological processes engaged in
the regulation process. Of the 82 IRGs, 15 were unrelated,
thus, we constructed a PPI network based on the remaining
67 IRGs. These genes were tightly connected at the protein
level, according to PPI analysis (Figure 2B). IRGs involved

in molecular functions, biological processes, and cellular
components were identified by GO analysis; IRGs principally
focused on the activation of signaling receptors in the molecular
function component, whereas in the biological processes
component, they were concentrated on the control of the
positive response to stimuli from the environment. Additionally,
IRGs were found to be primarily abundant in the outer
layer of the plasma membrane in the cellular component
aspect (Figure 2C). The GO results were also validated by
KEGG; the pathway enrichment map revealed that the primary
enriched pathways involved receptor ligand activity, signaling
receptor activator activity, and positive response regulation to
external stimulus, indicating a strong correlation between the
inflammatory response and CAD (Figure 2D).

3.3. Identification of OFGs for CAD

To reduce the contingency of the DE-IRGs, we created
IRG models sequentially using the LASSO and SVM-RFE
approaches, and chose the intersection genes of the two as
OFGs to screen out DE-IRGs between CAD patients and
normal controls. Based on the average false positive rate
of 10 times cross-validation, we created a model consisting
of 22 DE-IRGs by applying the LASSO logistic regression
algorithm and tweaking the penalty value using 10-fold cross-
validation (Figures 3A, B). Then, using the SVM-RFE approach,
which was compared by the average misjudgment rates of
their 10-fold cross-validations, we created a model including
16 DE-IRGs, which was then used to determine the optimal
combination of eigengenes (maximal accuracy = 0.726, minimal
RMSE = 0.274) (Figures 3C, D). Finally, we combined the
marker genes from the LASSO and SVM-RFE models to identify
10 marker genes (MICB, RELB, S100A8, MAP2K1, IGHA1,
SLIT1, SLIT2, TNFSF15, FGFR3, and TNFRSF13C) for further
investigation (Figure 3E).

Using the “glm” package, we created a logistic regression
model based on the 10 OFGs mentioned above, which could
distinguish between normal and CAD samples with an AUC of
0.889 [95% confidence interval (CI): 0.830–0.938], according to
the ROC curve (Figure 3F). Furthermore, ROC curves for the 10
marker genes were created to clarify how well a single gene can
distinguish between samples with and without CAD; all genes
exhibited an AUC > 0.6, with the S100A8 gene having the best
predictive power (AUC = 0.710) (Figure 3G). Logistic regression
models are more accurate and specific than individual marker
genes at differentiating CAD samples from healthy controls.

3.4. ssGSVA and ssGSEA

Based on the levels of expression of each marker
gene paired with GSVA, we found differentially activated

Frontiers in Cardiovascular Medicine 04 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1055422
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-1055422 December 29, 2022 Time: 14:40 # 5

Liu et al. 10.3389/fcvm.2022.1055422

FIGURE 1

The network of this article.

pathways across groups with high and low expression.
We began by running GSVA analysis on OFGs; CAD
patients exhibited lower expression in “taste transduction,”
“olfactory transduction,” and “retinol metabolism” compared
to normal controls, and increased expression in “circadian
rhythm mammalian,” “limonene and pinene degradation,” and
“DNA replication” (Figure 4A). Based on the degree of
each marker gene’s expression in combination with GSVA,
we could identify differences between CAD and normal
controls. The expression of the IGH1 gene was mainly up-
regulated for “limonene and pinene degradation,” whereas
it was down-regulated for “DNA replication.” Patients with
CAD exhibited upregulation of the MAK2P1 gene in “linoleic
acid metabolized” and downregulation in “glycosphingolipid
biosynthetic Globo series.” Patients with CAD had higher

levels of “pentose and glucuronic acid interconversion” and
lower levels of “other glycan degradation” for the MICB
gene. For the RELB gene, “limonene and pinene degradation”
and “folate biosynthesis” were the two key areas where
it was up-regulated. In addition to being up-regulated in
“limonene and pinene degradation,” the S100A8 gene was also
down-regulated in “pantothenic acid and COA biosynthesis.”
RNA degradation and tyrosine metabolism for the SILT1
gene were both increased in CAD patients. TNFSF15 was
downregulated in “taste conduction” but upregulated in
“mammalian circadian rhythm.” Additionally, TNFRSF13C was
exclusively up-regulated in “sulfur metabolism,” “biosynthesis
of unsaturated fatty acids,” “non-homologous end joining,” and
“pantothenic acid and COA biosynthesis.” The values were
different for other aspects but were not statistically significant.
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FIGURE 2

Analysis of DE-IRGs. (A) Volcano plot of the DE-IRGs in CAD. (B) PPI network. (C) GO enrichment analysis. (D) KEGG enrichment analysis.

Frontiers in Cardiovascular Medicine 06 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1055422
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-1055422 December 29, 2022 Time: 14:40 # 7

Liu et al. 10.3389/fcvm.2022.1055422

FIGURE 3

Ten DE-IRGs were shown to be CAD diagnostic genes. (A,B) Using the LASSO logistic regression algorithm, with penalty parameter tuning
conducted by 10-fold cross-validation, 22 CAD-related features were selected. (C,D) The SVM-RFE algorithm was used to filter the 10 DE-IRGs
to identify the optimal combination of feature genes. Finally, 16 genes (maximal accuracy = 0.726, minimal RMSE = 0.274) were identified as
the OFGs. (E) The 10 marker genes obtained from the LASSO and SVM-RFE models. (F) The AUC for disease samples was determined using a
logistic regression model. (G) ROC curves for the 10 marker genes.
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FIGURE 4

Single-gene GSVA. (A) OFGs model of GSVA results. (B–K) Expression levels of single marker genes in the GSVA.

Surprisingly, there was no statistically significant distinction for
the SILT2 gene between CAD patients and healthy individuals
(Figures 4B–K). From the above GSVA analysis, it is not
difficult to conclude that the higher expression of these genes
in coronary heart disease patients is related to cell cycle activity
and energy metabolism, which to a certain extent reflects the
correlation between coronary heart disease and the chronic
inflammatory response.

To further explore the potential function of marker
genes that can distinguish diseased samples from normal
samples, we performed GSEA analysis on the OFGs model
and drew the enrichment curve for the top six signaling
pathways. The results showed that for CAD patients, the “B

cell receptor signaling pathway,” “chronic myeloid leukemia,”
“endometrial cancer,” and “lysosome” pathways were up-
regulated, while the “neuroactive ligand-receptor interaction”
and “olfactory conduction” pathways were down-regulated
(Supplementary Figure 1).

3.5. Immune landscape

There is increasing data to demonstrate how closely related
CAD and the immune microenvironment are. To investigate
changes in the immune microenvironment between CAD
patients and normal controls, we utilized the CIBERSORT
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FIGURE 5

Analysis of the immunological landscape. (A) Immune cell expression levels in samples from healthy individuals and CAD patients.
(B) Comparison of immunological microenvironments in CAD patients and healthy samples. (C) Differential study of the immunological
microenvironments caused by single genes in OFGs. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

method; after examining the expression levels of 28 types
of immune cells in various patient populations 13 were
comparatively up-regulated and 15 were down-regulated in
CAD patients. The findings were shown as a heat map
(Figure 5A). In addition, we categorized the genes by single-
gene immune cell infiltration; IGHA1, MAP2K1, MICB, RELB,
and S100A8 were primarily linked to up-regulation of immune
cell expression, whereas FGFR3, SILT1, SILT2, TNFRSF13C, and
TNFSF15 down-regulated immune cell expression (Figure 5B).
We analyzed the difference in the expression level of immune
cells in 28 patients with CAD and normal controls, and the
results are shown as violin diagrams. Eosinophils, gamma delta
T cells, and myeloid-derived suppressor cells were up-regulated
in CAD patients, and their distinctions were then shown using

correlation analysis with the 28 immune cells. Although other
immune cells were also found to differ statistically, it was not
significant (Figure 5C).

3.6. Prediction of targeted drugs

We further revealed the drugs that may target marker genes
through the DGIdb database. In total, 64 drugs that were linked
to five genes (S100A8, SLIT1, MICB, FGFR3, MAP2K1) were
analyzed, including 42 targeted inhibitor drugs, six inhibitor
and allosteric modulator drugs, one inhibitor and antagonist
drug with controversial effects, and 15 as yet undetermined
drugs (Supplementary Table 3). Unfortunately, for the other
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FIGURE 6

Prediction of marker gene-targeted drugs.

five genes, we did not find relevant drugs. The results were
visualized by the Cytoscape software (Figure 6). Methotrexate
(MTX) appears to affect S100A8; however, the precise impact
still needs to be validated.

3.7. Expression of marker genes in the
validation set

In the GSE20681 dataset, we verified the expression of the
marker genes. We used differential analysis to examine S100A8
gene expression in the validation set; the results revealed that
S100A8 expression was higher in CAD patients than in healthy
controls (P = 0.019) (Figure 7).

4. Discussion

Coronary atherosclerosis is a complex, persistent, and
progressive inflammatory disease that is the leading cause of
death in both developed and developing countries (2). Immune
cells maintain homeostasis in the heart, and various immune
cells that reside or penetrate the heart tissue play an important
role in the repair process following tissue damage. Many
previous studies have suggested that CAD and immunoreaction
are inseparable and that inflammation is closely related to CAD;
in particular, monocytes and mast cells play a crucial role in
the process of the chronic inflammatory response. However, it
is worth noting that the specific relationship between coronary
atherosclerosis and immune genes has not been reported in

detail. Therefore, it is of clinical significance to establish an
immune-related prognostic model. Therefore, we used the
GSE20680 gene set as original data to analyze the DEGs between
CAD patients and normal controls. Next, we found common
functional pathways through bioinformatics enrichment, and
analyzed the differences in the expression of IRGs between CAD
patients and controls, which is of great significance in exploring
the pathogenesis of IRGs in CAD patients.

An individual’s risk of CAD is controlled by interactions
between hereditary and lifestyle factors, as is the case with most
complicated diseases (27). There are several well-acknowledged
risk factors for CAD, such as tobacco use, hypertension,
hyperlipidemia, diabetes, and family history; at least one of these
risk variables is present in 80–90% of patients with documented
CAD (28). The study of gene expression, mRNA, and miRNA
has opened up new possibilities for the pursuit of diagnostic
and therapeutic approaches, widening the boundaries of genetic
research as laboratory technology and informatics advance
(7). Metabolic syndrome is defined as central obesity plus
hypertriglyceridemia, low high-density lipoprotein cholesterol,
hypertension, or high fasting glucose levels. Grayson et al. have
identified gene expression patterns associated with metabolic
syndrome, which includes many genes involved in the innate
immune response. As the condition develops into sequelae, such
as CAD, which is characterized by an increase in genes related to
macrophage activation and signaling, this pattern changes (29,
30). Therefore, immune expression research can be used to infer
the stage and prognosis of CAD patients.

Numerous immunological components, such as cells
(endothelial cells, macrophages, and lymphocytes), cytokines,
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FIGURE 7

Expression of S100A8 gene in the test set and validation set. (A) S100A8 expression in GSE20680. (B) S100A8 expression in GSE20681.

chemokines, acute-phase proteins, and adhesion molecules, are
involved in atherosclerosis (31). Prospective epidemiological
data is most consistent with the predictive usefulness of
CRP, interleukin 6 (IL-6), and tumor necrosis factor-
alpha (TNF-α), among a wide range of immune system
parameters (32). In addition, immune system characteristics
are closely related to CAD risk factors, including hypertension,
smoking, dyslipidemia, etc. CAD risk factors indirectly induce
inflammatory responses to promote the occurrence and
development of coronary heart disease. The vicious cycle of
inflammation and high-risk factors intertwines and promotes
the occurrence of CAD. The initial inflammatory response
to arterial injury is frequently advantageous; however, if the
harmful agent continues to exist, it could cause permanent
inflammation and change the way the body reacts initially to
harmful inflammation. The inflammatory process becomes
the first feature of the development of CAD, with subsequent
progression of inflammation that eventually impairs arterial
function (33, 34). Therefore, it is particularly important to
identify the early inflammatory response in CAD.

In this study, we screened 10 IRGs, dominated by S100A8,
by bioinformatics. Each of these 10 genes has an AUC
value > 0.6, indicating that they are accurate and specific at
differentiating coronary heart disease samples from normal
samples. The S100 family member S100A8 (also known as
MRP8) typically appears as a heterodimer. As a Ca2+ sensor
also involved in cytoskeletal reorganization and arachidonic acid
metabolism, S100A8 is constitutively expressed in neutrophils
and monocytes. In disorders connected to inflammation,
S100A8 has been proposed as a biomarker for diagnosis
and follow-up, and as a predictor of therapeutic response
(35). S100A8 is actively produced during inflammation and
is essential for the inflammatory response since it promotes
leukocyte recruitment and triggers cytokine secretion (36, 37).

S100A8 controls the production of pro-inflammatory mediators,
including cytokines, chemokines, reactive oxygen species, and
nitric oxide, among others, to prevent tissue damage brought on
by excessive inflammation (38). Therefore, S100A8 expression
is a double-edged sword; on one hand, as an inflammatory
mediator, it promotes the progression of local inflammation,
whereas on the other hand, overexpression of S100A8 will
inhibit the explosive spread of inflammation, and eventually
lead to the chronic progressive development of inflammation.
Clinical evidence suggests that the neutrophil-to-lymphocyte
ratio is one of the most reliable predictors of death in acute
coronary syndrome (ACS) patients, meaning that lowering the
neutrophil count may have positive effects (39, 40). In ACS
patients, neutrophils pass through the injury site and release a
significant amount of S100A8, which acts as a chemoattractant
to encourage the recruitment of other cell types, including
monocytes, which determines the subsequent inflammatory
response. Additionally, neutrophils are the first responders to
aseptic injury (41, 42). Our study found that CAD patients have
a high expression of S100A8, which supports the view that a
chronic inflammatory response occurs in CAD; therefore, this
model may provide a new therapeutic target for the diagnosis
and treatment of CAD.

To our knowledge, this is the first study to use
bioinformatics to comprehensively analyze the role of
IRGs in CAD. In addition, most of the existing studies
have constructed prognostic models through methods such as
Weighted Gene Co-Expression Network Analysis (WGCNA)
(42–45). Compared with them, we are the first to use LASSO
and SVM-RFE dual methods to establish a prognosis model of
coronary heart disease, which greatly improved the accuracy
of the model, which is undoubtedly of certain value. Besides,
on the basis of PPI network, GO and KEGG enrichment
analysis of differential genes, we further analyzed the single
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genes of the model prognosis genes, and further demonstrated
the specific mechanism of action and related pathways of the
model-related genes by using GSVA and ssGSEA methods,
which is undoubtedly of constructive significance. Nonetheless,
this investigation is not without its drawbacks. First, even
though the OFGs had a significant prognostic impact in both
the experimental and control groups, we cannot rule out the
possibility that the prognostic effect was accidental, thus, it
needs to be confirmed in a study with a larger sample size.
However, there are currently no data sets with a large enough
sample size and clinical prognostic information to be used
for further verification. The interaction of other characteristics
with predictive value was not considered in this study, even
though this OFG model performed exceptionally well in terms
of prognosis for patients with CAD. Third, since this prognostic
signature was developed and tested using information from
open sources, the model requires additional biological support,
which will need to be confirmed in subsequent research.

5. Conclusion

We formed an immune-associated coronary heart disease
prognostic model for a total of 10 genes (MICB, RELB,
S100A8, MAP2K1, IGHA1, SLIT1, SLIT2, TNFSF15, FGFR3,
and TNFRSF13C). Among them, S100A8 was the most closely
related to CAD. Through bioinformatics correlation analysis, we
confirmed that the cardiac immune microenvironment of CAD
patients may be affected by this OFG model. In addition, we
found that the relationship between immune cells and these key
genes could have a significant impact on the development and
progression of CAD, and that studies of these genes may shed
new light on how to treat cardiovascular disease. Although gene
expression levels may not always correlate to protein expression,
their research importance is indisputable. To better understand
the pathophysiology and management of coronary heart disease,
we will continue to focus on these genes in future studies.
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