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In spite of the great progress in the management of critical diseases in recent

years, its associated prevalence and mortality of multiple organ failure still

remain high. As an endocrine hormone, fibroblast growth factor 21 (FGF21)

functions to maintain homeostasis in the whole body. Recent studies have

proved that FGF21 has promising potential effects in critical diseases. FGF21

has also been found to have a close relationship with the progression of critical

diseases and has a great predictive function for organ failure. The level of

FGF21 was elevated in both mouse models and human patients with sepsis or

other critical illnesses. Moreover, it is a promising biomarker and has certain

therapeutic roles in some critical diseases. We focus on the emerging roles

of FGF21 and its potential effects in critical diseases including acute lung

injury/acute respiratory distress syndrome (ALI/ARDS), acute myocardial injury

(AMI), acute kidney injury (AKI), sepsis, and liver failure in this review. FGF21 has

high application value and is worth further studying. Focusing on FGF21 may

provide a new perspective for the management of the critical diseases.

KEYWORDS

fibroblast growth factor 21, acute lung injury, acute respiratory distress syndrome,
acute myocardial injury, acute kidney injury, sepsis

Introduction

Despite the great progress that has been made in the management of critical diseases
in recent years, multiple organ failure is still associated with a high mortality rate (1).
Thus, the care for critically ill patients is becoming increasingly complex, and several
fundamental problems remain (2). One of which is the lack of biomarkers with sufficient
sensitivity and specificity for critical illnesses, although some progress has been made in
the recent two decades (3, 4). The new molecules and serologic markers that have been
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discovered for the clinical management of critical illnesses
are restricted by many factors (5–7). The foremost problem
is the challenge of applying biomarkers with speed and
accuracy during routine clinical care. Furthermore, the benefit
of markers can be limited due to the lack of specific clinical
interventions/strategies for many critical diseases, which are
mostly treated with supportive therapies.

Fibroblast growth factor 21 (FGF21) is an endocrine factor
that is synthesized predominantly by the liver and has integral
function to the maintenance of energy homeostasis (8). It is
a member of the FGF19 subfamily, which is different from
other typical FGF members (9). The focus of previous research
on this protein has focused on its roles relating to energy,
glucose/lipid metabolism, and insulin sensitivity (10–15). Both
animal and population studies have provided insights into this
field and demonstrated that FGF21 in circulation is elevated
in several diseases and can be served as a potential biomarker
(16–19). FGF21 is also closely involved in the progression of
acute-on-chronic liver failure (ACLF) and has a great predictive
potential for organ failure (20–22). Hence, we aim to review
and summarize the current status of FGF21 research in critical
illness, including acute lung injury (ALI), acute respiratory
distress syndrome (ARDS), acute myocardial injury (AMI),
acute kidney injury (AKI), sepsis, and liver failure.

Biogenesis, characterization, and
functions of fibroblast growth
factor 21

The FGF21 resides on human chromosome 19 (19q13.33)
and is comprised of three exons (23). The FGF21 is
composed of 209 amino acids, of which 29 amino acids at
the N-terminus form a signaling peptide (24). The FGF21
and Fgf21 (human/mouse) amino acid sequences are 75%
conserved between the two species (24). FGF21 is not only
primarily synthesized and secreted by the liver but also
highly expressed in the pancreas, adipose tissue, thymus, and
endothelial cells (25–29). Hepatic FGF21 expression is affected
by starvation signaling and conditions that cause inflammation
and illness (8, 30, 31). During fasting, FGF21 expression
is upregulated in the liver by activating the peroxisome
proliferator-activated receptor α (PPARα) and retinoic acid
receptor (RXR) heterodimer, and glucagon-stimulated protein
kinase (PKA) (32, 33). Additionally, glucose can induce
hepatic FGF21 expression as a satiety signal by activating
carbohydrate-response element-binding protein (ChREBP).
Moreover, hepatic FGF21 expression has been proven to be
induced by diet in a murine model, and via a PPARα agonist
(33, 34). Similarly, FGF21 concentrations were increased in
patients treated with the PPARα agonist, fenofibrate (25). FGF21
synthesized in the liver can be secreted into the blood as a
major source of circulating FGF21 in serum, which plays a role

throughout the body. However, in adipocytes, FGF21 expression
is regulated by PPARγ/RXR heterodimer and ChREBP (35,
36). The FGF21 synthesized during adipose tissue functions
(autocrine or paracrine) cannot enter into the circulation to
exert endocrine effects, which can enhance PPARγ functions
(37, 38), so it will not affect the level of FGF21 in the blood.
Pretreatments with the PPARγ antagonist have been shown
to partially abrogate FGF21-induced adiponectin secretion
and significantly reduce FGF21-induced adiponectin mRNA
expression in mouse adipocytes (39).

The molecular mechanisms of FGF21 signaling action
have been comprehensively explored. FGF21 lacks a heparin-
binding domain, which is required to bind to Klotho family
transmembrane proteins and form a common complex to
activate FGF receptor (FGFR) signaling, instead, forming a
signaling complex with β-Klotho and FGFR (40, 41). The FGF21
N- and C-terminal regions are both closely related to their
biological activity, yet perform different functions. Namely,
FGF21 C-terminus interacts with β-Klotho, which is required
for FGF21 to regulate blood glucose and lipid metabolism,
whereas the N-terminus binds to FGFR to constitute an
FGF21/β-Klotho/FGFR complex thereby activating downstream
molecular signals to exert its biological effects (42). Thus, FGF21
performs specific functions via β-Klotho as part of a non-
activated FGFR-mediated signaling pathway (Figure 1). Recent
studies have also confirmed that FGF21 binds to FGFR1c,
FGFR3c, and FGFR4, the former being the predominant
receptor (40, 41). The specific expression of β-Klotho and FGFR
subtypes within tissues determines the specificity of FGF21 and
its functional implications. β-Klotho has been confirmed to
be an essential co-receptor for FGF19 and FGF21 that is not
only specifically expressed in the liver but is also abundantly
expressed in several other tissues, such as the central nervous
system (CNS), pancreatic islets, and adipose tissue (43–47). The
outer domain of typical FGFRs contains three immunoglobulin
domains (D1–D3). The D1 and the D1–D2 linker (D1/linker
region) of FGFR1c inhibit interactions with β-Klotho (40),
which can be overcome via FGF21 C-terminal binding (46).

Besides regulating glucose and lipid utilization, FGF21 also
regulates insulin sensitivity and ketogenesis (48–50). It has been
reported that FGF21 significantly enhanced glucose uptake in
3T3-L1 adipocytes through upregulation expression of GLUT1
for the first time in 2005 (51). In addition, FGF21 participates
in regulating glucose uptake in primary myotubes, myoblast
cells, and the heart (40, 52). FGF21 is also a major lipid
metabolism regulator in various tissues and can significantly
reduce cholesterol, low-density lipoprotein, and triglycerides
and increase adiponectin and high-density lipoprotein levels
in plasma (53). It is interesting to note that FGF21 manifests
anti-inflammatory properties in the pancreas, the heart, and the
skeletal muscles (54, 55). Additionally, FGF21 inhibits apoptosis
in endothelial and cardiomyocytes (56, 57). For reducing the
apoptosis of myocardial cells, FGF21 also alleviates antagonism
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FIGURE 1

Activation of FGFR1c by FGF21 and signaling pathway (42). FGF21 receptor consists of FGFR1c and co-receptor β-Klotho that are constitutively
associated with the plasma membrane. The C-terminus of FGF21 interacts with β-Klotho, and β-Klotho is necessary for FGF21 to perform the
function. Then, the N-terminus of FGF21 binds to FGFR to form a stable FGF21/β-Klotho/FGFR complex and leads to autophosphorylation of
FGFR1, and phosphorylation of FRS2, which then forms a complex with Grb2/Sos to activate downstream molecular signals, such as Akt
pathway, MAPK/p38 pathway, MAPK/ERK pathway, and NF-κB pathway, causing the change of target genes in the nucleus. FGF21, fibroblast
growth factor 21; FGFR, FGF receptor; Akt, protein kinase B; MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase
after FGF receptor.

against the effects of ischemia/reperfusion (I/R) and oxidative
stress and protects the heart effectively (58). FGF21 is involved
in main biological processions in human beings, and some
clinical trials provided an initial advancement for human FGF21
analogs as a worthy therapeutic candidate in type 2 diabetes
mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD),
and non-alcoholic steatohepatitis (NASH) (Table 1). However,
therapeutic studies of FGF21 in critical diseases in human
populations are not yet available. More studies are needed to
elucidate the mechanism to expand its clinical practice and use.

The role of fibroblast growth
factor 21 in acute lung injury and
acute respiratory distress
syndrome

Acute lung injury and its worst form ARDS are the main
causes of acute respiratory failure. Therefore, they constitute the
main reason for death in patients with the intensive care unit
(ICU) (59).

In the current research of medicine, the studies investigating
the association between FGF21 and ALI/ARDS have been
limited. Li et al. (17) demonstrated that serum FGF21 levels were
elevated in patients with sepsis and ARDS after ICU admission,
and the risk of 28-day mortality was strongly associated with
FGF21. Similarly, FGF21 reduced inflammatory response and
apoptosis so that rescued lipopolysaccharide (LPS)-induced ALI
that was induced by LPS through the classic inflammatory
signaling pathways of TLR4/MyD88/nuclear factor kB (NF-κB)
(60). Based on the recent evidence, FGF21 might be a new
effective method for the treatment of ALI (60), and further
studies are required to investigate the underlying mechanisms
and explore the potential clinical use of FGF21 for lung
disease in the future.

The role of fibroblast growth
factor 21 in acute myocardial
injury

Cardiovascular diseases are the main issues of
public health in modern society. AMI is the most
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serious disease of the coronary artery because it is
the major factor in most death cases in the world
(61). In addition, AMI decreases cardiac function
and remains the commonest cause of heart failure.
Therefore, it is essential to understand the pathogenesis of
cardiac remodeling.

The FGF21 has great importance in the process of
ventricular remodeling and may be related to coronary
artery disease (62) and diastolic heart failure. In the
patients with AMI, the expressions of FGF21 were
significantly increased in the first 24 h after myocardial
infarction and maintained a high level for 1 week (63).
Furthermore, FGF21 was related to the expression of
brain natriuretic protein and strongly predicted adverse
events of the cardiovascular system in ST-segment
elevation myocardial infarction patients after percutaneous
transluminal coronary intervention (64). Thus, serum
FGF21 may be a potential biomarker in cardiac diseases
(63). Administration of FGF21 decreased the mRNA
expression of interleukin-6 (IL-6) and tumor necrosis
factor-α (TNF-α) and protected against pathological
myocardial remodeling and improved cardiac function at
2 weeks in a myocardial infarction mouse model (65). In
a cardiac hypertrophy model, the lack of FGF21 increased
cardiac reactive oxygen species (ROS) accumulation (66).
These cardiac protections of FGF21 may be involved with
multiple intracellular signaling pathways, which include
phosphatidylinositide 3-kinase (PI3K) –protein kinase B
(Akt), p38 mitogen-activated protein kinase (MAPK), and
extracellular signal-regulated kinase 1/2(ERK1/2) (67, 68).
For example, upregulation of FGF21 may reduce myocardial
infarction size after I/R injury through FGFR1–PI3K–AKT
pathway (67).

The FGF21 is related to cAMP-response element binding
protein-eroxisome proliferator-activated receptor-gamma
coactivator 1 alpha (CREB-PGC-1a) pathway, and it leads to
an induction of anti-oxidant genes, inflammatory response,
and suppression of pro-apoptotic proteins. Thus, it may
have a significant impact on I/R injury (69). FGF21 protects
cardiomyocytes from I/R injury by promoting the elevation
of mir-145 and autophagy, providing a new protection
cardiomyocyte strategy (70). Interestingly, FGF21 elevated by
exercise training has anti-cardiac fibrosis by the inactivation
of the TGF-β1—mad2/3–MMP2/9 signaling pathway (71).
More importantly, FGF21 regulated energy homeostasis
and mitochondrial function and restored energy balance
in the ischemic heart by the activation of AMP-activated
protein kinase (AMPK) (72). Therefore, FGF21 can be
considered as both a predicted biomarker and a potential
protective agent against AMI. All these discoveries provide
new strategies for the treatment of ischemic arrhythmia.
It is necessary to conduct more prospective studies to
clarify these issues.
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The role of fibroblast growth
factor 21 in acute kidney injury

Acute kidney injury is a clinical condition defined as a
rapid decline in renal function. Lots of factors including drugs,
infections, and ischemic can lead to the occurrence of AKI
(73). The pathophysiology of AKI is characterized by the
inflammation response, cell apoptosis, and fibrosis after kidney
injury, which may be regulated by multiple molecular regulators,
such as adenosine receptors, peptidylarginine deiminase 4,
and Toll-like receptors (74). Circulating FGF21 levels were
increased in acute and chronic renal dysfunction mice (75, 76),
and recombinant FGF21 also showed therapeutic potential in
cisplatin-induced kidney injury (75).

The expression of FGF21 and its receptor was increased
in renal mesangial cells of diabetic db/db mice (77). FGF21
levels were significantly elevated in patients with AKI based on
clinical data (75, 76). Thus, this indicates a theory that FGF21 is
associated with AKI and may regulate the process of AKI.

Knockdown of FGF21 increased tubular apoptosis, but
supplementation with recombinant FGF21 protected tissue
damage and improved kidney function by inhibiting p53
expression in cells and mouse models (75). The FGF21
expression in cisplatin-induced AKI models was significantly
elevated according to a recent study (78). Furthermore, FGF21
can decrease apoptotic cells and alleviate cisplatin-induced acute
renal injury by upregulated expression of silent information
regulator sirtuin 1 (SIRT1) (78). FGF21 inhibited the expression
of pro-inflammatory cytokinesis by nuclear factor kB (NF-
kB) signaling and suppressed oxidative stress by upregulated
superoxide dismutase (SOD) and glutathione (GSH) and
decreased the expression of malondialdehyde (MDA) in vitro
(79). FGF21 may also regulate mitochondrial and oxidative
stress (80). Then has the expected protective effects in AKI.
Although scholars have increased interest in FGF21 and kidney
function in recent years, FGF21 is still not fully understood
in terms of its role in kidney development. Evidence between
FGF21 and renal function is still limited, so more research will
be needed in the future.

The role of fibroblast growth
factor 21 in sepsis and septic shock

The disease of sepsis is characterized by organ dysfunction
caused by infection and is considered a life-threatening
condition (81). In 2017, the world suffered 48.9 million new
sepsis cases, among which up to 11 million patients died of
sepsis, and it is responsible for 19.7% of all deaths worldwide
(82). Based on the data from the Chinese sepsis epidemiological
survey, one-fifth of patients in ICUs of the Chinese mainland
suffered from sepsis, and 35.5% of them died within 90 days

(83). Although increasing biomarkers related to sepsis have
been studied, the ideal diagnostic and prognostic accuracy of
biomarkers for sepsis is not yet established (84).

In the early course of sepsis, inflammatory and anti-
inflammatory cytokines were increased (85). According to
previous studies, FGF21 has played an anti-inflammatory role
in sepsis (86). Due to this, it should not come as a surprise
that FGF21 levels in the circulation were elevated in both
sepsis mouse models and patients with sepsis (16, 86, 87),
indicating that this increase may act as a protective mechanism.
In addition, increasing FGF21 levels in muscles and adipose
tissue might be a contributing factor (86). Circulating FGF21 is
liver derived, and it maintains thermoregulation and preserves
cardiovascular function during bacterial inflammation, and
finally decreased the mortality in endotoxemia (71). Thus,
FGF21-deficient mice are more easily to die of endotoxemia, and
initiated administration of FGF21 after bacterial inflammation
can get a better survival (88).

Besides, FGF21 can predict the prognostic survival for
patients with sepsis, and patients with sepsis with FGF21
levels below 3,200 pg/ml had a significantly lower mortality
rate than those with levels above 3,200 pg/ml (16). When it
comes to predicting 28-day mortality, FGF21 had a sensitivity
of 81.3% and a specificity of 89.8%, respectively (16). As for
patients with sepsis and ARDS, the expression of FGF21 levels
persistently increased until the peak time points of shock and
death. Compared with patients who survive, FGF21 levels were
nearly four times higher in patients with sepsis and ARDS
who did not survive (17). Thus, FGF21 may be a potential
biomarker for sepsis patients’ survival prediction. FGF21 is also
required for controlling the inflammation of metformin through
suppressing pro-inflammatory cytokines and enhancing anti-
inflammatory cytokines in rat liver induced by LPS (89). The
relationship between increased expression of FGF21 and sepsis
may be explained by these findings. Unfortunately, population-
related clinical trials with FGF21 or the analogs of FGF21
in the treatment of sepsis have not proceeded. Furthermore,
the underlying mechanism of the protective effects of FGF21
remains unclear in sepsis, and it may need more studies.

The role of fibroblast growth
factor 21 in liver failure

Liver failure is one of the most common and deadly clinical
syndromes (90). Many factors can cause liver failures, such as
hepatitis virus, drug, paracetamol toxicity, and autoimmunity
(91). The pathology of liver failure commonly demonstrates
extensive hepatic apoptosis and necrosis. However, liver failure
often accompanies by systemic inflammation. Currently, few
studies have examined FGF21’s role in liver failure.

The FGF21 played a protective role in liver failure in a
Kunming mice model induced by D-galactose (92). It reduced
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FIGURE 2

Summary of emerging roles and related mechanisms of FGF21 in critical diseases. Serum FGF21 levels were increased in patients with critical
diseases including ALI/ARDS, AMI, AKI, sepsis, and liver failure. Additionally, FGF21 plays different biological functions in critical patients with
different underlying mechanisms. ALI, acute lung injury; ARDS, acute respiratory distress syndrome; AMI, acute myocardial injury; AKI, acute
kidney injury; FGF21, fibroblast growth factor 21.

liver and histological injury and inhibited hepatocyte oxidative
stress by the enhancement of Nrf2-dependent antioxidant
capacity and apoptosis through activating PI3K/Akt signaling
(92). In acute liver failure induced by acetaminophen (APAP),
both the hepatic and circulating expressions of FGF21 were
markedly increased within 3 h, which therefore was a feedback
signal that protected mice from APAP-induced liver damage by
enhancing liver anti-oxidative defenses (93). Therefore, FGF21
could be severed as an early diagnostic and therapeutic factor
for APAP-induced acute hepatic injury. Moreover, the absence
of FGF21 exacerbated oxidative stress and resulted in severe
liver injury and high mortality, and these can be reversed by
the replenishment of recombinant FGF21 in mice (93). FGF21
inhibited the hepatotoxicity and mortality caused by APAP by
inducing peroxisome proliferator-activated receptor coactivator
protein-1α functionally (93).

The serum FGF21 levels after liver transplantation displayed
distinct dynamic profiles, the FGF21 levels were low (< 300
pg/ml) within 1 h, and then they had a sharp rise and reached the
peak earlier just at 2 h (94). However, serum ALT level reached
the highest level at 24 h after reperfusion (94). All these results
prove that serum FGF21 has a higher sensitivity than current

biomarkers used to detect liver I/R injury (94). Nevertheless, the
role of FGF21 that plays in hepatic I/R injury is unclear. The
elevation of FGF21 may be an adaptive and protective response
to a rapid onset of cell death.

Acute-on-chronic liver failure usually develops in patients
with cirrhosis who have acute decompensation and has a
high mortality (90). A decrease in serum FGF21 was observed
with cirrhosis when the liver synthesis function was decreased,
suggesting that a specific behavior of FGF21 may result in
cirrhosis (18). In addition, FGF21 had a predictive value in
the development of ACLF. However, FGF21 did not show an
association with mortality for these patients (18). In contrast, the
level of FGF21 was markedly increased when ACLF occurred,
and it might reflect the injury degree of the liver (18). According
to another study, serum FGF21 expression was predominantly
upregulated in patients with severe ICU cirrhosis and had an
important diagnostic value in patients with ACLF (20). All these
data suggested a fact that FGF21 had an important role in liver
failure, but the exact mechanism of FGF21 in ACLF has not
been engaged deeply, and the clinical utility also needs further
systemic investigation.
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Application prospect of fibroblast
growth factor 21

In summary, FGF21 is closely associated with critical disease
and has potential benefits for acute organ injury, and it plays
an important role in critical disease (Figure 2). Since FGF21
does not show significant performance in promoting mitosis in
cell lines and mice (51), it is suggested that FGF21 has excellent
safety. Despite FGF21 has a variety of benefits, due to its small
relative molecular weight (about 20 KD), it is easily degraded
by protease in vivo and filtered by the glomerulus, and its half-
life in plasma is only 0.5–1.5 h (95–97). The clinical route of
application of FGF21 has been limited to some extent. However,
it is encouraging that in recent years, long-acting FGF21 and its
analogs have been gradually developed.

The FGF21-based therapies are relatively new for clinical
application, and the extensive biological characteristics of the
FGF family have not been fully utilized in the treatment
of human diseases. We believe that FGF21 will have great
development space in critical diseases and other clinical
illnesses in the future.
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