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Studies in the past decades have uncovered an emerging role of

the nucleolus in stress response and human disease progression. The

disruption of ribosome biogenesis in the nucleolus causes aberrant nucleolar

architecture and function, termed nucleolar stress, to initiate stress-

responsive pathways via nucleolar release sequestration of various proteins.

While data obtained from both clinical and basic investigations have faithfully

demonstrated an involvement of nucleolar stress in the pathogenesis of

cardiomyopathy, much remains unclear regarding its precise role in the

progression of cardiac diseases. On the one hand, the initiation of nucleolar

stress following acute myocardial damage leads to the upregulation of

various cardioprotective nucleolar proteins, including nucleostemin (NS),

nucleophosmin (NPM) and nucleolin (NCL). As a result, nucleolar stress plays

an important role in facilitating the survival and repair of cardiomyocytes.

On the other hand, abnormalities in nucleolar architecture and function

are correlated with the deterioration of cardiac diseases. Notably, the

cardiomyocytes of advanced ischemic and dilated cardiomyopathy display

impaired silver-stained nucleolar organiser regions (AgNORs) and enlarged

nucleoli, resembling the characteristics of tissue aging. Collectively, nucleolar

abnormalities are critically involved in the development of cardiac diseases.

KEYWORDS

nucleolus, nucleolar stress, cardiac disease, nucleostemin, nucleophosmin, nucleolin,
senescence

Introduction

Ribosome biogenesis is a highly conserved biological process essential to all
living organisms (1). In eukaryotic cells, the nucleolus is a prominent sub-nuclear
compartment central to ribosome biogenesis (2). The nucleolus is organized around
ribosomal DNA (rDNA) distributed within acrocentric chromosomes. rDNA is
transcribed into 47S pre-ribosomal RNA (pre-rRNA) by RNA polymerase I (Pol I)
transcriptional machinery. Then, 47S rRNA is cleaved and processed into mature
ribosomal RNAs, including 28 S, 18 S and 5.8 S rRNAs, via the assistance of
heterogeneous nuclear ribonucleoproteins (hnRNPs) (3). Finally, the rRNAs were
assembled, together with ribosomal proteins and 5S rRNA, into 40S and 60S
ribosomal subunits, followed by the export of these subunits into cytoplasm. rRNA
transcription is fundamental to nucleolar dynamics and integrity. Mammalian oocytes
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and zygotes contain morphologically distinct and
transcriptionally inactive nucleoli termed nucleolus precursor
bodies (NPBs), which consist of ribosomal proteins, fibrillarin
and hnRNPs (4). rRNA transcription serves as a seeding
mechanism to initiate nucleolar assembly (5, 6). Thus, the
dynamics of nucleolar architecture is tightly controlled by the
transcription of ribosomal RNA (rRNA) and the demand of
ribosome synthesis.

Accumulating data have suggested a critical involvement of
ribosome biogenesis and nucleolar dynamics in stress responses
and human diseases. In this regard, nucleolar stress, a term
indicating the disruption of ribosome biogenesis and nucleolar
integrity, has been increasingly recognized as an important
modulator of stress responses. Nucleolar stress is initiated
under various stress conditions, including genotoxic stress,
hypoxia, nutrient deprivation and thermal stress, and plays a
critical role in stress-induced signaling transductions. Notably,
data obtained from both clinical and basic researches have
pointed to a pivotal role of nucleolar malfunction in the
development of cardiac diseases. Of importance, nucleolar stress
may elicit both beneficial and adverse effects during cardiac
injury. In this review, we summarize current findings linking
nucleolar function to cardiovascular diseases, and discuss both
the protective and detrimental effects of the nucleolus and
nucleolar stress.

The non-canonical function of the
nucleolus

While the canonical role of the nucleolus as a ribosome
factory has been well-characterized, studies in recent years have
suggested that the nucleolus possesses various non-ribosomal
functions. The nucleolus is broadly implicated in the regulation
of transfer RNA (tRNA) expression and processing, centromere
assembly, nuclear architecture, X-chromosome inactivation and
DNA damage responses (7–10). These studies indicated that,
besides a central role in ribosome biogenesis, the nucleolus is
critically involved in the regulation of signaling transduction
and cellular homeostasis. Many nucleolar proteins and non-
coding RNAs have been reportedly involved in various cellular
responses and metabolic control. These studies highlight the
importance of the non-canonical function of the nucleolus in
the development of various human diseases, including cardiac
damage and failure.

Multiple proteomic studies revealed that the nucleolus
contains thousands of proteins, of which only a small
proportion have been associated with ribosome biogenesis (11).
The dynamics of nucleolar proteome and morphology are
closely associated with cellular homeostasis and proliferative
status (12). During cell cycle progression, the nucleolus is
disassembled at the end of prophase as a result of nucleolar
protein phosphorylation by Cdk1-cyclin B complex (13). The
reassembly of the nucleolus during telophase is initiated by

rRNA transcription and subsequent recruitment of various
nucleolar proteins. Recent investigations revealed that the
nucleolus is assembled through liquid–liquid phase separation
(LLPS), displaying dynamic exchange with the surrounding
nucleoplasm (14, 15). Nucleolar proteins may constitutively
shuttle within and outside the nucleolus, and the dynamics of
nucleolar proteins are regulated by metabolic and genotoxic
stresses (16–18). Moreover, nucleolar accumulation of various
proteins critical for intracellular signaling transduction and
cell physiology has been increasingly characterized in the past
decades (19). Mechanistic investigations revealed that proteins
critical to signaling transduction may be sequestered in the
nucleolus, especially under stress conditions. For instance,
hypoxia and acidosis may trigger nucleolar sequestration of E3
ubiquitin ligase VHL, which is key to HIF-1α stabilization and
the transcription of hypoxia-responsive genes (20, 21). Some
recent studies uncovered that the nucleolus plays a central role
in nuclear protein quality control in response to heat shock
(22, 23). It was revealed that nuclear proteins, such as the
Polycomb group protein (PcG) complex, may accumulate in
the nucleolus under heat shock, and undergo recovery and
refolding via an Hsp70-dependent mechanism after exiting from
heat shock. Furthermore, mounting investigations suggested
that the nucleolus serves as a compartment of protein
ubiquitination and degradation. Nucleolar translocation of
various nuclear proteins, including histones, cell cycle regulators
and transcriptional factors, leads to their ubiquitination and
proteasomal degradation (24–27). These findings highlight the
importance of non-ribosomal functions of nucleolar proteins in
cellular homeostasis.

In addition, small nucleolar RNAs (snoRNAs) have also been
reportedly involved in various biological processes. snoRNAs
are 60–300 nucleotide non-coding RNAs primarily localized in
the nucleolus (28). snoRNAs play indispensable roles in rRNA
chemical modifications, but also exert various non-ribosomal
functions. Carlos Michel et al. identified three snoRNAs in
ribosomal protein L13a (rpL13a) locus, including U32a, U33
and U35a, play critical roles in transmitting metabolic stress
pathways (29). Further studies revealed that these snoRNAs
modulate mitochondrial metabolism and the production of
reactive oxygen species (ROS), leading to alterations in
pancreatic insulin secretion and systemic glucose metabolism
(30). Nuclear snoRNA may function as a component of
spliceosome to regulate pre-mRNA splicing (31, 32). snoRNAs
may also be released from the nucleolus into the cytoplasm
under metabolic stress and doxorubicin exposure (33, 34). In
the cytoplasm, snoRNAs may form mRNA-snoRNA to regulate
mRNA translation and decay (35, 36). snoRNAs may also
directly bind to various proteins to modulate the activation
of signaling pathways (37, 38). Notably, altered expression
of snoRNAs has also been observed in cardiomyopathic
conditions, implicating an involvement of snoRNAs in cardiac
disease progression (39–41).
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The nucleolus serves as stress
sensor

Ribosome biogenesis is an energy-intensive process, and
is thus subjected to delicate regulation by various upstream
signals (42). Coordinate regulation of rRNA transcription
is achieved mainly through modulating the activity of key
components of Pol I transcriptional machinery by various
upstream regulators (43). Pol I transcriptional machinery is
a multi-subunit protein complex, composed of Pol I and
various essential transcriptional co-factors, including SL1, TIF-
IA and UBF (44). The expression and posttranscriptional
modification of these proteins are tightly regulated by signaling
pathways involved in cell proliferation, mitogenic growth,
nutrient and energy sensing, as well as stress responses. For
instance, TIF-IA is phosphorylated on Ser635 residue by AMPK
following energy deprivation, and on Thr 200 residue by
JNK2 following oxidative stress (45, 46). Both modifications
cause the dissociation between SL1 and TIF-IA, consequently
leading to the disruption of rRNA transcription. On the other
hand, phosphorylation of TIF-IA by growth-related kinases,
including EKR, mTOR and CK2 enhances TIF-IA activity and
rRNA synthesis (47–49). Likewise, the activity of SL1, UBF
and Pol I are also tightly regulated by posttranscriptional
modifications, particularly phosphorylation, in response to
upstream signals (43). In addition to the regulation of Pol
I transcriptional machinery, epigenetic regulation of rDNA
accessibility also plays a pivotal role in nucleolar dynamics
(50). For instance, owing to open chromatin conformation and
high rDNA accessibility, embryonic stem cells (ESCs) typically
contain one large nucleolus. The exit from pluripotency in ESCs
triggers epigenetic silencing of rDNA, leading to the formation
of heterochromatic shell that compartments the large nucleolus
into smaller nucleoli (51, 52). Notably, data obtained from
multiple organisms revealed that epigenetic silencing of rDNA
is tightly correlated with biological aging (53, 54). Thus, rRNA
transcription and nucleolar morphology are closely associated
with cellular physiological status.

Mounting studies have revealed that nucleolar integrity
serves as a stress sensor and signaling hub following stress
conditions (55). Nucleolar stress caused by aberrant rRNA
transcription disrupts nucleolar integrity, leading to the
aberrant release of nucleolar proteins, such as ribosomal
proteins, NPM and NS, into the nucleoplasm, where they
bind to various signaling proteins and alter their stability
and activity. A most prominent stress pathway downstream
of nucleolar stress is the p53 pathway. A pioneer work
conducted by Carlos Rubbi and Jo Milner revealed that
nucleolar disruption plays a causal role in p53 activation
under DNA damage and other stress conditions, and that
the disruption of nucleolar integrity is sufficient to activate
p53 in the absence of stress stimuli (56). Later investigations
uncovered that multiple nucleolar proteins, including NPM,

p14Arf , ribosomal proteins RPL11 and RPL5, are key to p53
stabilization following nucleolar disruption (57). For instance,
the blockade of rRNA transcription causes nucleoplasmic
accumulation of 5S ribonucleoprotein particle (5S RNP), which
comprises the 5S rRNA, ribosomal proteins RPL11 and RPL5
(58). This complex binds to and inactivates mouse double
minute 2 homolog (MDM2), an E3 ligase responsible for p53
ubiquitination and degradation under quiescent conditions,
leading to p53 accumulation and activation (59). Nucleolar
stress-p53 pathway has been associated with a variety of
cellular events, including senescence, apoptosis, autophagy and
differentiation (60–63).

In addition to mdm2-p53 pathway, nucleolar stress also
triggers stress events through p53-independent mechanisms
(57, 64). Nucleolus and nucleolar stress have been reportedly
involved in the regulation of a growing number of signaling
pathways, such as NF-κB, HIF-1α and CDK4/6 (Figure 1) (20,
65, 66). It is speculated that nucleolar stress may participate
in the regulation of a majority of non-ribosomal nucleolar
functions discussed in section 2. A variety of nucleolar stress-
inducing stimuli, such as hypoxia, heat shock and oxidative
stress, cause altered distribution and function of nucleolar
proteins and snoRNAs (55, 67). Accordingly, the pivotal role
of the nucleolus in the development of various human diseases
has increasingly attracted research and therapeutic attention in
recent years. While the role of nucleolar stress in some chronic
diseases, such as cancer and neurodegenerative diseases, has
been intensively investigated, the connection between nucleolar
stress and cardiovascular disease remains largely obscure (68).
Moreover, previous studies suggest that nucleolar stress appears
to elicit both protective and detrimental roles in cardiovascular
disorders. These facts indicate a complicated role of the
nucleolus in the development of cardiovascular diseases.

The protective role of nucleolus in
stress-induced cardiac
malfunction

Multiple nucleolar proteins, such as nucleostemin (NS),
nucleophosmin (NPM) and nucleolin (NCL), possess pro-
survival and pro-renewal properties (69, 70). Their expression
and activity are of great importance to the fate decision
of cardiomyocytes. Pioneer works by Mark Sussman’s lab
revealed that the induction of nucleolar proteins, including
NS and NPM, is an early event following cardiomyopathic
injury (71, 72). The upregulation of NS and NPM not
only occurred following exposure to nucleolar stress inducer
doxorubicin and actinomycin D (ActD), but also was observed
in hypoxia/hypoxia-reperfusion conditions. Given the fact that
these proteins are highly expressed in cancer and stem cells
and elicit pro-survival and pro-repair roles, their upregulation
are supposed to prevent the injury and death of cardiac cells.
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FIGURE 1

Nucleolar stress-initiated signaling transduction. Upon unfavorable stress stimuli, including DNA damages, nutrient deprivation, hypoxia and
oxidative stress, the disruption of rRNA synthesis through posttranscriptional modification of Pol I transcriptional machinery components causes
nucleolar malfunction and stress, leading to nucleoplasmic release of ribosomal proteins (RPs), NS, NPM and snoRNAs, and consequent
modulation of p53, NF-κB and CDKs.

As predicted, forced expression of either NS or NPM inhibit
caspase activation and cardiac cell death. The opposite is
also true, as depletion of NS or NPM significantly enhance
damage-induced cell death (72). Notably, NS and NPM
also displayed apparent nucleoplasmic distribution following
stress stimuli, suggesting an initiation of nucleolar stress in
cardiac cells. In line with these findings, our recent RNA-
seq data confirmed that NS is significantly upregulated in
hypoxia-conditioned cardiac progenitors (Unpublished data).
It is worth of notice that p53 activation was only mildly
observed in these conditions, potentially as a result of NS-
mediated stabilization of mdm2 in the nucleoplasm (73). More
recent data uncovered that NPM is also secreted into the
extracellular space via an autophagy-dependent mechanism in
human cardiac mesenchymal progenitors (74). Extracellular
NPM functions as a ligand of TLR4 to initiate TLR4/NF-κB
inflammatory response, potentially facilitating cardiac repair
(75). These studies implicated protective roles of NS and NPM
in the regulation of the survival and repair of cardiomyocytes
(Figure 2).

In addition to NS and NPM, NCL also exhibits
cardioprotective function during the progression of
cardiomyopathy. Proteomic data revealed that NCL has higher
chromatin-binding in the mouse heart during hypertrophy
and failure (76). NCL was subjected to protein cleavage
in the very early phases of cardiac ischaemia-reperfusion
injury (77). Further investigations indicated that NCL
expression was dramatically reduced in the early stage of
experimental myocardial infarction, and then recovered at
late stages (78). Overexpression of NCL protects cultured
cardiomyocytes from hypoxia- and H2O2-induced death

(77). These studies demonstrated that NCL may facilitate the
recovery of cardiomyocytes following exposure to stress stimuli.
Moreover, NCL has been reportedly implicated in inflammatory
induction in experimental myocardial infarction, as well as
in cultured cardiomyocytes following hypoxia-reoxygenation
injury (78, 79). NCL plays a key role in the induction of a variety
of cytokines important for inflammatory responses and cardiac
repair, such as IL-6 and IL-1β (79). In vivo data revealed that
NCL expression is critical for alternative (M2) polarization of
macrophages, and depletion of NCL reduced M2 polarization
but had no effect on general macrophage infiltration (78). Given
the fact that macrophage M2 polarization is of vital importance
to cardiac tissue repair following injury, it is anticipated that
NCL expression may critically contribute to cardiac recovery
via the initiation of alternative inflammatory responses (80).

Sirtuin 7 (Sirt7) is mainly localized in the nucleus, where
it regulates rRNA transcription and nucleolar homeostasis via
its deacetylase activity (81). Up on nucleolar stress, Sirt7 is
released from the nucleolus to modulate stress-related signaling
(82, 83). Being a member of sirtuin family proteins, Sirt7 has
been implicated in the regulation of tissue repair, aging and
metabolism. Similarly with NS and NPM, Sirt7 is upregulated
in the early stages of acute cardiovascular injury (84). Sirt7
knockout increased the risk of cardiac rupture following
myocardial infarction as a result of impaired activation of
transforming growth factor-β (TGF-β) pathway. Another study
demonstrated that Sirt7 ablation led to the development of
heart hypertrophy and inflammatory cardiomyopathy, likely
through the deacetylation and inactivation of p53 (85). These
studies suggested that Sirt7 has emerged as a cardioprotective
nucleolar protein.
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FIGURE 2

The protective and detrimental roles of nucleolar stress in cardiac disease progression. Nucleolar stress, as a result of hypoxia,
ischemia-reperfusion (IR) and doxorubicin exposure, function as a double-edged sword in the development of cardiac diseases. On the one
hand, nucleolar stress triggers the upregulation and altered distribution of cardioprotective nucleolar proteins. These proteins exert pro-survival
functions in cardiomyocytes, and meanwhile activate inflammatory responses to promote cardiac repair. On the other hand, nucleolar stress
may be associated with impaired rRNA transcription and enlarged nucleoli during the progression of cardiac diseases, leading to cardiac
functional decline and aging.

Overall, these findings provide conceivable evidence
indicating that nucleolar stress is initiated in cardiac cells
following acute cardiovascular injury, which leads to the
release of cardioprotective nucleolar proteins into nucleoplasm,
where they may elicit cardioprotective function via diverse
mechanisms, such as counteracting p53-mediated apoptosis.
In addition to nucleoplasmic release, nucleolar proteins
are also upregulated following cardiovascular injury, and
participate in the repair and survival of cardiac cells. These data
provide convincing demonstration of a cardioprotective role of
nucleolus and nucleolar proteins in acute cardiomyopathy.

The potential role of nucleolar
stress in cardiac aging and
functional decline

The initiation of nucleolar stress triggers various types
of stress responses via stress-responsive pathways, especially
mdm2-p53 pathway (86, 87). Depending on cell lineages,
nucleolar stress has been associated with the induction of
cell apoptosis, senescence, autophagy and differentiation. In
cardiac cells, the cellular responses following nucleolar stress
remain largely elusive. While nucleolar stress has been shown to
inhibit apoptotic death of cardiomyocytes following myocardial
damage, it is unclear how nucleolar stress influences cardiac cell
fate decision under stress conditions (72). Particularly, nucleolar
stress-inducing stimuli, such as hypoxia, ischemia/reperfusion

and doxorubicin treatment, have been shown to facilitate the
senescence of cardiomyocytes (88–90). It raises the question
whether there is a link between nucleolar stress and senescent
phenotype under these stress conditions.

Accumulating data have indicated a critical involvement
of nucleolus and nucleolar stress in cell senescence and tissue
aging. Genetic or pharmacological induction of nucleolar
stress has been reported to trigger cell senescence and tissue
degeneration (91, 92). Aberrant nucleolar morphology has been
well-recognized as a hallmark of cell senescence, suggesting a
mechanistic link between nucleolar function and senescence
induction (93). In this regard, it is speculated that nucleolar
stress may facilitate myocardial aging, in spite of a protective
role during the early stages of acute myocardial damage (72).
Notably, multiple nucleolar stress-inducing stimuli, including
doxorubicin exposure, hypoxia-reoxygenation and ischemia-
reperfusion, have been shown to facilitate the senescence
of cardiomyocytes (89, 90, 94). Interestingly, cardiomyocyte
senescence is partially attributed to the activation of the
p53 pathway, implicating a link between nucleolar stress
induction and p53-driven senescence in cardiomyocytes (89,
95). Currently, the evidence linking nucleolar stress and cardiac
cell senescence is limiting. Heterozygous deletion of NS has
been shown to induce the senescence of cardiac progenitors,
suggesting that disturbing nucleolar proteins induces cardiac
senescence (96). Disruption of rRNA transcription through TIF-
IA ablation causes p53 accumulation and senescent phenotypes
in smooth muscle cells (91). Whether similar phenotypes can be
observed in cardiac cells is worthy of further investigations.
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Studies also suggested that nucleolar disorder is correlated
with cardiac functional decline. An early clinical study revealed
that cardiomyocytes from patients with severe ischaemic heart
disease complicated with heart failure displayed significantly
reduced silver-stained nucleolar organiser regions (AgNORs)
(97). AgNORs are mainly confined to the fibrillar center,
where some nucleolar proteins can be specifically stained
by silver nitrate (98, 99). Given the fact that the fibrillar
center is responsible for rRNA transcription, the reduction
of AgNOR suggests a negative correlation between nucleolar
rRNA transcription and the severity of ischaemic heart disease
(100). Because aberrant nucleolar function has been associated
with genomic instability, the decline of nucleolar staining
may potentially be indicative of increased genotoxic stress in
cardiomyocytes (101, 102). In contrast to reduced nucleolar
staining, NCL expression and overall size of nucleolus were
increased both in ischemic and dilated cardiomyopathy (103).
The mechanism underlying this difference remains unclear.
Of note, enlarged nucleoli are widely regarded as a hallmark
of senescence and aging (93). On the other hand, studies
suggested that tissue aging is associated with hypermethylation
and reduced transcriptional activity of rDNA (53, 104). Thus,
the morphological changes observed in these studies may be
associated with aging-like functional decline of cardiomyocytes
(Figure 2). The causal relationship between nucleolar change
and cardiac aging requires further mechanistic studies.

Conclusion

While nucleolar stress has been implicated in assorted
human diseases, its role in cardiovascular diseases received
insufficient attention. Recent data obtained from pathological,
animal model and cell culture studies all point to a critical
involvement of nucleolar stress in the development of
cardiovascular diseases. Moreover, different from its role
in most other diseases, nucleolar stress is supposed to play
both beneficial and detrimental roles in the progression
of cardiovascular disease. In early stages of cardiac injury,
nucleolar stress leads to the upregulation of various
cardioprotective nucleolar proteins, such as NS, NPM, and
NCL. The expression of these proteins plays a key role in
facilitating the survival of cardiomyocytes. On the other
side of the coin, cardiac functional decline and failure are
correlated with apparent nucleolar abnormalities, including
reduced AgNORs and enlarged nucleoli. It remains unclear
whether these nucleolar alterations are merely a consequence
of cardiomyopathy, or may contribute actively to the injury
and death of cardiac cells. A deeper understanding of nucleolar
alterations will undoubtedly provide novel insights into the
pathogenesis of cardiac diseases.

Because of the complicated roles of the nucleolus in cardiac
diseases, nucleolar intervention may be a promising strategy to
protect against acute and chronic cardiac injury. Of importance,

current data suggest that acute cardiac injury mostly initiate
rapid upregulation of cardioprotective nucleolar proteins to
facilitate the survival and repair of cardiomyocytes. However,
chronic damage may profoundly impair rRNA transcription and
nucleolar function, probably through impacting the epigenetic
landscape of rDNA. These alterations within the nucleolus are
tightly associated with cardiac aging and functional decline.
We speculate that there are connections between of protein
and epigenetic alterations in the nucleolus, given the fact
that the nucleolus and nucleolar stress play a crucial role in
epigenetic modulation (101). These discoveries suggest that
both proteomic and epigenetic changes are involved in cardiac
disease progression. In other words, intervening strategies
both at protein and epigenetic levels may be beneficial to
the amelioration of cardiac diseases. While upregulating the
expression of nucleolar proteins has been proven to be feasible
approaches, other therapeutic strategies, such as epigenetic
approaches, remain to be developed. Moreover, the activities
of nucleolar proteins, including NS, NPM and NCL, are also
regulated at posttranscriptional levels, providing an additional
option of therapeutic intervention. Taken together, we speculate
that nucleolar intervention is a potential therapeutic strategy
against the progression of cardiac diseases.
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