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Introduction: Machine learning (ML) has gained intensive popularity in various

fields, such as disease diagnosis in healthcare. However, it has limitation for

single algorithm to explore the diagnosing value of dilated cardiomyopathy

(DCM). We aim to develop a novel overall normalized sum weight of multiple-

model MLs to assess the diagnosing value in DCM.

Methods: Gene expression data were selected from previously published

databases (six sets of eligible microarrays, 386 samples) with eligible criteria.

Two sets of microarrays were used as training; the others were studied

in the testing sets (ratio 5:1). Totally, we identified 20 differently expressed

genes (DEGs) between DCM and control individuals (7 upregulated and 13

down-regulated).

Results: We developed six classification ML methods to identify potential

candidate genes based on their overall weights. Three genes, serine proteinase

inhibitor A3 (SERPINA3), frizzled-related proteins (FRPs) 3 (FRZB), and ficolin 3

(FCN3) were finally identified as the receiver operating characteristic (ROC).

Interestingly, we found all three genes correlated considerably with plasma

cells. Importantly, not only in training sets but also testing sets, the areas under

the curve (AUCs) for SERPINA3, FRZB, and FCN3 were greater than 0.88. The

ROC of SERPINA3 was significantly high (0.940 in training and 0.918 in testing

sets), indicating it is a potentially functional gene in DCM. Especially, the

plasma levels in DCM patients of SERPINA3, FCN, and FRZB were significant

compared with healthy control.

Discussion: SERPINA3, FRZB, and FCN3 might be potential diagnosis targets

for DCM,Further verification work could be implemented.
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1. Introduction

Machine learning (ML), composed of various intricate
algorithms, is recently commonly applied to explore potential
biomarkers (e.g., lipidome, metabolome, and transcriptome)
and prognosis (1, 2), especially in variable filtration (3–5). For
example, MLs can recognize patterns better representing
the individual risk compared to classical surgical risk
scores (6). ML includes various types, such as support
vector machine (SVM) (7, 8), random forest (RF) (9),
decision tree (DT) (10–12), and so on. Different ML has
its specialty and shortcoming. For example, least absolute
shrinkage and selection operator (LASSO) processed a
precision matrix of Gaussian variables using an `1-penalty
(13) until small values to zero but eliminated too many
variables. For SVM, separated hyperplanes allow for correct
partitioning and maximize geometric spacing but may be
worse in a small sample size (14) compared with other MLs
(15). Different ML algorithms possess both characteristics
and limitations which cannot be ignored, especially in
the choice of variables. Many researchers (16–18) only
focus on single or two MLs which might ignore their
potential shortcomings. In our previous research (19), five
MLs show different weights even with the same genes.
So just intersecting the top N genes may unconsciously
delete some dominant genes (20–23). And ignoring the
weights of genes may result in an imbalance of filtration
(19, 24).

Dilated cardiomyopathy (DCM), not only the primary
myocardial disease but also the dominant trigger in chronic
heart failure (HF) (25), manifests clinically in systolic
heart insufficiency and dilatation of the left ventricle
(26, 27). Although there are already clinical diagnosis
criteria for DCM, by the time the clinical diagnosis is
clear, most of the patient’s underlying condition is poor
(27). Though drugs (e.g., ivabradine) for HF are used
to treat DCM and improve the prognosis in the short
term (28), the long-term prognosis remains poor (29).
Therefore, early diagnosis with identifying markers of
DCM is necessary. Previous studies had indicated the
diagnosis value of genes (30, 31) (e.g., TBX20 or Gab1)
in DCM but with few microarrays (32), which means a
small sample size and non-universality. Thus, developing a
predictive model for DCM genetic diagnosis with multiple
microarrays is necessary.

In this study, we identified potential transcriptomic
information regarding DCM diagnosis with the overall weights
in MLs of multiple microarrays. Furthermore, we further
developed an immune correlation analysis between diagnosis
genes and immune cells. Finally, DCM patients and healthy
control were recruited for validation of related proteins of genes.
The process of the following analysis (Figure 1) was shown in
the flow chart.

2. Materials and methods

2.1. Data acquisition

We derived the transcriptome information of DCM from
Gene Expression Omnibus (GEO). According to the following
criteria, the primary data were derived with the keyword of
“DCM”: (1) inclusion criteria (i) sample of the left ventricle with
a diagnosis of DCM patients; (ii) transcriptome; (iii) primary
data was free and accessible. (2) exclusion criteria (i) suspected
carcinoma, ischemic cardiomyopathy, heart valve disease, and
other diseases; (ii) intervention(s) in DCM patients.

2.2. Data processing

Firstly, the sva R package (version 3.36) was applied to
eliminate branch effects and quantile normalization with the
specific function of ComBat. Secondly, we divide all microarrays
into training or testing sets with a ratio of 5:1 (33). Briefly, the
training set for developing the potential diagnosis value, and
the testing for verifying the results. Thirdly, we identify the
differentially expressed genes (DEGs). The functional analysis
of DEGs was applied through the Kyoto Encyclopedia of Genes
and Genomes Gene Set Enrichment Analysis (KEGG-GSEA),
Gene Ontology (GO), and Disease Ontology (DO) enrichment
based on three packages, DOSE (version 3.22.1), clusterProfiler
(version 4.4.4), and enrichplot (version 1.16.2). The GO consist
of three parts, molecular function (MF), biological process
(BP), and cellular components (CCs). Moreover, six MLs
algorithms were applied to the classification model and filtered
the candidate diagnosis genes. As for the testing group, we
identify the diagnosis value of potential candidate genes. Lastly,
the immune correlation between the above genes was developed.

2.3. Searching for DEGs

The R package, limma (version 3.52.4), was adopted to
average the same gene expression with the function of avereps
and then identify the DEGs. After quantile normalization,
primary data sets were transformed into log2. P-value was
adjusted to the false discovery rate based on Benjamini and
Hochberg method. Two thresholds were set, the absolute value of
fold change (|logFC|) > 1, and the false discovery rate < 0.001.
With the DEGs, the heatmap and volcano plot were applied with
the pheatmap (version 1.0.12) and ggplot2 (version 3.3.6).

2.4. Classification models with six MLs

Based on the above DEGs, we further developed
classification models with six MLs algorithms, SVM, LASSO,
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FIGURE 1

Flow chart of this study.

RF, gradient boosting machine (GBM), DT, and neural network
(NN) to assess the classification value. Briefly, we constructed
the six MLs classification models with optimized parameters in
the training sets, and the testing was adopted for the validation
of the six MLs. All ML models are cross-validated 10-fold to
ensure stability. The accuracy value was adopted to estimate
the value for six MLs and greater accuracy indicates the better
classification value of the model.

The first ML (LASSO) was developed with the glmnet
(version 4.1-4) R package. The function cv.glmnet was applied
to optimize the value of lambda. For basic parameters, the
following settings were the scale of lambda between 0 and 2,000
with one step size, the family of “binomial,” and the type measure
of “class.” With the min lambda, the function glmnet was applied
to the LASSO model in training sets with alpha (equal to 1) and
a family of “binomial.”

The second ML (SVM) was adopted with e1071 R package
(version 1.7-11). The function tune.svm was utilized to optimize
the settings parameter. For basic parameters, the following
settings were the kernel of “linear,” and the cost between 1 and
20. With the best number of support vectors, the classification
model was built.

The third ML (DT) was finished with two R packages,
rpart (version 4.1.16) and rpart.plot (version 3.1.1). The rpart
function was applied to the model with the method of “class,” cp
value of 0.00001.

The fourth ML (RF) was adopted with randomForest
(version 4.7-1.1). In randomForest, the tuneRF was served to
optimize 500 trees and 1 step size. With the optimal trees
for min error rate, the classification model of training sets
was accomplished.

The fifth ML (NN) was developed with neuralnet R package
(version 1.44.2). In neuralnet, the neuralnet was served with
five layers (containing an input layer, an output layer, and three
hidden layers), the err.fct of “sse,” and the output of linear.

The last ML, GBM, was different from the above five
algorithms with more steps and prone to making. The GMB was
accomplished with h2o (version 3.38.0.1). Only JAVA operating
environment that the h2o can process the classification model.
Thereby, we had to timely download and installed java
development kit (JDK). Necessary for running memory with
h2o.init in GBM and we adjusted the model memory of GBM
to 16G. Due to the h2o data type being indispensable for GBM,
we transform the data format with as.h2o in both the training
set and testing set. Finally, h2o.gbm was applied to tune the
parameters and model (we set the distribution of “bernoulli,” 200
trees, 0.001 for a learning rate, 0.9 for a sample rate).

Importantly, based on the above weights of six MLs for
DEGs, we calculated the normalized six MLs weights of DEGs
as the function in R: Overall weights = abs(LASSO)

abs(LASSOmax)
+

abs(SVM)
abs(SVMmax)

+
abs(RF)

abs(RFmax)
+

abs(DT)
abs(DTmax)

+
abs(GBM)

abs(GBMmax)
+
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abs(NN)
abs(NNmax)

. For example, if the weight of glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) in six MLs was 15, −11,
10, −1, 160, and −4. And the max weights of absolute value
in the above model were 30, 44, 40, 4, 320, and 8, respectively.
The overall weight of GAPDH was |15| /30 + |−11| /44 + |10|
/40 + |−1| /4 + |160| /320 + |−4| /8 = 2.25. Then, we filter the
candidate genes for ROC (pROC, version 1.18.0) and immune
correlation (CIBERSORT function) with overall weights > 1.
Area under the curve (AUC) was calculated to judge the
diagnosis value between control and DCM individuals.

2.5. Access to clinical samples

The trial complied with the Declaration of Helsinki and
was approved by the Ethics Committees of the participating
hospitals. All DCM patients and healthy volunteers provided
written informed consent from September 20, 2022 to October
31, 2022. Ethics Committee/Institutional Review Board: Ethics
Review Committee Jinghai District Hospital, Plan 11. Diary
number: JHYYLL-2022-0307.

Briefly, according to the Chinese guidance (27), the
inclusion criteria of DCM contain three parts, (1) left ventricular
end-diastolic diameter > 5.0 cm (women) or > 5.5 cm (men);
(2) left ventricular ejection fraction < 45%, left ventricular
fractional shortening < 25%; (3) no other heart-related diseases
and >20 years old. Blood samples were collected in ethylene
diamine tetraacetic acid (EDTA)-containing tubes after a 10-
h overnight fast and centrifuged at 4◦C, 3,000 g for 10 min,
then plasma was stored at −80◦C. All the plasma levels
of SERPINA3, FCN3, and FRZB were measured by ELISA
kits (SERPINA3 Human ELISA Kit, Abcam, Cambridge, UK;
Hycult Biotechnology, Uden, The Netherlands; R&D Systems,
Minneapolis, MN, USA, respectively).

2.6. Statistical analysis

All the statistical analyses were processed by R software
(version 4.1.1). CIBERSORT was adopted for immune
correlation analysis. We estimate the immune correlates of
22 immune cells and visualization in the corrplot R package
(version 0.92). For continuous variables, the independent
Student’s t-test was adopted if the variables met Gaussian
distribution, if not, the Wilcoxon test was used. A two-sided
p-value < 0.05 was considered to be significant.

3. Results

3.1. Incorporation of microarrays

Among six microarrays (Table 1) (386 sample sizes) were
finally obtained, including GSE5406, GSE57338, GSE1145,

GSE1869, GSE3585, and GSE42955. According to the random
ratio of 5:1, the training set was integrated with two microarrays
(168 DCM and 152 healthy control), including GSE5406 and
GSE57338. At the same time, the testing set was integrated
with four (39 DCM and 27 control), composed of GSE1145,
GSE1869, GSE3585, and GSE42955.

3.2. Searching for DEGs

Among 20 DEGs with biological significance
(Supplementary Table 1) from 12,937 RNAs were identified
in the training sets. Compared to the healthy control, 13 genes
down-regulated (SERPINA3, PLA2G2A, IL1RL1, CD163,
SERPINE1, FCN3, CYP4B1, LYVE1, S100A8, SLCO4A1,
MYOT, ANKRD2, and VSIG4) and 7 genes up-regulated
(MXRA5, FRZB, HBB, LUM, SFRP4, NPPA, and ASPN) in the
DCM individuals (Figure 2).

3.3. Functional enrichment analysis

Based on the above DEGs, we identified 21 GSEA terms
(Supplementary Table 2) and show the top 5 (Figures 3A, B),
102 GO terms (Supplementary Table 3) and show the
top 4 (Figure 3C), 68 DO terms (Supplementary Table 4)
and show the top 10 (Figure 3D). Among GSEA-KEGG
enrichments, the top 3 presented significance in Type I
diabetes mellitus, graft versus host disease, and allograft
rejection. Regarding the GO terms in BP, the top 3 presented
significant enrichments in the cellular zinc ion homeostasis,
positive regulation of inflammatory response, and zinc ion
homeostasis. In terms of DO, the top 3 diseases presented
were atherosclerosis, arteriosclerotic cardiovascular disease, and
arteriosclerosis.

3.4. Six MLs algorithms for
classification model and candidate
genes

Six classification models of MLs were successfully
established (Figure 4), and we calculated the accuracy (Table 2)
of both training sets and testing sets. In LASSO (Figure 4A), we
filtered nine candidate genes. Disappointed, LASSO’s accuracy
of the two sets were only 52.5 and 59.09%. In SVM, 19 genes
were identified (Figure 4B), and the accuracies of the two
sets were unstable, 90.94 and 51.52%. In RF (Figure 4C),
the error rate of the classification model decreases as the
number of trees increases, until 234 trees the error rate is
minimized and smoothed. Surprisingly, the accuracy of the
two sets was 100%. In DT (Figure 4D), thresholds of 7.2 in
SERPINA3 can discriminate the health and DCM, but the
accuracies of the two sets were also unstable like SVM, 93.75
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TABLE 1 Basic information on the six microarrays.

ID Public time Institution Country

GSE5406 September 04, 2006 University of Pennsylvania School of Medicine USA

GSE57338 January 01, 2015 Perelman School of Medicine at the University of Pennsylvania USA

GSE1145 March 24, 2004 Harvard University USA

GSE1869 October 26, 2004 Johns Hopkins Medical Institutions USA

GSE3585 August 01, 2006 German Cancer Research Center and National Center of Tumor Diseases Germany

GSE42955 October 17, 2013 Health Research Institute of the Hospital La Fe Spain

FIGURE 2

The heatmap and volcano plot of 20 differently expressed genes (DEGs) in dilated cardiomyopathy (DCM) and healthy. (A) The heatmap of 20
DEGs; (B) the volcano plot of 20 DEGs.

and 53.03%. In GBM (Figure 4E), we developed six folds
models to explore the candidate genes, but the accuracies of
the two sets were also unstable, 96.03 and 53.03%. In NN
(Figure 4F), enough in three hidden layers to discriminate the
health and DCM, and the accuracies of both sets were 100%.
Among all those models, the most important genes with the
primary weights were identified (Supplementary Table 5).
In the six MLs, both the RF and NN show the optimal and
stable classification value. The accuracy of both MLs was 100%.
Furthermore, the summation (Table 3) of normalized weights
(dividing the absolute value by max weights) was calculated
to screen the diagnosis genes. And nine genes (SERPINA3,
CD163, FCN3, LYVE1, SLCO4A1, LUM, FRZB, PLA2G2A, and
SFRP4) talent showing themselves with overall weights > 1
(Table 3).

Based on the summed normalized weights > 1, nine
candidates genes were chosen for diagnosis in DCM and healthy
individuals. Next, we validate the nine candidate genes in the
testing set, and except for SLCO4A1, the other eight show
significance (Figure 5).

3.5. Evaluation of the diagnosis value

Eight genes (just mentioned above) were taken into the ROC
curve (Supplementary Figures 1, 2). AUC values of SERPINA3,
FCN3, LUM, FRZB, PLA2G2A, and SFRP4 were higher than 0.8
in both two sets. Moreover, three genes SERPINA3, FCN3, and
FRZB were higher than 0.88 (Figure 6) in the training sets and
even >0.9 in the testing sets. Especially, SERPINA3 was higher
than 0.9 in both sets. In a word, three genes, SERPINA3, FCN3,
and FRZB may be the potential diagnosis genes compared with
DCM and healthy control.

3.6. Immune correlation

The immune correlation between signal genes and 22
immune cells was applied to all 386 samples of six microarrays
(Supplementary Figure 3). SERPINA3 (Figure 7A) shows
significant correlations in Monocytes, T cells CD8, and Plasma
cells. Regarding FRZB (Figure 7B), the T cells CD4 memory
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FIGURE 3

Functional enrichment analysis in gene set enrichment analysis-kyoto encyclopedia of genes and genomes (GSEA-KEGG), gene ontology (GO),
and disease ontology (DO). (A) The GSEA-KEGG enrichment in control; (B) the GSEA-KEGG enrichment in DCM; (C) the GO enrichment term;
and (D) the DO enrichment term.

resting, plasma cells, monocytes, and T cells regulatory (Tregs)
show significant correlations. In FCN3 (Figure 7C), the mast
cells activated, macrophages M0, and plasma cells show
significant correlations. These three genes show a typical
significant immune cell, plasma cells. All three genes were
correlated with plasma cells.

3.7. Differences in plasma proteins

Finally, 24 individuals (12 healthy controls and 12 DCM
patients) were recruited. We measured the plasma levels
(Figure 8) of SERPINA3, FRZB, and FCN3. The plasma levels
of SERPINA3 in DCM patients (397.17 ± 49.22 µg/ml)
were higher (P < 0.001) than in healthy individuals
(221.25 ± 14.15 µg/ml). Similarly, the plasma levels of

FRZB in DCM patients (2,042.75 ± 292.62 pg/ml) were higher
(P < 0.001) than in healthy individuals (784.58 ± 55.85 pg/ml).
In FCN3, the plasma levels in DCM (13.67 ± 2.69 µg/ml) were
lower than in the healthy control (20.92 ± 1.38 µg/ml). More
importantly, all of the protein levels of these three genes were
significant in DCMs compared with healthy controls.

4. Discussion

To our knowledge, this is the first work with normalized
overall weights to filter candidate genes in DCM. Three
genes, SERPINA3, FRZB, and FCN3 show the AUC values
in the training set (0.940, 0.889, and 0.887, respectively) and
testing set (0.918, 0.911, and 0.901, respectively). In plasma
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FIGURE 4

The six MLs classification models built with 20 differently expressed genes (DEGs). (A) Least absolute shrinkage and selection operator (LASSO)
for 9 candidate genes; (B) support vector machine (SVM) for 19 candidates DEGs; (C) the error rate of the random forest (RF) classification
model with increasing trees; (D) the decision tree (DT) for classification of control and dilated cardiomyopathy (DCM) individuals; (E) multiple
gradient boosting machine (GBM) classification models of control and DCM individuals; (F) neural network (NN) for classification of control and
DCM individuals.
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TABLE 2 The accuracy of six classification machine learnings (MLs) in
the training and testing sets.

MLs Training set (%) Testing set (%)

SVM 90.94 51.52

LASSO 52.5 59.09

RF 100 100

NN 100 100

GBM 96.03 53.03

DT 93.75 53.03

protein, SERPINA3, FRZB, and FCN3 in DCM were significant
compared with the control.

MLs have been extensively performed in four types of
analysis, filtration of variables, classification, congression, and
cluster. In bioinformatics, many studies take only one or two
MLs, such as WGCNA (34), LASSO, and SVM. Nevertheless,
a single ML might ignore the dominant variables. In our work
(Table 1), the FCN3 will be missed if just take the intersection
of LASSO and SVM like the previous study (35). Various MLs
showed their advantages. For instance, SVM and NN show their
talents in the diagnosis of pigmented skin lesions (36). And in
the pre-operative prediction of postsurgical mortality (37), GBM
was the most MLs compared with DT, RF, and SVM. In our

work, both RF and NN show their talent discrimination value
in both training and testing sets with an accuracy of 100%. The
normalized weights may be different even in the same variable
(Table 1) in various MLs. So our work takes the sum of the
normalized weights of different MLs into the following diagnosis
value. Three tRNA, SERPINA3, FRZB, and FCN3, were filtered
with a potential diagnosis of DCM. Furthermore, our method
finds two potential diagnosis genes (FRZB and FCN3) in DCM
that have never been reported before. Compared with previous
studies, SERPIAN3 presented the diagnosis value (38) in HF,
and this work expanded its scale into DCM with the same
point as Asakura and Kitakaze (39). Furthermore, Yang et al.
(40) emphasizes the therapeutic value of FRZB, and our study
expands its treatment potential to diagnosis value. Regarding
FCN3, though studies pay attention to the diagnosis value for
HF (41), no study reports the diagnosis value for DCM to our
knowledge.

Serine proteinase inhibitor A3 (SERPINA3), also known
as alpha-1 antichymotrypsin, has been shown to promote
the development of cancer (42) and cardiac remodeling in
patients with HF. In HF, though Delrue et al. (43) had
confirmed that SERPINA3 is still an independent predictor
of all-cause mortality, studies have paid little attention to the
effect of pharmacological treatment of DCM. Spironolactone
(44–47) dominates an important treated role in DCM. The

TABLE 3 The summed normalized weights of 20 differently expressed genes (DEGs) in six classifications machine learnings (MLs).

Genes LASSO RF NN GBM DT SVM Sum (weights)

SERPINA3 1 1 0.73 1 1 1 5.73

CD163 0 0.37 1 0.19 0.81 0.08 2.45

FCN3 0 0.32 0.91 0.01 0.73 0.08 2.05

LYVE1 0.07 0.41 0.51 0.03 0.72 0.16 1.91

SLCO4A1 0 0.41 0.22 0.14 0.77 0.08 1.61

LUM 0.31 0.28 0.65 0.02 0 0.07 1.33

FRZB 0.18 0.35 0.25 0.09 0 0.27 1.13

PLA2G2A 0 0.21 0.1 0.02 0.73 0.04 1.09

SFRP4 0 0.15 0.83 0.02 0 0.06 1.06

NPPA 0.11 0.18 0.36 0.06 0 0.1 0.8

MYOT 0 0.11 0.64 0.01 0 0.03 0.79

ASPN 0.09 0.27 0.27 0.02 0 0.08 0.74

ANKRD2 0.27 0.18 0.09 0.07 0 0.1 0.7

MXRA5 0 0.07 0.46 0 0 0.02 0.55

HBB 0.1 0.11 0.3 0.02 0 0.03 0.55

IL1RL1 0 0.29 0.08 0.01 0 0.07 0.46

S100A8 0 0.07 0.34 0 0 0.04 0.46

CYP4B1 0.06 0.16 0.11 0.02 0 0.05 0.39

VSIG4 0 0.16 0.05 0 0 0.02 0.24

SERPINE1 0 0.08 0.08 0 0 0.02 0.18

Frontiers in Cardiovascular Medicine 08 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1044443
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-1044443 January 4, 2023 Time: 14:26 # 9

Zhang et al. 10.3389/fcvm.2022.1044443

FIGURE 5

The comparison of the 8 genes between dilated cardiomyopathy (DCM) and healthy in testing sets.

previous study identified that spironolactone and lisinopril
can downregulate SERPINA3 and treat mice with Duchenne
muscular dystrophy, which suggests that SERPINA3 may
be related to the salt corticosteroid receptor (48). Another
study (49) came to a similar conclusion, SERPINA3 was
both upregulated in vivo (mice of mineralocorticoid receptor
cardiac upregulation) and in vitro (H9C2 cells with aldosterone
24 h). The above studies indicated that the up-regulated of
SERPINA3 might be correlated with the mineralocorticoid
receptor. However, few studies pay attention to DCM to our
knowledge. And this work emphasizes the important role of
SERPINA3 in DCM.

FRZB, sFRP3 also named, is one of a frizzled-related proteins
(FRPs) family (the other three were sFRP-1, sFRP-2, and sFRP-
4). The sFRP-3 and 4, can modulate apoptosis susceptibility in
ventricular myocytes (50). However, though a previous study
indicated that FRP contributed to the pathogenesis of DCM
by down-regulated Wnt/β-catenin signaling pathway (51), no
description of which of the four subtypes is associated. In
DCM children (52), the serum circulating sFRP1 will trigger
ventricular remodeling and cardiomyocyte fibrosis. And sFRP-
1 knockout mice (53) indicated an abnormal cardiac structure
present with increasing age. And the sFRP2 can prevent the
conversion of inflammatory precursor components and the
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FIGURE 6

The receiver operating characteristic (ROC) of SERPINA3, FRZB, and FCN3 between the control and dilated cardiomyopathy (DCM) groups.
(A,C,E) The ROC of SERPINA3, FRZB, and FCN3 in the Training set; (B,D,F) the ROC of SERPINA3, FRZB, and FCN3 in the testing set.

transformation of cardiomyocytes to pathogenic myofibroblasts
(54) in DCM. However, no studies emphasized the function
of FRZB in DCM, especially in plasma circulation. And our

work first reported the diagnosis value of RZB in DCM.
Furthermore, this work identified the significant upregulation
of the circulation of FRZB protein in DCM.
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FIGURE 7

The immune correlation between diagnosis genes and immune cells. (A–C) The lollipop map and linear regression map in SERPINA3, FRAB, and
FCN3.

FCN3, ficolin 3, was the most effective activator of the lectin
pathway of complement (55) and more focus in rheumatic heart
disease (56, 57). The FCN3 is inversely associated with the

severity of HF (58). Furthermore, lower FCN3 is associated with
the severity and outcome of HF (59). In congenital heart disease
(60), the protein of FCN3 may prolong bleeding time and
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FIGURE 8

The plasma levels of SERPINA3, FRZB, and FCN3 in dilated cardiomyopathy (DCM) patients and healthy controls. ***Mean P < 0.001.

increase susceptibility to lung infection in the Fallot. However,
few studies contribute to DCM. And our work first reported
the diagnosis value of FCN3 in DCM. Furthermore, this work
identified the significant downregulation of the circulation
FCN3 protein in DCM.

Some limitations exist in our work. At first, inadequate
validation is a common limitation in bioinformatics research.
To decrease inadequate validation, three methods were taken,
increase the sample size, developed the testing sets, and add
little sample size clinical validation. However, additional studies
should be conducted to validate, including but not limited
to large sample size clinical trials or animal experiments for
reliable verification of our predicted results. Secondly, MLs
models exists some inevitable limitations, such as black box
phenomenon (61), especially in NN (62) which contains various
layers (e.g., an input layer, an output layer, and several hidden
layers). Finally, few clinical features can be obtained, such as
the age (63) or race (64) of the patient, which might trigger the
bias of the result. In summary, further subgroup analyses are
expected to assess more valuable conclusions in future works.

5. Conclusion

The overall weights methods for the filtration of genes in
six MLs were developed, and we successfully found validation
of three diagnosis genes, SERPINA3, FRZB, and FCN3. Further
verification work could be implemented.
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