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Diabetic heart disease is a major healthcare problem. Patients with diabetes

show an excess of death from cardiovascular causes, twice as high as the

general population and those with diabetes type 1 and longer duration of the

disease present with more severe cardiovascular complications. Premature

coronary artery disease and heart failure are leading causes of morbidity

and reduced life expectancy. Multimodality cardiac imaging, including

echocardiography, cardiac computed tomography, nuclear medicine, and

cardiac magnetic resonance play crucial role in the diagnosis and

management of different pathologies included in the definition of diabetic

heart disease. In this review we summarise the utility of multi-modality

cardiac imaging in characterising ischaemic and non-ischaemic causes of

diabetic heart disease and give an overview of the current clinical practice.

We also describe emerging imaging techniques enabling early detection of

coronary artery inflammation and the non-invasive characterisation of the

atherosclerotic plaque disease. Furthermore, we discuss the role of MRI-

derived techniques in studying altered myocardial metabolism linking diabetes

with the development of diabetic cardiomyopathy. Finally, we discuss recent

data regarding the use of artificial intelligence applied to large imaging

databases and how those efforts can be utilised in the future in screening of

patients with diabetes for early signs of disease.

KEYWORDS

diabetic heart disease, diabetic cardiomyopathy, heart failure reduced ejection
fraction (HFrEF), heart failure preserved ejection fraction (HFpEF), echocardiography,
CT coronary angiography, cardiac magnetic resonance (CMR), MRI spectroscopy

Frontiers in Cardiovascular Medicine 01 frontiersin.org

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2022.1043711
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2022.1043711&domain=pdf&date_stamp=2022-11-03
https://doi.org/10.3389/fcvm.2022.1043711
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2022.1043711/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-1043711 November 2, 2022 Time: 7:31 # 2

Wamil et al. 10.3389/fcvm.2022.1043711

Introduction

World Health Organisation estimates that there are 422
million people living with diabetes mellitus worldwide and
1.5 million deaths are attributed to diabetes annually (1).
Patients with diabetes are 2–3 times more likely to have
heart disease and 84% of people over 65 with diabetes die
from heart disease and stroke. Diabetes is associated with a
significant shortening of life. On average, a 50-year-old with
diabetes but no history of vascular disease dies approximately
6 years younger than a counterpart without diabetes (2).
Early detection of the effect of diabetes on the cardiovascular
system could improve preventive measures and initiation of
treatments with proven cardiovascular benefit. In this review, we
describe the roles of multimodality cardiac imaging in detecting
the impact of diabetes on the myocardium and its use for
longitudinal follow up.

Definition of diabetic heart disease

Global prevalence of diabetes mellitus has been increasing
rapidly over the last decade. This has given rise to the worldwide
epidemic of diabetic cardiomyopathy, a condition covering the
spectrum of myocardial abnormalities linked to the underlying
metabolic disturbances observed in patients with diabetes in
the absence of coronary artery disease. Numerous studies have
explored pathophysiological mechanisms underlying changes
in the cardiac structure and resulting function leading
to the development of heart failure because of diabetes.
In type 1 diabetes as compared to type 2 diabetes, the
cardiovascular mortality remains similar, however, the impact
of hyperglycaemia on the risk of development of heart disease
is more pronounced in type 1 diabetes (3). The aetiology of so-
called diabetic cardiomyopathy remains unknown but is likely
multifactorial and therefore more difficult to characterise by a
single modality. Multi-modality imaging is particularly useful in
monitoring disease progression and evaluating the effectiveness
of medical interventions. It remains debatable if cardiac imaging
could be also used to screen asymptomatic patients with diabetes
for the presence for early signs of heart disease.

Patients with diabetes, however, often present with
accelerated atherosclerosis, which may lead to the development
of ischaemic heart disease and subsequently heart failure
reduced ejection fraction. Thus, it is frequently not possible
to decipher the contribution of ischaemic and non-ischaemic
factors to the development of diabetic heart failure.

The risk of coronary artery disease in
diabetes

Diabetes is associated with at least 2-fold increased risk of
coronary artery disease and for many years has been regarded

as ‘coronary risk equivalent’ (4). More recently, in recognition
of the heterogeneity of patients with diabetes, clinical guidelines
have suggested that further risk stratification is warranted when
treatment decisions are considered (5, 6). Patients with diabetes
and cardiovascular disease (CVD) or diabetes with target organ
damage and those with three or more risk factors, as well
as with the duration of diabetes more than 20 years are at
very high risk (6). Most other subgroups are at moderate risk
of developing coronary artery disease (CAD). In a systemic
review and meta-analysis patient with diabetes without previous
myocardial infarction (MI) had 43% lower risk of CAD than
those without diabetes with established history of CAD (7).

Multi-modality approach to imaging
diabetic heart disease

Multimodality cardiac imaging, including
echocardiography, cardiac computed tomography (CCT),
cardiac magnetic resonance (CMR) and nuclear cardiology,
has advanced our understanding and treatment of different
pathologies included in the definition of diabetic heart disease.
Non-invasive assessment of coronary artery disease, structural
heart disease, arrhythmias, and heart failure, guides clinical
management and leads to a significant improvement in patient
outcomes. Multiple imaging modalities are used to detect the
signs of diabetic heart disease and the full assessment frequently
involves more than one type of scan.

There has been also an increased interest in using hybrid
and fusion modalities combining two imaging techniques
within one scan and incorporating machine learning into the
analysis of images with the goal to improve earlier detection of
metabolic and structural abnormalities which could lead to an
improvement in long-term clinical outcomes.

The role of echocardiography in
the diagnosis of diabetic
cardiomyopathy

Echocardiography plays an important role in the detection
of subclinical dysfunction. Left ventricular dysfunction in
patients with diabetes can have various presentations including
predominantly systolic, diastolic, or mixed phenotypes
(Table 1). Therefore, cardiac imaging should not only detect
those abnormalities but also characterise the pathogenesis and
offer deep phenotyping.

Echocardiography is often the first-line evaluation of
cardiac structure and function given its high temporal and
spatial resolution, safety, availability, and cost-effectiveness.
Left ventricular volumes and ejection fraction derived from
3D echocardiography has shown accuracy and reproducibility
comparable to cardiac MRI (8). Advancements in image-
based analysis of local myocardial deformation, including
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TABLE 1 Summary of studies assessing the role of echocardiography in the diagnosis of diabetic cardiomyopathy.

Authors Year Country Age range
(years)

Number of
cases

Gender Main findings Relevant echocardiography
parameters

Kwong et al.
(73)

China 40–71 58 M and F LV dyssynchrony and reduced myocardial
perfusion in T2DM patients by RT-3DE
and MCE assessment.

RT-3DE, MCE, MP, 3D EDV, 3D ESV, 3D
EF, mechanical dyssynchrony assessment.

Schelbert
et al. (74)

China 45–65 327 M and F Myocardial perfusion abnormalities were
identified in asymptomatic T2DM
patients by MCE analysis.

MCE, IVST, PWT, IVSd, LVIDd, LVPWd,
LVEF, transmitral inflow velocities, E/A
ratio, DT, IVRT, LAVI.

Weber et al.
(14)

Brazil 20–50 40 M and F Reduced echocardiographic indices of
diastolic function in T1DM patients noted
compared to the control group.

LV GLS, biplane EF, IVSd, LVIDd,
LVPWd, LVMI, Transmitral inflow E and
A velocities, E/A ratio, DT, IVRT, TDI
septal E’ and lateral e’ vel, Average
E/e’ratio, LAVI. TAPSE, RV S’, RV GLS,
RV FAC.

Rorth et al.
(22)

Denmark 18–71 960 M and F E/e’ were associated with increased risk of
MACE and all-cause mortality in patients
with T1DM.

LV GLS, LVEF, IVSd, LVIDd, LVPWd,
LVMI, transmitral inflow E and A
velocities, E/A ratio, TDI septal E’ and
lateral e’ vel, average E/e’ratio, LAVI.

Ng et al. (75) Denmark 39–60 1,093 M and F Association between E/e’ and MACE in
individuals with T1DM and without
known heart disease.

LV GLS, LVEF, transmitral inflow E vel,
TDI septal E’ and lateral e’ vel, average
E/e’ratio.

Jellis et al.
(76)

Egypt 34–71 60 M and F Early detection and evaluation of systolic
and diastolic dysfunction in T2DM, is
superior when using strain and SR by TDI,
compared with conventional doppler
analysis.

LV longitudinal strain and strain rate
derived from tissue doppler imaging.

Khan et al.
(77)

Australia >65 >150,000 M and F LVH, diastolic dysfunction, fibrosis,
reduced cardiac functional is observed in
patients with diabetic cardiomyopathy.

LV GLS, LV GCS, LVM, LVM index to
height, RWT, IVSd, LVIDd, LVPWd LVEF,
transmitral inflow E and A vel, E/A ratio,
TDI septal E’ and lateral e’ vel, Lat
E/e’ratio, septal E/e’ ratio, average
E/e’ratio, TDI septal and lateral S’, CFVR,
LAVI, Svi.

Jorgensen
et al. (21)

Denmark 57–74 933 M and F E/e’ and GLS are echocardiographic
T2DM gender specific parameters.

LV GLS, LV GLS rate, LV GCS, LV GCS
rate, LVEF, IVSd, LVIDd, LVPWd, LVMI,
transmitral inflow E and A velocities, E/A
ratio, TDI septal E’ and lateral e’ vel,
average E/e’ratio, LAVI.

Levelt et al.
(78)

Iraq 35–47 151 M and F There is a direct relationship between
pre-clinical and clinical diastolic
dysfunction and duration of diabetes.

Transmitral inflow E and A velocities, E/A
ratio, TDI septal E’ and lateral e’ vel, Lat
E/e’ ratio, average E/e’ratio, LAVI, TRPV.

Kristensen
et al. (12)

Denmark 60–79 745 M and F E/e’ ratio, transmitral doppler E-wave
velocity, left ventricular mass and left
atrial area were higher in patients with
diabetes mellitus.

LVM, LVEDV, LVESV, IVSd, LVIDd,
LVPWd LVEF, transmitral inflow E and A
velocities, E/A ratio, TDI septal E’ and
lateral e’ vel, Lat E/e’ ratio, average
E/e’ratio, LAVI, LA area.

Rijzewijk
et al. (79)

France 48–68 842 M and F Association of echocardiographic
variables with 3 different T2DM
phenotypes.

LVMi, LVEDV, LVEDV index, LVESV
index, IVSd, LVIDd, LVPWd LVEF,
transmitral inflow E and A velocities, E/A
ratio, TDI septal E’ and lateral e’ vel, Lat
E/e’ ratio, average E/e’ratio, LAVI, LA area.

Ng et al. (80) Australia – 1,495 M and F Follow-up recommended for patients with
diabetes despite the low MACE rate in
negative stress echocardiograms.

WMA, WMA at peak stress.

Hammer
et al. (81)

Denmark 55–74 1,030 M and F Echocardiographic abnormalities are very
common in patients with T2DM.
Echocardiography assessment should be
considered in most patients regardless of

LVM index to height, LVEDV, LVEDV
index, LVESV index, IVSd, LVIDd,
LVPWd LVEF, transmitral inflow E and A
velocities, E/A ratio, TDI septal E’ and

(Continued)
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TABLE 1 (Continued)

Authors Year Country Age range
(years)

Number of
cases

Gender Main findings Relevant echocardiography
parameters

cardiac symptoms and clinical
characteristics.

lateral e’ vel, Lat E/e’ ratio, average
E/e’ratio, LAVI, RV TAPSE.

Szczepaniak
et al. (82)

Denmark 33–69 1,093 M and F Myocardial function impairment in
T1DM patients can be detected many
years prior to the development of HF.

LV GLS, LVEF, transmitral inflow E vel.
TDI septal e’ and lateral e’ and a’ vel. TDI
e’/a’ and E/e’ratio. TDI Lateral S’ and
Septal S’ vel.

Enomoto
et al. (16)

Japan 36–71 77 M and F Subclinical LV dysfunction defined as
impaired longitudinal shortening is
associated with diabetic microangiopathy
and its accumulated effects.

2D LV GLS, 3D LV GLS, LV GSC, 3D EF,
3D EDV, 3D ESV. LVMI, IVSd, LVIDd,
LVPWd, transmitral inflow E and A
velocities, E/A ratio, TDI septal E’ and
lateral e’ vel, Lat E/e’ ratio.

van der
Meer et al.
(83)

Australia – 230 M and F Subclinical LV dysfunction can be
identified by GLS imaging and is
associated with adverse outcome.

2D LV GLS.

Neubauer
(84)

Italy 50–73 5,456 M and F A normal stress echocardiography result is
associated with a worse outcome for
diabetic patients compared to patients
without diabetes.

Resting WMA, peak WMA, resting
WMSI, peak WMSI.

strain and Doppler tissue imaging, have allowed for the
quantitative assessment of subclinical myocardial dysfunction
and myocardial strain (9–11). Echocardiography plays central
role in the assessment of diastolic dysfunction so prevalent
among people with diabetes and obesity.

Diastolic dysfunction associated with
diabetes

Key parameters assessing diastolic dysfunction and
structural changes have been positively correlated with
progression to clinical heart failure. Structural changes
identified include larger end-systolic and end-diastolic
dimension, greater left ventricular mass in the context of
similar wall thickness and greater left atrial area (12). Several
studies have assessed signs of pre-clinical diastolic dysfunction
in patients with diabetes with consistent results (12–16).
In the I-Preserve trial (Irbesartan in Heart Failure with
Preserved Ejection Fraction) patients with diabetes were
shown to have significant echocardiographic abnormalities
associated with diastolic dysfunction comparing to non-diabetic
counterparts (12). This suggests that the pathogenesis of
diabetic cardiomyopathy at the early stages includes higher
left atrial pressures, increased left ventricular stiffness with
reduced myocardial relaxation and impaired left ventricular
filling. Interestingly, prior to the onset of overt cardiac disease
the degree of diabetic control, microvascular complication
or insulin requirement is not associated with indices of
heart function or reflectivity in type 2 diabetic patients (13).
Noteworthy, the duration of diabetes has been associated with
the progression to left ventricular diastolic dysfunction with

early diastolic impairment noted in the first five years from
diagnosis (13). Conversely, in type 1 diabetic patients, e’ mean
has been identified to correlate with HbA1c values and duration
of DM1 (14).

Hence those echocardiographic features of diastolic
dysfunction as well as left ventricular hypertrophy are often
regarded as early signs that diabetes affected the myocardium
(17). Age, obesity, and hypertension can frequently affect those
parameters of diastolic dysfunction. Obesity frequently coexists
with type 2 diabetes and has an additive detrimental effect
on diastolic function (18). Although diastolic dysfunction
has been linked to such processes as myocardial fibrosis,
myocardial triglyceride accumulation and insulin resistance,
echocardiographic features of diastolic dysfunction have been
also attributable to coronary microvascular dysfunction (19).

Systolic dysfunction in patients with
diabetes

Patients with history of diabetes and significant coronary
artery disease commonly present with heart failure reduced
ejection fraction (HFrEF). Echocardiograms of those patients
may detect regional wall motion abnormalities, alterations in
strain and in the later stage also reduced ejection fraction.
Abnormal global longitudinal strain (GLS) has been described as
an early sign of developing HFrEF in patients with diabetes (13,
20). The clinical implication of these changes has been further
examined with the endpoint of increased admissions secondary
to cardiovascular disease or death related to cardiovascular
disease. Jøgensen et al. found that when assessing a broader
range of patients with diabetes and clinical heart failure, the
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structural and functional changes were associated with higher
risk of progression to the cardiovascular disease (21). LVEF, GLS
and GLS rate, E/e’ ratio was associated with the progression
to heart failure (21). E/e’ ratio in combination with NT-
proBNP levels have been shown to identify patients at highest
risk of cardiovascular disease (22). Another study found that
in the community-based patients with diabetes, screening of
asymptomatic patients without previous history of coronary
artery disease resulted in better long-term outcome although the
result could not be explained by the revascularisation alone (23).

The role of stress echocardiography

Stress echocardiography has been shown to be an accurate
and reliable imaging modality to diagnose coronary artery
disease and predict the long-term outcome in patients with
diabetes (24). Exercise stress echocardiography is often used
to confirm diminished systolic and diastolic functional reserve
in this population (25). Although the negative predictive value
of exercise stress echocardiography for myocardial ischaemia
is reduced in patients with diabetes when compared to the
non-diabetic population, recent analysis using dual-imaging
dipyridamole stress echocardiography combining conventional
wall motion analysis with Doppler-derived coronary flow
velocity reserve (CFVR) of the left anterior descending
coronary artery showed that abnormal findings were strong
and independent predictors of major cardiovascular events in
patients with DM (26).

The role of coronary CT in the
management of coronary artery
disease in people with diabetes

Coronary artery calcium

It has been shown previously that patients with diabetes have
higher burden of plaque disease than those without diabetes (27)
and the extent of CAD in patients with diabetes is comparable
to patients with previous MIs (28). Noteworthy, women with
diabetes have similar extent of CAD to men, which is different
than in the general population (28). Moreover, women with
diabetes are at higher risk of MI then men despite low burden
of CAD. High coronary artery calcium (CAC) score correlates
with a higher number of cardiovascular events and an increased
mortality (29–32). CAC is recognised as a better predictor of
coronary artery events than the Framingham score and the
UKPDS Risk Engine and has been shown to have much higher
annual increase than in patients without diabetes. CAC has been
also shown to be a good biomarker of CAD progression in
people with diabetes (33–36) and therefore has been proposed
for monitoring of asymptomatic patient with diabetes and CAD.

CT coronary angiography

Advancements in the CT technology resulting in a reduction
of the radiation doses increased the popularity of CT coronary
angiography (CTA) in the assessment of CAD in patients with
diabetes (Figure 1). In asymptomatic patients with diabetes, on
average studies reported the prevalence of obstructive coronary
artery disease in 25–30% of patients, any coronary atheroma in
76% and multivessel coronary atheroma in 55% (37–39). In a
cohort of asymptomatic patients with diabetes approximately
17% had multivessel disease and significant lesions in the left
main stem or proximal left anterior descending artery (40).
Moreover, an increased severity of coronary artery disease
was associated with poor prognosis implying an important
prognostic role of CTA in the management of patients
with diabetes. Those results highlighted the role of CTA in
finding high-risk patients even among asymptomatic patients.
The FACTOR-64 (For Asymptomatic Obstructive Coronary
Artery Disease Among High-Risk Diabetic Patients Using CT
Angiography) randomised controlled trial evaluated the utility
of routine CTA screening in patients with diabetes (41). CTA
showed no atheroma in 31%, mild stenosis in 46%, moderate
in 12%, and severe in 11% of patients. Although coronary CTA
screening prompted aggressive risk factor modifications in 70%
of patients, there was no significant reduction in CAD events
in the group randomised to the CTA screening (41). Thus,
CTA is currently not recommended to risk stratify patients with
diabetes (42). An ongoing Computed Tomography Coronary
Angiography for the Prevention of Myocardial Infarction
(SCOT-Heart 2) randomised controlled trial investigates the
role of CTA in a broader primary prevention population
including patients with diabetes.

Myocardial computed tomography perfusion (CTP)
imaging is an emerging CT-based method for detecting
myocardial ischaemia with good accuracy (43) and correlated
with nuclear myocardial perfusion imaging. The combination
of anatomical information from CTA with functional
assessment from CT adenosine-stress perfusion CT increases
significantly the radiation exposure to the patients and therefore
limits its wider use.

FFR-CT is an alternative functional technique, which
combines anatomic and physiologic information in a single
non-invasive test. Patients with diabetes have a high burden
of coronary artery disease and it has been shown that every
sixth asymptomatic patient at the time of the diagnosis
of diabetes has haemodynamically significant plaque disease
as evaluated by FFR-CT (44) (see an example of FFR-CT
assessment in Figure 1). FFR-CT has improved specificity
without impacting on the sensitivity of CTA in detecting
haemodynamic significant coronary artery disease (45). Quality
of image acquisition in CTA has long been established as
important with multiple factors impacting calculation of FFR
(46). Currently only HeartFlow technology is licenced by both
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FIGURE 1

Illustration of corresponding anatomical coronary CTA plaque analysis and functional assessment with FFR-CT in a patient with diabetes.
Reconstructions confirm three vessel disease with diffuse mixed plaque and severe flow limiting stenoses in the distal LAD, distal RCA, and
proximal intermediate branch as per FFR-CT functional analysis. (A) CTA curved multiplanar reconstruction of the left anterior descending artery
(LAD) demonstrating diffuse calcific plaque disease in the proximal segment with mild stenosis and low attenuation plaque in the mid vessel
with severe moderate flow limiting stenosis as per angiographic assessment. (B) CTA curved multiplanar reconstruction of the right coronary
artery (RCA) demonstrating diffuse mixed plaque disease throughout the vessel with most significant stenosis in the mid segment. (C) CTA
curved multiplanar reconstruction of the intermediate artery reconstruction demonstrating diffuse mixed plaque disease with severe stenosis at
the ostium of the vessel. (D) Computational fractional flow reserve (FFR) CT by HeartFlow indicating haemodynamically moderate flow
impairment (FFR-CT of 0.82) across the lesion in the mid segment and severe (FFR-CT of 0.67) in the distal segment of the LAD, severe stenoses
in the proximal intermediate (FFR-CT of 0.65) and distal segment of RCA (FFR-CT of 0.65). (E) Three-dimensional model illustrating the
reconstruction of coronary arteries (Syngovia Siemens software).

the National Institute of Clinical Excellence and the US Food
and Drug Administration for FFR-CT assessment (46, 47). Post-
acquisition image processing occurs following images being
sent to HeartFlow. Thus, producing FFR-CT results takes time
with currently only >50% of images being processed in less
than 5 h, limiting its use in the acute clinical setting. Local
FFR-CT techniques will likely progress over time to improve
streamlining, access, and timeliness of the technology.

European and American societies have recently introduced
the use of CTA in patients with diabetes who present with
a history of chest pain (6, 48). The SCOT-Heart trial, which
recruited 444 patients with diabetes showed a significant
reduction in the risk of cardiovascular mortality and myocardial

infarction with CTA-guided management (49). The Prospective
Multicentre Imaging Study for Evaluation of Chest Pain
(PROMISE) randomised patients to CTA or stress test and
showed that abnormal stress test was more specific for
predicting primary outcome than CTA (50). Noteworthy, in
the CTA arm 84% of events occurred in patients with calcium
score above zero and only 43% of events in the functional
test group. However, in the prespecified sub-analysis of 1908
recruited patients with diabetes, those who underwent CTA
had a lower risk of cardiovascular event comparing to the
stress test arm. The addition of computational fractional flow
reserve may therefore improve even further identification of
haemodynamically significant lesion (51). ISCHEMIA trial
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tested whether patients with moderate or severe ischaemia on
stress test benefit from revascularisation in the setting of optimal
medical therapy. There was no difference in the primary end
point among participants with diabetes (41.8%) highlighting the
importance of the optimal medical therapy (52).

Peri-coronary adipose tissue
attenuation on CT coronary
angiography

Mapping of peri-coronary adipose tissue attenuation
(PCAT) on CTA has been recently proposed as a non-invasive
marker of coronary artery inflammation (53). Several clinical
studies have confirmed that so called fat attenuation index
(FAI) can improve the prediction of coronary events beyond
traditional risk factors and CTA metrics (53, 54). FAI was
first derived from studies demonstrating that inflammatory
markers released from inflamed coronary arteries modify the
composition of perivascular adipose tissue. Those changes can
be detected using a CTA. Thus, using FAI assessment we
can extract additional information from a standard CTA scan
relating to coronary artery inflammation (55). Noteworthy, it
has been demonstrated that lesion-specific FAI enhances the
predictive ability of CTA plaque characterisation for ischaemia
as assessed by invasive coronary angiography (56). When FAI
was added to the CTA stenosis estimation the AUC of such
model was comparable to the one achieved with the invasive
assessment of stenosis severity. The value of PCAT has been
now also assessed as a predictive tool in patients with diabetes
(57). Adding PCAT along with findings of CTA improved
the model fit for predicting cardiovascular events in type 2
diabetes patients and helped to identify patients at a higher
risk independently of the plaque characteristics. PCAT is a
dynamic marker reported to be markedly reduced in response
to anti-inflammatory treatment (58) (Figure 2).

Nuclear medicine as imaging of
choice in managing patients with
diabetes

Stress myocardial perfusion scintigraphy (MPS) is
widely used in patients with and without diabetes to detect
haemodynamically significant coronary artery disease. It has
been reported that in 20–25% of asymptomatic patients with
the diagnosis of diabetes MPS detects ischaemia (59, 60) and in
those patients it is associated with cardiovascular events (61).
Microvascular/endothelial dysfunction is frequently described
in patients with diabetes and can be assessed by quantitative
positron emission tomography (PET). Measurements with
a blood flow radiotracer such as 82Rubidium, 13N-ammonia

FIGURE 2

CT coronary angiography derived Fat Attenuation Index (FAI)
derived from the analysis of Perivascular Adipose Tissue (PVAT)
surrounding coronary arteries detects inflammation and may be
used to guide the management of patients with diabetes and
increased cardiovascular risk. Red-blue colour indicates
inflammation and correlates with high risk of future
cardiovascular events; yellow colour indicates low inflammation
(55). FAI score can be provided for each of the main coronary
arteries and considers FAI weighted for tube voltage, anatomical
factors, and basic demographics. (A) Significantly increased
coronary artery inflammation (FAI score 95th centile).
(B) Follow-up scan after initiation of statin treatment shows
significant reduction in inflammation (FAI score 58th centile).
Panels (A,B) show CPR (top panel) and axial views (bottom
panel).

or 15O-water at rest and after vasodilator-stress enable
calculation of coronary flow reserve (62). Moreover, PET has
been also used to study utilisation of glucose and fatty acids in
31 young women and showed that insulin resistance correlated
with utilisation and oxidation of fatty acids (63). Due to the
complexity of its protocol and the high price, it remains to be
a research tool rather than a technique which could be used to
assess patients.

The role of cardiac magnetic
resonance in the detection of
aberrant myocardial metabolism
and cardiac structure

The cardiac consequences of diabetes on the myocardium
ensue from metabolic and functional alterations. CMR is
a versatile imaging modality (Figure 3) able to describe
both ischaemic and non-ischaemic cardiomyopathies and
detect haemodynamically significant coronary artery disease.
Observational studies described abnormalities in structure and
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function in patients with diabetes (64, 65). Post mortem studies
confirmed distinct ventricular hypertrophy with diffuse fibrotic
strands observed between muscle fibres on histopathology
and identified it as diabetic cardiomyopathy (66). The strong
biological link between diabetes and hypertension and the
phenotypic similarity of left ventricular hypertrophy caused by
both conditions makes it difficult to distinguish (67). Diabetes
was previously described to be associated with left ventricular
concentric remodelling and a modestly increased mass (68).

Although cardiac magnetic resonance is mostly used
to provide information about systolic function of the left
ventricle, it can also characterise diastolic dysfunction
and therefore can offer a holistic approach to the early
detection of myocardial dysfunction associated with diabetes.
Different MRI technique are currently available to evaluate
diastolic function (phase contrast imaging for flow analysis,
myocardial tagging for regional function analysis) allowing
such measurements as longitudinal fractional shortening
used when assessing patient presenting with heart failure
preserved ejection fraction (HFpEF). Strain-encoded (SENC)
(69), displacement encoding with simulated echoes (DENSE)
(70) and MRI feature-tracking (MRI-FT) offer additional
assessment of the regional function (71). Four-dimensional
flow (4D-Flow) MRI is superior to Doppler echocardiography
and offers evaluation of intracardiac velocity. Additionally,
MRI-derived detection of parameters describing left atrial
enlargement and dysfunction have been also shown to
be predictive for identifying diastole dysfunction (72).
Regrettably, those techniques are time-consuming and require
complex post-processing and long image acquisition, what
significantly limit its use.

Myocardial fibrosis

Late gadolinium images confirmed silent myocardial
infarctions in 4.3% of asymptomatic type 1 diabetes patients (65)
and in 17% of older asymptomatic type 2 diabetes patients (73).

The community-based ICELAND-MI study, which showed
that LGE diagnosis of unrecognised myocardial infarction was
associated with a 45% increased mortality (74). Novel tissue
characterisation techniques such as mapping techniques can
demonstrate the degree of interstitial fibrosis observed in
patients with diabetes. Extracellular volume (ECV) fraction, a
measure of interstitial fibrosis linked to diastolic dysfunction,
has been described to be increased in patients with diabetes
(75, 76), however, other clinical studies reported inconsistent
results regarding the presence of interstitial fibrosis in patients
with diabetes (77). Those tissue characteristics by CMR can
describe early signs of diabetic cardiomyopathy with the
presence of interstitial fibrosis and subclinical abnormalities,
which can be also described by tissue tracking images (78). It
remains poorly understood if those changes could represent LV

remodelling caused by the higher prevalence of hypertension in
patients with diabetes.

Altered metabolism imaged by MRI
spectroscopy

MR spectroscopy techniques have been instrumental in
describing an increased myocardial triglyceride content in
patients with diabetes type 2 (79–81). Myocardial triglycerides
can be quantified using hydrogen MRI spectroscopy (1H
MRS) (82) and has been shown to be increased in ageing,
and in patients with diabetes and obesity and is associated
with myocardial dysfunction (79, 83). Noteworthy, weight
loss was able to partially reverse myocardial triglyceride
accumulation in patients with diabetes and therefore improve
left ventricular function (81). Future studies will determine
if novel glucose-lowering therapies will result in reducing
myocardial triglyceride content. Altered myocardial metabolism
has been considered among the potential mechanisms leading
to diabetic heart disease. The energetic state of myocardium can
be measured by phosphorus magnetic resonance spectroscopy
(31P-MRS), which allows non-invasive assessment of relative
concentration of PCr to ATP (PCr/ATP) as a sensitive index
(84). Decreased PCr/ATP has been shown to be a predictor of
mortality and left ventricle dysfunction (85). Such energetic
deficit in diabetic cardiomyopathy is further exacerbated
by exercise and is associated with coronary microvascular
dysfunction (85). More recently, hyperpolarised 13C magnetic
resonance spectroscopy has been shown to non-invasively assess
physiological and pathological changes in cardiac metabolism
in the human heart in health and disease (86). It demonstrated
the emerging potential for hyperpolarised imaging in
assessing mechanisms underpinning the development of
heart failure in diabetes.

Microvascular dysfunction and the role
of stress perfusion MRI

Increased oxidative stress, altered substrate use, and
insufficient myocardial perfusion have been proposed as
the mechanisms underlying myocardial structural and
functional changes observed in the diabetic heart disease.
Patients with type 2 diabetes have higher global myocardial
perfusion at rest and lower maximal myocardial blood flow
during vasodilator-induced stress than control subjects (87).
Adenosine stress MRI has been shown to have a good ability
to detect haemodynamically significant coronary artery
disease in patients with diabetes (88, 89). CMR first-pass
perfusion imaging during vasodilatory stress with adenosine
or regadenoson has been now widely accepted as the first-
choice test for cardiovascular risk stratification of patients
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FIGURE 3

Characterisation of diabetic heart disease with cardiac magnetic resonance including anatomical and functional assessment as well as tissue
characterisation using CVI42 software. (A) Evaluation of LV and RV volumes and function using short axis stuck images. (B) Assessment of left
atrial size. (C) Analysis of longitudinal and (D) circumferential strain. (E) Estimation of epi- and pericardial fat tissue and (F) 17 segments AHA
model representation of average segmental native T1 mapping values. (G) Color map of native T1 mapping. (H) Late gadolinium images show
no evidence of focal fibrosis.

Frontiers in Cardiovascular Medicine 09 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1043711
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-1043711 November 2, 2022 Time: 7:31 # 10

Wamil et al. 10.3389/fcvm.2022.1043711

with diabetes mellitus. The presence of inducible myocardial
ischaemia, defined as at least one positive segment of >1
voxel thickness lasting for at least three heartbeats, was the
strongest predictor of clinical outcome (90). However, this
is usually evaluated with qualitative or semi-quantitative
methods, and it can be inaccurate when myocardial blood
flow is globally reduced (in 3-vessel disease). More recently,
a dual-sequence protocol was developed to produce an in-
line perfusion mapping allowing a pixel-wise quantification of
myocardial blood flow (91). This technique can be used to detect
physiologically significant CAD, microvascular disfunction and
distinguish it from multivessel disease as defined by invasive
measurements (92). In a larger cohort of patients with both
suspected and known coronary artery disease this AI based
approach was shown to be an independent predictor of
adverse cardiovascular outcomes (93). Hence, CMR stress
perfusion is used to detect highly prevalent multivessel CAD
and microvascular angina in patients with diabetes, which is a
result of endothelial dysfunction. Automated methods utilising
deep learning have been shown to provide one-click analysis
and reporting of cardiac perfusion mapping in a manner
comparable to manual assessment (94).

Hybrid cardiac positron emission
tomography/magnetic resonance

Over the last decade we have also observed an increased
interest in hybrid cardiac PET/MR imaging protocols, which
have been incorporated into clinical workflows in many centres.
PET is known for its role in quantification of myocardial
perfusion and coronary flow reserve as well as visualisation
and quantification of metabolic and inflammatory processes
at the molecular level (95). Thus, when added to CMR, a
technique offering a broad range of capabilities, it is regarded
as a promising tool to diagnose and manage metabolic changes
leading to myocardial remodelling in diabetic heart disease.
A loss in metabolic flexibility reflected in an overdependence
on fatty acids as the primary energy source limiting the hearts’
ability to alter substrate metabolism in response to varying
physiological and metabolic conditions has been confirmed
by preclinical and early human studies using PET/MRI
(96). Moving forward a multi-modality imaging protocols
interrelating hybrid imaging techniques may be required to
improve our understanding of complex processes underlying
development of diabetic cardiomyopathy.

Discussion

Although asymptomatic cardiovascular disease is common
in people with diabetes and is associated with adverse outcome,
the role of multimodality cardiac imaging in screening remains

debatable. Large randomised clinical trials testing the value of
using imaging in early detection of diabetic heart disease are
required to introduce such investigations into clinical practice.
The success of novel therapies with proven cardiovascular
benefit should motivate such investigations in future and lead
to the development of clinical guidance utilising various cardiac
imaging modalities in detecting early signs of heart disease in
those patients. Patients with diabetes represent a heterogenous
group and may require clinical assessment with several imaging
modalities in the course of their disease. Figure 4 presents
our proposed sequence of using various imaging modalities in
screening patients with diabetes. However, several requirements
should be met, before a test could be included in a widely
accepted screening programme. Firstly, such a test should have
superior sensitivity and specificity and be able to differentiate
high and low risk patients. Secondly, given high costs of CT and
MRI scans the cost-effectiveness of imaging modality should be
considered against the benefit of detecting a particular outcome.
Thirdly, if screening for early signs of diabetic cardiomyopathy
would be considered, it may need to be undertaken in
individuals with overall higher risk of HF as defined by other
well recognised HF predictors such as more advanced age,
hypertension, and microvascular complications of diabetes. This
approach would emphasise the role of combining imaging
biomarkers with established risk score calculators. We are
observing an increasing use of such risk calculators allowing
estimation of risk scores of cardiovascular outcomes in patients
with diabetes based on their clinical characteristics. UKPDS
Risk Engine (97), QDiabetes (98), WATCH-DM (99) and TRS-
HFDM (100) risk scores are the most frequently cited examples.
The advances in using AI algorithms in image interpretation
is also very promising. For example, an application of AI to
ECG, a routine, widely available, low-cost test has been proved
to identify asymptomatic patients with heart failure (101). One
could predict that AI- enhanced ECG, which is recorded for
each patient with the diagnosis of diabetes could become the first
screening tool. It would allow clustering patients into subgroups
with differing cardiovascular risks and refining identification of
patients requiring appropriate imaging modality to define the
stage of their disease.

From the cost-efficiency point of view, echocardiography
with strain imaging has the highest chance to be considered as a
modality of choice in screening for early signs of diabetic heart
disease. Echocardiography remains the most accessible imaging
modality and with the use of novel parameters can phenotype
various subtypes of heart failure associated with the diagnosis of
diabetes. It is also the most versatile technique able to examine
and quantify the degree of systolic and diastolic function,
provide evidence of regional wall motion abnormalities, assess
signs of left ventricular hypertrophy, detect an increased left
atrial pressure, and describe the presence of rarer types of
inherited and acquired cardiomyopathies.
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FIGURE 4

Suggested strategy of using various techniques and imaging modalities in screening patients with diabetes for signs of diabetic heart disease.
Outline of currently available techniques and imaging modalities allowing characterisation of different stages of the disease with focus on
processes leading to the development of diabetic heart failure.

From the coronary artery point of view, calcium score
remains to be a powerful tool for personalised risk assessment
and decision making. Patients with diabetes and calcium score
of zero have low event rate. Individuals with an increased
calcium score may require further assessment with CTA and/or
functional test to guide a wide range of preventive therapies
and treatment strategies. In symptomatic patients, CTA has a
well-established role and the addition of computational fraction
flow reserve as well as novel imaging markers such as PCAT
may strengthen its role even further. Given the complexity
of mechanisms leading to myocardial involvement in patients
with diabetes and all strengths and weaknesses of each imaging
modality, the role of imaging in screening of asymptomatic
patients with diabetes remains questionable.

The core value of cardiac magnetic resonance lies
in the tissue characterisation, the detection of diffuse

myocardial fibrosis, and an increase myocardial triglyceride
accumulation. MR spectroscopy techniques including novel
hyperpolarised 13C magnetic resonance spectroscopy allow
assessment of altered myocardial metabolism in the diabetic
heart and holds a promise to uncover the link between diabetes
and heart diseases. Noteworthy, MRI provides multiple
metrics assessing multi-organ health within one acquisition,
which is particularly valuable in case of a systemic disease
such as diabetes.

Another way of utilising multi-modality imaging techniques
within clinical screening pathways is to focus on the highest risk
of certain outcome and choose a test, which is most likely to
identify that outcome. For example, in patients with diabetes
who are at high risk of developing coronary artery disease, CTA
will identify patients with obstructive coronary artery disease
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or left main stem disease. Depending on local availability,
stress echocardiography and perfusion scintigraphy or perfusion
CMR could also be considered as first line tests to detect
haemodynamically significant coronary artery disease. On the
other hand, in those patients who have higher risk of heart
failure, ECG and echocardiography will be used as the first line
investigations followed by CMR. Figure 4 outlines the strength
of each imaging modality and proposes most appropriate use of
various techniques.

The growing interest in the use of artificial intelligence in the
field of imaging will certainly produce new insights into such
complex pathophysiology. The rapid increase in the number
of studies confirming superiority of AI algorithms in analysing
imaging data is very encouraging. Most importantly, AI will also
increase standardisation of interpretation and quantification
in imaging. The role of AI has been also confirmed in deep
phenotyping of highly heterogenous cohort of patients with
diabetes, which on its own could personalise the choice of most
appropriate imaging modality in various cohorts of patients.
The myriad of applications of AI is a harbinger of a potential
breakthrough in how we will come to view the utility of various
imaging markers in the early detection of diabetic heart disease
is the not-so-distant future.
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