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Causal association of peripheral
immune cell counts and atrial
fibrillation: A Mendelian
randomization study
Yuntao Feng, Xuebo Liu and Hongwei Tan*

Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China

Background: Atrial fibrillation (AF) is the most common and persistent form of

arrhythmia. Recently, increasing evidence has shown a link between immune

responses and atrial fibrillation. However, whether the immune response is

a cause or consequence of AF remains unknown. We aimed to determine

whether genetically predicted peripheral immunity might have a causal effect

on AF.

Methods: First, we performed Mendelian randomization (MR) analyses using

genetic variants strongly associated with neutrophil, eosinophil, basophil,

lymphocyte, and monocyte cell counts as instrumental variables (IVs).

Lymphocyte counts were then subjected to further subgroup analysis. The

effect of immune cell counts on AF risk was measured using summary

statistics from genome-wide association studies (GWAS).

Results: Two-sample MR analysis revealed that a higher neutrophil count,

basophil count and lymphocyte count had a causal effect on AF [Odds ratio

(OR), 1.06, 95% confidence interval (CI), 1.01–1.10, P = 0.0070; OR, 1.10;

95% CI, 1.04–1.17; P = 0.0015; OR, 0.96; 95% CI, 0.93–0.99; P = 0.0359]. In

addition, in our further analysis, genetically predicted increases in CD4 + T-

cell counts were also associated with an increased risk of AF (OR, 1.04; 95%

CI, 1.0–.09; P = 0.0493).

Conclusion: Our MR analysis provided evidence of a genetically predicted

causal relationship between higher peripheral immune cell counts and AF.

Subgroup analysis revealed the key role of peripheral lymphocytes in AF,

especially the causal relationship between CD4 + T cell count and AF. These

findings are beneficial for future exploration of the mechanism of AF.
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1. Introduction

Atrial fibrillation (AF) is the most common and persistent
form of arrhythmia and one of the most important factors
leading to increased mortality. Approximately 46.3 million
people suffer from AF globally (1). In addition, the burden of AF
is expected to increase by more than 60% over the next 30 years
and become one of the most significant epidemic and public
health challenges (2).

Electrical remodeling, structural remodeling, and
autonomic nerve remodeling are the pathological basis of
AF; the immune system is known to play an important role
in this process (3, 4). Inflammation mediated by immune cells
in the myocardium is known to contribute to AF, thereby
causing a cycle of malignant progression of atrial remodeling,
inducing AF and increasing thrombosis (5). Furthermore,
peripheral immunity is also correlated with AF (6). In order
to uncover the association between white blood cell counts
and AF, a subset of the Framingham Heart Study and a
Norwegian study that followed 936 eligible participants for
up to 5 years found that higher white blood cell (WBC)
counts in peripheral immune cells were associated with an
increased risk of AF (7). In addition, a high neutrophil-
to-lymphocyte ratio (NLR) in peripheral immune cells was
associated with an increased risk of new-onset AF in 21,118
subjects (8).

Although these previous clinical studies have revealed an
association between peripheral immunity and AF, granulocyte
counts in peripheral blood, particularly neutrophils, have
been associated with an increased incidence of other
cardiovascular diseases, such as hypertension, coronary
heart disease and diabetes (9–11). However, the presence
of these common risk factors may have caused bias.
Furthermore, observational analysis may not remove
potential confounders and unmeasured reverse causality
(12). In addition, large-scale randomized clinical trials are
expensive. Mendelian randomization (MR) analysis is a
method that has been mainly used for etiological inference
in epidemiology over recent years. Associations between
exposure-related genetic variants and outcomes can represent
the effect of exposure on outcomes (13). Since genetic
variation is randomly assigned at conception, this effect is
not affected by confounding factors and reverse causality,
thus, providing another method for inferring causality (14).
MR is a tool for analyzing causality between exposure and
outcome using genetic variation as instrumental variants
(IVs) (15).

Therefore, in this study, we selected single nucleotide
polymorphism (SNP) data from large genome-wide association
studies (GWAS) of hematologic traits as instrumental variables
of exposure to assess the causal relationship between WBC
counts and AF through a MR approach.

2. Materials and methods

2.1. Data sources

Peripheral blood cell counts and AF candidate genetic
instruments (SNPs) were selected from previous genome-wide
association studies (GWAS). To prevent pleiotropic bias in
cross-lineage cases (16), all individuals in the study were of
European ancestry. Peripheral blood cell counts, including
neutrophils, lymphocytes, monocytes, neutrophils, eosinophils,
and basophils were obtained from the Blood Cell Consortium
meta-analysis, which includes data from 563,085 individuals
of European ancestry (17). For further cell subpopulation
analysis, including absolute cell counts for T-cell subtypes
and B-cell subtypes, we used GWAS summary statistics for
3,757 individuals analyzed by flow cytometry (18).The genetic
association dataset for AF was derived from a large meta-
analysis of six discovery cohorts (The Nord-Trøndelag Health
Study (HUNT), deCODE, the Michigan Genomics Initiative
(MGI), DiscovEHR, UK Biobank, and the AFGen Consortium),
including 1,030,836 subjects of European ancestry, which were
divided into 60,620 AF cases and 970,216 controls (19) (Table 1).

2.2. Selection of genetic IVs

Three key assumptions needed to be met in the study design:
(1) IVs were significantly correlated with interest exposure; (2)
IVs were not associated with any confounders of the exposure-
outcome association; and (3) IVs impact outcomes only through
exposure (20).

To meet these conditions, we first set parameters for
identifying IVs, including a P-value of 5 × 10−8 for genome-
wide significance, a linkage disequilibrium clustering algorithm
with an R2 threshold = 0.001 over the 10 Kb region to ensure
the independence of IVs exposure and allowing a minor allele
frequency of 0.3 for SNPs in the palindromic region. Statistics
relating to the association between these genetic variants and
AF were then extracted as an outcome with a more relaxed
aggregation threshold (R2 < 0.01). Following identification,
Phenoscanner (21) was used to remove SNPs that may have
violated the second and third key hypothesis and which may
have a pleiotropic effect on other phenotypes (body mass
index, smoking status, hypertension, coronary artery disease,
chronic renal failure, and diabetes). Finally, pleiotropic outliers
were identified and excluded with MR pleiotropy residual sum
and outlier (MR-PRESSO) (22). A flow chart of our selection
of IVs is given in Supplementary Figure 1 and summary
information for the SNPs used for MR analyses are given in
Supplementary Tables 1–6.

The proportion of variance explained (PVE) by each IV
was used to explain the strength of the selected SNPs and was
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TABLE 1 Description of included trails in the study.

Contribution Traits Sample size Number of SNPs Author Population GWAS ID

Exposure Neutrophil cell count 5,63,946 – Vuckovic et al. European ieu-b-34

Basophil cell count 5,63,085 – Vuckovic et al. European ieu-b-29

Lymphocyte cell count 5,63,085 – Vuckovic et al. European ieu-b-32

Monocyte cell count 5,63,085 – Vuckovic et al. European ieu-b-31

Eosinophil cell count 5,63,085 – Vuckovic et al. European ieu-b-33

HLA DR + Natural Killer
Absolute Count

3,580 1,51,58,016 Valeria Orrù et al. European ebi-a-GCST90001648

Natural Killer T AC 3,653 1,51,95,758 Valeria Orrù et al. European ebi-a-GCST90001621

CD4 + CD8dim AC 3,652 1,51,95,743 Valeria Orrù et al. European ebi-a-GCST90001609

CD8 + AC 3,652 1,51,95,743 Valeria Orrù et al. European ebi-a-GCST90001592

Resting Treg AC 3,405 1,51,31,843 Valeria Orrù et al. European ebi-a-GCST90001480

Secreting Treg AC 3,405 1,51,31,843 Valeria Orrù et al. European ebi-a-GCST90001492

B cell AC 3,653 1,51,95,758 Valeria Orrù et al. European ebi-a-GCST90001642

Unswitched memory B cell AC 3,656 1,50,48,937 Valeria Orrù et al. European ebi-a-GCST90001398

Outcome Atrial fibrillation 10,30,836 10,30,836 Nielsen JB et al. European ebi-a-GCST006414

AC, absolute count.

calculated as PVE = 2× EAF× (1-EAF)× β2 (EAF, effect allele
frequency; β, effect size on the exposure). Instrument strength
was then assessed by the F-statistic which reflects the exposure
variance explained by the instrument variables (23). Calculation
of the F-statistic was based on PVE value via [PVE × (n – 1 –
k)]/[(1 – PVE) × k], where n represented the effective sample
size in the exposure GWAS, and k representsed the number of
variants included in the IV model. To determine the power of
MR outcomes, we use an online calculator1 to perform power
estimation through a given type I error rate of alpha 0.05 and the
OR from IVW estimates. A summary of information for the IVs
used for MR analyses after clumping and data harmonization
can be found in Supplementary Table 7.

2.3. Statistical analysis

The MR study was performed in R version 4.0.2 (The
R Development Core Team, Vienna, Austria) using the
TwoSampleMR (TSMR) R package version 0.5.5. TSMR
analysis was used to determine the causal relationship between
peripheral immunity and HF in which the inverse variance-
weighted (IVW) method was used to estimate the causal
relationship between exposure and results (24). Highest
precision and unbiased causal estimates can be provided by IVW
when there are no invalid genetic instrumental variables (25).
Additional analyses were performed, including the weighted
median method and the MR-PRESSO method (26) to avoid the

1 https://shiny.cnsgenomics.com/mRnd/

bias of pleiotropic effects. To address the potential violation of
the IV hypothesis, we applied constrained maximum likelihood
and model averaging and the Bayesian Information Criterion
(cML-MA-BIC) method (27). Potential directional pleiotropy
was evaluated by MR-Egger regression intercept (28). All GWAS
analyses were calibrated using the Bonferroni method. Leave-
one-out (LOO) sensitivity analysis was then used to determine
the association of individual SNPs and whether the results were
driven by any single SNP (29). Finally, funnel plots and scatter
plots were used to visually investigate heterogeneity (30, 31).

2.4. Data availability statement

The datasets processed in this study were derived from
GWAS (17–19). GWAS data are publicly available abstract level
data (32); thus, no ethical approval was required.

3. Results

3.1. Effects of genetically predicted
peripheral blood cell counts on AF

The analysis after evaluation and removal of SNPs associated
with confounding is shown in Figure 1. Since no significant
heterogeneity was observed in the Cochran Q test, a fixed-effects
model was used to estimate MR effect sizes. IVW (fixed effects)
analysis showed that higher neutrophil counts were strongly
associated with an increased susceptibility to AF [odds ratio
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(OR), 1.06; 95% confidence interval (CI), 1.01–1.10; P = 0.0070].
In addition, basophil counts were also observed to be associated
with an increased susceptibility to AF in other leukocyte
subtypes (OR, 1.10; 95% CI, 1.04–1.17; P = 0.0018). However,
lymphocyte count was inversely associated with disease risk
(OR, 0.97; 95% CI, 0.93–0.99; P = 0.0481), thus, suggesting
the protective role of lymphocytes in AF. Sensitivity analyses
showed no genetic polymorphism bias in any of the genetically
predicted immune cell count analyses. LOO analysis further
showed that the significance of the results was not driven
by any single SNP. No obvious horizontal polytropism was
found by visual inspection of funnel plots and analysis of MR-
Egger regression intercepts. The results of the heterogeneity
test, the polytropy test and the F-statistic are summarized
in Supplementary Table 7. However, eosinophil or monocyte
counts were not significantly associated with AF, although a
positive trend was observed.

3.2. Causal effect of lymphocyte
subtype on AF

Next, we extended our analysis by further measuring causal
estimates of the risk of AF by natural killer (NK), T and B cells
in lymphocytes. Due to the small sample size of GWAS, we only
evaluated eight lymphocyte subsets by MR, including NK cells,
NKT cells, resting Tregs, secreting Tregs, CD4+ T cells, CD8+T
cells, B cells, and unswitched memory B cells. If there were less
than two IV variables available, Wald ratio results are shown
instead of IVW and when there were fewer than three IVs, only
IVW and CML-BIC are shown (Figure 2). Our analysis showed
that increased CD4 + T-cell counts were associated with a higher
risk of AF (OR, 1.04; 95% CI, 1.0–1.09; P = 0.0493). An increase
of NK cell count was associated with a protective effect on AF
(OR, 0.97; 95% CI, 0.94–0.99; P = 0.0368) and the NKT cell
count was also negatively correlated with AF (OR, 0.96; 95% CI,
0.93–1.00; P = 0.0728), although the results were not significant.
However, we also observed that genetically predicted increases
in CD4 + T-cell counts were associated with a higher risk of AF
(OR, 1.04; 95% CI, 1.0–1.09; P = 0.0493). In addition, due to
the sample size, we did not observe a causal effect of other cell
subtypes on AF risk and all results were supported by other MR
methods.

4. Discussion

Recent studies have shown that considerable changes in the
immune system occur during AF, including the recruitment
and activation of immune cells and the secretion of their
immune molecules induced by various factors; this is a
process called immune remodeling (33). Immune remodeling
runs through the entire process of the occurrence and

maintenance of AF. This process does not only cause myocardial
electrical, structural, and neural changes, but also induces AF-
related pathological changes including fibrosis, thus playing
an important role in AF (34). Furthermore, the results of
observational studies indicate that immune cell-mediated atrial
remodeling and inflammation are present in AF atria but not
in non-AF atria (35). Therefore, the peripheral immune status
of AF patients may also be different, thus, indicating the causal
relationship between peripheral immunity and AF.

Neutrophils are an important component of peripheral
immunity and can increase AF susceptibility by releasing
cytokines, such as IL-6, TNF-α, and IL-1β (36). In addition,
granulocytes are also the main source of reactive oxygen
species (ROS) and myeloperoxidase (MPO), which can mediate
AF by mediating oxidative stress (37). Here, we provide
evidence of genetic causality between neutrophil count and
AF, thus, suggesting an enhanced effect on AF. Peripheral
eosinophils play an important role in inflammation and atrial
remodeling in AF, and eosinophil products, such as major basic
protein (MBP), can lead to endocardial fibrosis (38, 39). In
addition, peripheral basophils play an important role in tissue
fibrosis in heart allograft models. The depletion of basophils
can inhibit the progression of allograft fibrosis (40). In the
previous study, however, no association was found between
eosinophils or basophils and AF (7). Our results elucidate
the positive genetic causality between basophil count and AF.
However, there is no evidence for a causal relationship between
genetically predicted eosinophil counts and AF. More data
from randomized clinical trials are still needed to support our
hypothesis. Monocytes in the peripheral immune system can
trigger an inflammatory cascade involving cytokine release and
play an important role in fibrosis and heart failure; however,
their role in AF remains unknown (41). Our results also cannot
reveal the genetic causality between monocyte count and AF.
More data from randomized clinical trials are now needed
to prove this relationship. It has been reported that a low
peripheral lymphocyte count is associated with inflammation
and a reduction in lymphocyte count reflects the level of
inflammation. In addition, a high level of NLR is also a risk
predictor of AF (8, 42). Consistent with previous reports,
we provide evidence of a negative genetic causal association
between lymphocyte count and AF, thus, suggesting that
lymphocytes may have a protective effect against AF.

Lymphocytes play different roles in AF and the combination
of different roles of different lymphocytes in AF constitutes
the protective effect of total lymphocyte count in AF. NK
cells could alter the local cytokine environment by preventing
the maturation and trafficking of inflammatory cells. In the
myocardium, NK cells can prevent the development of cardiac
fibrosis by limiting collagen formation in cardiac fibroblasts
and by inhibiting the accumulation of specific inflammatory
populations and profibrotic cells in the heart (43); this is
consistent with our results in that NK cell counts have a
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FIGURE 1

Mendelian randomization estimates of the association between blood cell counts and risk of atrial fibrillation. OR, odds ratio; CI, confidence
interval.

FIGURE 2

Mendelian randomization results for the relationship between cell counts of lymphocyte subpopulation and atrial fibrillation. AC, absolute count.
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protective effect on AF. NKT cells are mainly found in the
liver and a core component of the immune response during
liver fibrosis (44). Moreover, the adoptive transfer of NKT cells
was also shown to protect mice from pulmonary fibrosis (45).
In our experiment, it was observed that NKT cell count was
negatively correlated with AF, although this was not significant.
More experiments are needed to prove this point. CD4+ T
can be activated by Toll-like receptor 2 (TLR2) and TLR4
to participate in the activation of AF (36). In response to
antigens, co-stimulators, and cytokines, CD4+ T cells can
differentiate into different subsets of helper T (Th) cells. TH1
cells promote macrophage efficacy and mediate inflammation
in AF by secreting interferon-γ (44). In contrast, Th2 cells
counteract the Th1 response by secreting several pro-fibrotic
cytokines (46). Th17 cells can promote the development of
AF by secreting IL-17A to promote inflammation and cardiac
fibrosis (47). CD4+ CD25+ regulatory T cells (Tregs) have been
recognized to play an important role in maintaining peripheral
tolerance and limiting inflammatory disease; furthermore, the
depletion of Tregs can aggravate myocardial fibrosis (48).
Studies on the role of CD8+ T in AF are rarely reported
(36). B lymphocytes play a role in the humoral immune
component of the adaptive immune system mainly by secreting
antibodies (49). The abnormal activation of B cells can
produce pathological autoantibodies. Evidence suggests that
autoimmunity can mediate cardiovascular disease and may be
a possible mechanism for AF (50). To explore the relationship
between lymphocyte subtypes and AF, we further analyzed
several subtypes of B and T cells and found a genetic causal
relationship between CD4+T cell counts and AF. However, our
results do not indicate a causal relationship between genetically
predicted other lymphocyte subtypes and AF, which means that
more data from randomized clinical trials are still needed to
explore their relationship.

In conclusion, we demonstrate a causal effect of peripheral
immunity on AF based on MR results obtained from large-
scale aggregated GWAS data. In addition, the protective effect
of total lymphocyte cell count in AF may be synthesized
by the protective and promotive effects in NK cells and
CD4+ T cells. Our research enhances current understanding
of the role of the peripheral immune system in AF. Further
studies are now necessary to understand the relationship
between different peripheral immune cells and AF and the
underlying mechanisms.

5. Limitations

There are some limitations to our study that need to
be considered. First, the results of other MR methods are
not entirely consistent with IVW methods in univariate MR
analysis. We cannot completely exclude the possibility of
pleiotropy in peripheral immunity and AF. Second, our study

mainly included participants of European descent, which cannot
be generalized to other ethnic groups (51, 52). More data are
now needed to be replicated in other populations. Third, we
lack data on the quantity of peripheral immunity. Furthermore,
we did not assess potential differences in the risk of AF
among the orders of magnitude of peripheral immune cells.
Fourth, lymphocyte subtype analysis based on small sample
size may lead to insufficient power to detect the influence of
lymphocyte subtype on AF.
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