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Objective: Heart failure with mildly reduced ejection fraction (HFmrEF) has

been recently recognized as a unique phenotype of heart failure (HF) in

current practical guideline. However, risk stratification models for mortality

and HF re-hospitalization are still lacking. This study aimed to develop and

validate a novel machine learning (ML)-derived model to predict the risk of

mortality and re-hospitalization for HFmrEF patients.

Methods: We assessed the risks of mortality and HF re-hospitalization

in HFmrEF (45–49%) patients enrolled in the TOPCAT trial. Eight ML-

based models were constructed, including 72 candidate variables. The

Harrell concordance index (C-index) and DeLong test were used to assess

discrimination and the improvement in discrimination between models,

respectively. Calibration of the HF risk prediction model was plotted to obtain

bias-corrected estimates of predicted versus observed values.

Results: Least absolute shrinkage and selection operator (LASSO) Cox

regression was the best-performing model for 1- and 6-year mortality, with

a highest C-indices at 0.83 (95% CI: 0.68–0.94) over a maximum of 6 years

of follow-up and 0.77 (95% CI: 0.64–0.89) for the 1-year follow-up. The

random forest (RF) showed the best discrimination for HF re-hospitalization,

scoring 0.80 (95% CI: 0.66–0.94) and 0.85 (95% CI: 0.71–0.99) at the 6-

and 1-year follow-ups, respectively. For risk assessment analysis, Kansas

City Cardiomyopathy Questionnaire (KCCQ) subscale scores were the most

important predictor of readmission outcome in the HFmrEF patients.

Conclusion: ML-based models outperformed traditional models at predicting

mortality and re-hospitalization in patients with HFmrEF. The results of the risk

assessment showed that KCCQ score should be paid increasing attention to

in the management of HFmrEF patients.

KEYWORDS

heart failure, machine learning (ML), heart failure with mildly reduced ejection
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GRAPHICAL ABSTRACT

In this study, we first selected heart failure patients whose LVEF was 45–49%. We then developed eight machine learning-based prediction
models for the outcomes of all-cause mortality and HF rehospitalization. We selected the best-performing prediction model for different
outcomes and then further demonstrated the risk factors involved.

Introduction

Heart failure (HF), a major public health concern, has
affected an estimated 20 million patients globally and has
become one of the leading causes of hospitalization in adults
>65 years, making it a substantial threat to human health.
The 2021 ESC guidelines for chronic HF categorize patients
into three subgroups based on whether their left ventricular
ejection fraction (LVEF) is reduced (HFrEF, EF ≤40%), mildly
reduced (HFmrEF; EF 41–49%), or preserved (HFpEF; EF
≥50%). Among these subgroups, HFmrEF has recently attracted
increasing attention (1). Data from the ESC Heart Failure
Long-Term Registry showed that in the outcome of all-cause

Abbreviations: HF, heart failure; ML, machine learning; LVEF, left
ventricular ejection fraction; HFrEF, heart failure with reduced ejection
fraction; HFmrEF, heart failure with mildly reduced ejection fraction;
HFpEF, heart failure with preserved ejection fraction; KCCQ, Kansas
City Cardiomyopathy Questionnaire; RF, random forest; LASSO, least
absolute shrinkage and selection operator; C-index, Harrell concordance
index; ROC, receiver operating characteristic; AUC, area under the
receiver operating characteristic curve; BMI, body mass index; ALP,
alkaline phosphatase; CHF-HOSP, hospitalization for cardiac heart
failure; COPD, chronic obstructive pulmonary disease; VIMP, variable
importance; eGFR, estimated glomerular filtration rate; CR, creatinine;
CABG, coronary artery bypass graft; PCI, percutaneous coronary
intervention; ACE, angiotensin-converting enzyme; ARBs, angiotensin
receptor blockers; NT-proBNP, N-terminal pro-brain natriuretic peptide;
WHtR, waist-to-height ratio; HCT, hematocrit; ePVS, estimated plasma
volume status.

mortality, there was no significant difference in all-cause
mortality between HFmrEF and HFrEF or HFpEF, while the
mortality rate was markedly higher among HFrEF patients
than among HFpEF patients (2). Regarding outcomes of 1-
year death and hospitalization incidences, HFmrEF and HFpEF
patients showed lower rates than HFrEF patients. Indeed, the
clinical characteristics, risk prediction and therapeutic strategy
of HFmrEF are still obscure. Accurately predicting outcomes
such as mortality and rehospitalization in HF is critically
important to patients, their clinicians and healthcare systems,
but it has proven to be a difficult task because the outcomes are
affected by many risk factors.

Machine learning (ML) is a scientific discipline that focuses
on how computers learn from data to improve predictive
performance and generalization of models by considering
higher-dimensional and possibly non-linear effects of variables,
incorporating more variables (3). It has been extensively utilized
in the cardiovascular field of diagnosis, image analysis and risk
assessment (4). Compared with conventional statistical models,
it has the ability to automatically learn from large datasets with
a labeled output or outcome to conduct predictive analytics,
allowing the user to glean knowledge from past data and apply it
to future predictions. Recent evidence indicates that ML-based
HF risk models that include clinical, laboratory, and biomarker
data have demonstrated superior performance over traditional
HF risk models but have been verified only in HFrEF and
HFpEF populations. Therefore, predictive models for HF with
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HFrEF or HFpEF are available, but risk assessments of death and
hospitalization in patients with HFmrEF are still limited.

Materials and methods

Study population

The design, enrollment criteria, and participant
characteristics of the TOPCAT trial have been described
previously. Briefly, it is a multicenter, randomized, double-
blind, placebo-controlled trial of aldosterone antagonist
therapy (NCT00094302), which includes 3,445 adult patients
with symptoms of HF and documented LVEF ≥45%, aged
50 years or older (5). In the present analysis, we selected
519 patients whose LVEF was 45–49%, the data collected
included all baseline demographics, clinical data, laboratory
results, electrocardiography and Kansas City Cardiomyopathy
Questionnaire (KCCQ) scores. A detailed description is
provided in the supplement and a list of markers is shown in
Supplementary Table 1.

Outcomes of interest

The outcomes of interest in this study were all-cause
mortality and HF hospitalization through 1 year and the entire
follow-up (up to 6 years per subject). All-cause mortality was
defined as death from any cause, and hospitalization for HF
was defined as sudden presentation to an acute care facility with
aggravated HF requiring overnight hospitalization.

Candidate variables

In the present analysis, 87 candidate variables were
considered, including all baseline demographics, clinical data,
laboratory results, electrocardiography, and KCCQ scores. Some
categorical candidate variables were harmonized and merged
to facilitate analysis. A total of 72 predictor variables were
included after excluding 6 covariates for a >20% missing rate
and 8 for merged values, and another EF value was used
as a screening condition and was not considered a variable
(Supplementary Table 1).

Model development and evaluation

The study population was randomly split into training
(70%) and validation datasets (30%). Data imputation was
performed on each dataset separately by using the missForest
approach, which can cope with different types of variables,
especially for multivariate data consisting of continuous and

FIGURE 1

Analysis overview for identifying best performing risk prediction
model.

categorical variables (6). Different methods were used to model
and optimize the training datasets to reduce the prediction error.
These models were then checked on validation subsets to test
the models’ performance and determine the best predictors. All
of the steps were repeated 50 times. The analytical procedures
followed in this study are shown in Figure 1.

Machine learning-based methods

Heart failure prediction models were developed by
incorporating the 72 variables identified previously, yielding
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the following eight candidate ML-based and conventional Cox
regression algorithms for assessing the risk of mortality and HF
hospitalization through 1 and 6 years of follow-up:

Random forest (RF);
Forward stepwise Cox regression;
Least absolute shrinkage and selection operator (LASSO)
Cox regression;
Logistic regression;
Ridge Cox regression;
Gradient boosted trees;
Elastic net Cox regression;
Support vector machine (SVM).

Analyses were performed using R version 4.0.4 (R
Foundation for Statistical Computing, Vienna, Austria). Various
R packages were used to conduct this analysis. The package
missForest (6) was used for imputation, randomForest (7)
was used for RF, glmnet (8) was used for LASSO, ridge
and elastic-net Cox regression, and the package gbm (9)
was used for gradient boosted trees. e1071 (10) software was
used for the SVM.

Model evaluation

The discriminatory performance of each model against
the validation dataset was calculated using the Harrell
concordance index (C-index) (11) or the area under the receiver
operating characteristic (ROC) curve (AUC). The DeLong
test was used to assess discrimination between models (12).
Calibration of the HF risk prediction model was plotted
to obtain bias-corrected (overfitting-corrected) estimates of
predicted versus observed values based on subsetting the
predictions into intervals. The prediction distribution of the
models was plotted based on the order of the predicted risk
for each patient.

Sensitivity analyses

Sensitivity analysis was computed for all patients from
the TOPCAT study whose LVEF was 45–49%. These
different models were developed for this population to
predict all-cause mortality and HF hospitalization and
were followed throughout the study period (13). The
importance of each variable was calculated, and the incremental
improvement in each variable was assessed over 50 cycles
of simulation. In addition, 1-year all-cause mortality and
HF hospitalization predictions were evaluated to see how
the model’s performance changed over a relatively short
follow-up period.

Results

Study cohort and participant baseline
characteristics

A total of 519 patients with LVEF values ranging from
45 to 49% were included (Table 1), of whom 63.5% were
male and 91.3% were white, with a mean age of 66.1 years
and a median body mass index (BMI) of 31.4 kg/m2. Over a
6-year follow-up, a total of 97 patients died, accounting for
18.6% of the total number of participants, and 59 patients
(11.3%) were hospitalized for worsening HF. During the first
year of follow-up, the incidence of all-cause mortality and
HF hospitalization was 5.1% (31) and 4.6% (24), respectively.
Among the imputation cohort, some candidate variables, for
example, glucose, alkaline phosphatase (ALP), hematocrit, waist
circumference, and physical limitation, had missing values.
After processing them, they exhibited close agreement with the
original data, which showed that the method we chose was
reliable.

Machine learning for prediction of
heart failure mortality outcome

The 72 predictor covariates incorporated into the risk
prediction models included demographics, clinical history,
vital signs, social history, laboratory, and electrocardiographic
parameters (Supplementary Table 1).

The C-indices and C-statistic for ML-based HFmrEF risk
prediction models are displayed in Table 2. The results of eight
prediction models for all-cause mortality showed that LASSO
Cox regression performed the best at both the 1- and 6-year
follow-ups. Compared with the other seven models, LASSO Cox
regression had the highest overall C-statistic, at 0.78 over 6 years
and 0.75 for 1 year. The C-indices for LASSO regression were
also the highest, at 0.83 [95% confidence interval (CI): 0.68–
0.94] and 0.77 (95% CI: 0.64–0.89) at the 6- and 1-year follow-
ups, respectively. This was in contrast to the ridge regression
model; across both short and long follow-ups, the ridge Cox
regression model had the lowest C-index [1 year: 0.52 (95% CI:
0.38–0.65); 6 years: 0.51 (95% CI: 0.38–0.63)]. Figure 2A shows
the ability of the models to discriminate groups by mortality
using ROC curves.

Machine learning for prediction of
heart failure hospitalization outcome

Table 3 shows the results of the C-indices and C-statistic
for eight prediction models of HF hospitalization. Of the eight
models, RF showed the best discrimination, with the highest
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FIGURE 2

Results of the discrimination for all-cause mortality and HF-Hospitalization in ROC curves. (A) The performance of eight prediction models for
all-cause mortality was assessed by ROC curves. (B) The performance of eight prediction models for re-hospitalize was assessed by ROC curves.
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overall C-statistic of 0.80 over a maximum of 6 years of follow-
up and 0.85 for 1 year. The C-indices for RF were also the
highest, at 0.80 (95% CI: 0.66–0.94) and 0.85 (95% CI: 0.71–
0.99) at the 6- and 1-year follow-ups, respectively. The DeLong
test showed that the RF model was different from the step-
forward and ridge regression models, especially the latter (p-
value = 0.0017, <0.0001, respectively). The performance of the
models in discriminating HF hospitalization was assessed by
ROC curves (Figure 2B).

TABLE 1 Baseline characteristics of patients (N = 519).

Original cohort Imputation cohort

Male 330 (63.5%) 330 (63.5%)

Age 66.1 (9.23) 66.1 (9.23)

White patients 474 (91.3%) 474 (91.3%)

Heart rate, bpm 69.7 (13.39) 69.7 (13.39)

SBP 127.9 (13.80) 127.9 (13.80)

DBP 77.5 (9.72) 77.5 (9.72)

BMI 31.4 (7.01) 31.4 (7.01)

Serum potassium 4.26 (0.47) 4.26 (0.47)

Serum calcium 102.74 (6.32) 102.77 (6.19)*

Serum sodium 141.40 (4.32) 141.40 (4.32)

Creatinine 1.11 (0.30) 1.10 (0.30)*

HCT 40.85 (5.54) 40.85 (5.52)*

WBC 7.05 (2.05) 7.05 (2.05)

Waist Circumference 104.84 (16.67) 104.88 (16.66)*

GFR 69.67 (19.91) 69.67 (19.91)

NYHA_CLASS

I and II 335 (64.5%) 335 (64.5%)

III and IV 184 (35.4%) 184 (35.5%)

Current smoker 81 (15.6%) 81 (15.6%)

Ever-smoker 206 (39.7%) 206 (39.7%)

Hemoglobin, g/dl 13.58 (1.74) 13.58 (1.74)

Glucose 112.74 (41.37) 112.83 (41.30)*

ALP 105.24 (60.71) 105.42 (59.83)*

QRS duration, ms 102.13 (31.14) 102.13 (31.14)

Cooking salt score 4.75 (3.62) 4.75 (3.62)

KCCQ scores

Physical limitation 56.38 (22.77) 56.39 (22.68)*

Symptom stability score 51.78 (24.13) 51.78 (24.13)

Symptom frequency score 57.95 (24.30) 57.95 (24.30)

Symptom burden score 59.59 (23.78) 59.59 (23.78)

Total symptom score 58.77 (23.06) 58.77 (23.06)

Self-efficacy score 65.99 (24.72) 65.99 (24.72)

Quality of life score 49.78 (22.86) 49.78 (22.86)

Overall summary score 54.68 (21.13) 54.68 (21.13)

Clinical summary score 57.60 (21.02) 57.60 (21.02)

ALP, alkaline phosphatase; BMI, body mass index; DBP, diastolic blood pressure;
GFR, glomerular filtration rate; HCT, hematocrit; KCCQ, Kansas City Cardiomyopathy
Questionnaire; NYHA, new york heart association; SBP, systolic blood pressure; WBC,
white blood count.
*Indicates imputation cohort is different from the original cohort.

Characteristic variables of mortality

For the outcome of mortality, LASSO regression showed
the best performance. To improve clinical usability, we further
constructed a model made of the variables filtered by LASSO
regression. The forest plot of the variables found by multivariate
Cox regression is shown in Figures 3A,B. During the 6-year
follow-up, 16 covariates were selected by LASSO, and only
four variables (age, race, stroke, and DM) played significant
roles in the prediction models (p-values = 0.01, 0.03, 0.01,
and 0.00, respectively) (Figure 3A). Figure 3B shows the nine
independent variables selected by LASSO over 1 year of follow-
up. Among the nine variables, race, previous hospitalization
for cardiac heart failure (CHF-HOSP), chronic obstructive
pulmonary disease (COPD), smoking, and blood glucose
showed a significant influence on the short-term mortality of
HFmrEF patients.

A risk score for 1- and 6-year mortality was created using
a nomogram (Figures 3C,D). Scores for the 6-year follow-up,
ranging from 0 to 300, were assigned points as follows: for age,
the points went from 0 to 100, with higher scores for older age.
For race, white had a score of 0, black 35 and other races 70
points. Patients with HFmrEF without diabetes, with diabetes,
and with diabetes-related microvascular complications showed
increasing risk scores of 0, 35, and 70 points, respectively.
Figure 3D shows the risk scores at the 1-year follow-up. Among
the nine variables, the race score ranged from 0 to 89, CHF-
HOSP ranged from 0 to 31 points, COPD added a risk score
of 34 points and its absence 0, and the glucose score was
positively correlated with risk points at the 6-year follow-
up. The calibration of the LASSO-based model is plotted in
Supplementary Figure 1.

Characteristic variables of heart failure
hospitalization

The RF model showed the best performance at predicting
the outcome of HF hospitalization. RF addressed each feature
in the order of mean decrease accuracy to rank the importance
of its variables. To further clarify the important variables,
we graphed the top 20 covariates identified by the variable
importance (VIMP) metric (Figure 4). Values of mean decrease
accuracy are shown in Supplementary Tables 2, 3.

Figure 4A shows that KCCQ scores, including symptom
frequency, clinical summary, overall summary, social limitation,
physical limitation, and total symptoms, all exhibited a major
influence on long-term HF hospitalization. Asthma, race, and
BMI also played important roles in the prediction model.
Compared with the long-term follow-up characteristics, which
were closely related to quality of life, variables that predicted
short-term HF hospitalization were more correlated with
previous clinical history and clinical laboratory results, such
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TABLE 2 Discrimination of the models for mortality.

Death-6 year Death-1 year

C-index AUC DeLong test C-index AUC DeLong test

RF 0.56 (0.42–0.69) 0.58 0.0297* 0.67 (0.54–0.80) 0.68 0.6682

Step-forward 0.68 (0.59–0.82) 0.62 0.0126* 0.50 (0.36–0.64) 0.49 0.0011*

Lasso 0.83 (0.66–0.94) 0.78 1 0.77 (0.64–0.89) 0.75 1

Logistic 0.55 (0.41–0.69) 0.54 0.0051* 0.53 (0.40–0.66) 0.46 0.0095*

Ridge 0.52 (0.38–0.65) 0.53 0.0057* 0.51 (0.38–0.63) 0.52 0.0900

GBT 0.61 (0.45–0.73) 0.62 0.0530 0.76 (0.62–0.89) 0.77 0.9209

Elastic-net 0.54 (0.44–0.71) 0.55 0.0160* 0.54 (0.41–0.67) 0.54 0.2378

SVM 0.58 (0.47–0.69) 0.58 0.0036* 0.64 (0.54–0.75) 0.62 0.4207

GBT, gradient boosted trees; RF, random forest; SVM, support vector machine; AUC, area under the curve.
*Indicates p < 0.05.

as hematocrit, estimated glomerular filtration rate (eGFR),
creatinine (CR), coronary artery bypass graft (CABG) surgery,
and percutaneous coronary intervention (PCI). The candidate
variables are ranked by importance in Figure 4B. The
calibration of the RF-based model is plotted in Supplementary
Figure 2.

Distribution of outcomes

Figure 5 shows the predicted distribution of the best
performance models, which were sorted by risk. These models
were LASSO Cox regression for the outcome of all-cause death
and RF for hospitalization with HF exacerbation. The prediction
models with positive clustering of patients who died or were
hospitalized with HF aggravation (Figure 5) indicated that
the models accurately stratified patients at risk of death and
hospitalization. Figures 5A,B show the distribution of all-
cause mortality at the 1- and 6-year follow-ups, respectively.
Figure 5C shows the distribution of HF hospitalizations at the
1-year follow-up, and Figure 5D shows the distribution at the
6-year follow-up.

Discussion

Heart failure with an LVEF of 40–49% was first established
as a category in 2013. Later, in 2016, the ESC defined HF
with an LVEF range of 40–49% as a new subtype of HF:
heart failure with mildly reduced ejection fraction (HFmrEF),
which was redefined to HF with a mildly reduced (41–49%)
ejection fraction in the 2021 ESC guidelines (1, 14). Compared
with HFpEF and HFrEF, HFmrEF is less well studied. The
pharmacological treatment for HFmrEF has been updated
in the 2021 ESC guidelines, which propose that diuretics,
angiotensin-converting enzyme (ACE) inhibitors, angiotensin
receptor blockers (ARBs), and beta blockers may be considered
for this category to reduce the risks of HF hospitalization and

death. But the issue of whether these patients represent a distinct
HF subtype that may benefit from therapies salutary for patients
with HFrEF requires further study.

Accurately predicting prognosis plays an important role in
choosing a therapeutic regimen and improving the outcome
of HF. In this cohort of 519 individuals in the TOPCAT
trial with LVEF ranging from 41 to 49%, we developed and
validated eight alternative risk models for the prediction of
HF hospitalization and all-cause mortality. Our model includes
abundant suits of clinical risk factors that are measurable and
accessible in history taking. The RF model performed the best,
with good validation and excellent accuracy and calibration for
rehospitalization, and a LASSO regression model was the best
model for mortality prediction.

In both prediction models, patients’ physical conditions,
as evaluated and quantified by the KCCQ scores, were the
strongest predictors of both death toll and HF readmission over
a 6-year follow-up. When combined with NT-proBNP,
KCCQ could serve as an optional tool for quick and
convenient risk fractionation (15–17). In our models,
KCCQ accounted for a large amount of mortality and
HF readmission prediction because it represents a status
health quality of life and could be influenced by many
factors, such as gender, race, non-cardiovascular and
cardiovascular comorbidities. In recent years, with the
rapid development of the internet, smartphones, and wearable
health devices, KCCQ can be obtained instantaneously
for physicians working in telehealth (18). Therefore, the
KCCQ has the advantage of a quick overview of patients’
HF risk for physicians in remote areas or clinics. The
KCCQ also record clinically meaningful changes over
time, making it promising to support joint decision-
making and more efficient medical interventions to quickly
identify patients at higher risk stratification of mortality
and readmission.

Based on our results, AF seems to confer both short-
and long-term risk of all-cause death and cardiovascular
rehospitalization. In research carried out by David M. Kaye, both
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HFmrEF and HFpEF patients with AF had remarkably increased
pulmonary capillary wedge pressure, decreased cardiac index
and reduced left ventricular work index. At similar levels of
systemic circulation workload, AF patients fail to adapt their
oxygen consumption to the increase in workload, which is
accompanied by an irreversibly impaired cardiac index and
ventricular working index (19). A cohort study in the ESC
Heart Failure Long-Term Registry found that AF increased with

increasing LVEF, accounting for poor cardiovascular outcomes
only in HFpEF and HFmrEF patients and not in HFrEF patients
(20). In our ML-based modeling results, AF is also one of
the top predictors of all-cause mortality. However, the current
guidelines suggest that patients with HFmrEF are less likely to
suffer from AF and non-cardiac comorbidities. Therefore, the
relationship between the occurrence of AF and the prognosis of
HFmrEF warrants further study and exploration.

TABLE 3 Discrimination of the models for HF hospitalization.

HF-hospitalization-6 year HF-hospitalization-1 year

C-index AUC DeLong test C-index AUC DeLong test

RF 0.80 (0.66–0.94) 0.78 1 0.85 (0.71–0.99) 0.84 1

Step-forward 0.56 (0.43–0.70) 0.48 0.0017* 0.67 (0.53–0.81) 0.67 0.0503

Lasso 0.72 (0.59–0.86) 0.67 0.2429 0.49 (0.36–0.62) 0.47 0.0016

Logistic 0.62 (0.48–0.76) 0.60 0.0437* 0.43 (0.33–0.54) 0.58 0.1632

Ridge 0.50 (0.34–0.66) 0.50 <0.0001* 0.63 (0.51–0.75) 0.39 0.0037

GBT 0.77 (0.63–0.91) 0.75 0.3605 0.81 (0.67–0.94) 0.81 0.6428

Elastic-net 0.65 (0.51–0.78) 0.63 0.0048* 0.61 (0.50–0.73) 0.60 0.0130

SVM 0.78 (0.64–0.93) 0.74 0.3488 0.70 (0.59–0.82) 0.40 0.3292

GBT, gradient boosted trees; RF, random forest; SVM, support vector machine; AUC, area under the curve.
*Indicates p < 0.05.

FIGURE 3

Forest plot by using the multi-variable COX regression and the risk score nomogram. (A) Forest plot of variables selected by LASSO COX
regression in the end point event of all-cause mortality at 6-year follow-up. (B) Forest plot of variables selected by LASSO in the end point event
of all-cause mortality at 1-year follow-up. (C) Nomogram for predicting 6-year all-cause mortality based on variables selected by LASSO COX
regression. (D) Nomogram for predicting 1-year all-cause mortality based on variables selected by LASSO COX regression.
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FIGURE 4

Alluvial plot of the 20 most important parameters for HF re-hospitalization risk prediction identified by the VIMP metric in the RF model in the
derivation cohort. (A) Twenty most important parameters for predicting the risk of re-hospitalization for heart failure at 6-year follow-up
identified by VIMP method. (B) Twenty most important parameters for predicting the risk of re-hospitalization for heart failure at 1-year
follow-up identified by VIMP method.

High BMI is proven a risk factor for HF, patients with a
normal or low BMI have a higher mortality and readmission
rate than those with a relatively high BMI. The phenomenon

is termed the “obesity paradox” (21–25). This also existed
according to an investigation of HFmrEF patients (26). In our
ML-based models, patients with high BMI had lower scores
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FIGURE 5

Prediction distributions of patients with HFmrEF in the outcomes of all-cause mortality and HF hospitalization. (A) The distribution of all-cause
mortality at the 1-year follow-ups, which there is a positive correlation between the number of patient deaths and the risk of mortality. (B) The
distribution of all-cause mortality at the 6-year follow-ups. (C) The distribution of re-hospitalization at the 1-year follow-ups, which there is a
positive correlation between the number of patients’ hospitalization and the risk of hospitalization. (D) The distribution of re-hospitalization at
the 6-year follow-ups.

than those with low BMI. To the best of our knowledge, a high
percentage of body fat mass indicates good nutrition situations,
and this is probably relevant to a lower risk of short-term
relapse of cardiac events in HFmrEF patients. Moreover, it is
also considered that the obesity paradox may be attributed to
the intrinsic limitations of BMI as an index of obesity. Other
body mass measures, such as body fat distribution, body fat rate
and fat-free mass, are probably more accurate for examining

the relationship of body composition with health outcomes.
For instance, Chandramouli et al. recently reported that the
obesity paradox is manifested only when BMI is used as a
weight parameter. When the waist-to-height ratio (WHtR) is
used, the opposite association emerges (26). Therefore, further
studies are needed to develop metrics for better analysis of body
composition, better estimation of various obesity phenotypes
and better prediction of mortality and rehospitalization in HF.
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Another risk factor, eGFR was significant in our predicting
model for mortality and readmission in cohort of HFmrEF.
Patients with chronic HF are vulnerable to renal impairment
(RI), and conversely, impaired renal function is associated with
a higher mortality risk in HF patients. Research examining the
relationship between all subtypes of HF and the prognostic
impact of chronic kidney disease shows that in HFpEF patients,
although the incident rate of CKD is higher, CKD is less
important with a weaker correlation with all-cause death, have
a less risk score compared with conventional risk markers,
and exerts insufficient differentiation for prediction of mortality
(27). These findings are in line with our results. In the cohort
of HFmrEF in the TOPCAT trial, eGFR was a more powerful
predictor of mortality in patients with HFmrEF than in those
with HFpEF. We speculate that morbidity of CKD may give rise
to sympathetic and neurohormonal activation and cause further
deterioration of HF. This was also believed to be associated
with other underlying diseases that impair renal function
such as hypertension and diabetes which are prevalent among
HFmrEF patients. This link was further evidenced by the Meta-
Analysis Global Group in Chronic Heart Failure (MAGGIC)
meta-analysis, which showed a lower mortality rate and lower
association between CKD and death in patients with HFpEF
than in HFmrEF (28).

Consistent with the 6-year findings, LASSO regression and
the RF method showed the best predictive performance for
1-year mortality and readmission, respectively. Interestingly,
unlike the top 20 risk factors screened by the RF model
in the 6-year rehospitalization prediction, hematocrit (HCT)
was proposed as one of the most important risk factors.
Although association between HCT and incident HF has
not been well established, several follow-up studies have
elucidated that higher levels of HCT were associated with an
increased risk of developing HF and coronary events (29–
32). Additionally, Gagnon et al. proposed that both low and
high HCT levels were positively associated with the occurrence
of cardiovascular events (33). All of the above-mentioned
findings suggest that the usage of hemoglobin and HCT for
the estimation of plasma volume may represent a useful
tool in the field of HF. Recently, estimated plasma volume
status (ePVS), a relatively simple and non-invasive plasma
volume estimation based on hemoglobin and hematocrit, was
prompted to be a better predictor of both post-discharge and
bedside clinical assessments (34). Kobayashi et al. and Grodin
proposed that ePVS was associated with systemic congestion
and deterioration of HF, regardless of other influencing factors
(32, 35). Consequently, it could be a useful congestion index
in patients with HF, in line with our findings in HFmrEF
patients. Hemodynamic congestion develops and progresses
slowly but eventually gives rise to symptomatic congestion
and consequently urgent hospitalization. Accordingly, HCT
may represent a convenient clinical indicator in patients with
HFmrEF. This also suggests that ePVS might be an additional

phenotypic characteristic considered for clinical study and for
tailoring personalized therapies for HF patients.

DM has been recognized as an independent risk factor
for the development of HF. Previous study conducted by
Bhambhani et al. have reported that diabetes mellitus could
predict the incident of HFmrEF, and this finding could be
further confirmed in our study (36). In this study, we found
DM was one of the strongest predictors of both the primary
and mortality endpoints in the HFmrEF patients. And DM
patients with HF treated with sodium–glucose co-transporter
2 inhibitors (SGLT2i) have shown impressive protective effects
(37). In addition, the importance of other predictors in the
prediction of readmission and mortality of HFmrEF differed
greatly, including BP, smoking, age and stroke for predicting
death, and WBC, CR and Salt intake for predicting HF re-
hospitalization. In this regard, ML improved the prediction
accuracy, letting us find novel relationships that were not
hypothesis driven and shed light on some ignored risk factors.

Our study also has certain limitations. First, the TOPCAT
trial was conducted between 2006 and 2012. Missing values of
biomarkers such as circulating natriuretic peptides and high-
sensitivity troponin affected our analysis and were not available
to assess dynamic risk prediction scores. And due to the time
period of the TOPCAT study, patients with HFmEF were not
treated with SGLT-2 antagonists, which could alter the risk
profile of these patients and potentially affected the model
outputs. Second, we enrolled 519 patients with LVEF ranged
from 41 to 49%. Unfortunately, the TOPCAT trial excluded
the population with an LVEF greater than 45%. Therefore,
we did not include adult patients with symptoms of HF and
documented LVEF <45%. Third, given that our research is
a post hoc analysis of the TOPCAT trial, and the TOPCAT
study population was predominantly white males, therefore,
our predicting models may not perform as well to the general
population. Therefore, further validation of the role of ML
in phenomenological mapping and sex-specific classification
criteria is needed in a wide range of HFmrEF clinical data.

Conclusion

Machine learning-based models outperformed traditional
models at predicting mortality and re-hospitalization in patients
with HFmrEF. The results of the risk assessment showed that
KCCQ score should be paid increasing attention to in the
management of HFmrEF patients.
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