AUTHOR=Abdolmanafi Atefeh , Forneris Arianna , Moore Randy D. , Di Martino Elena S. TITLE=Deep-learning method for fully automatic segmentation of the abdominal aortic aneurysm from computed tomography imaging JOURNAL=Frontiers in Cardiovascular Medicine VOLUME=9 YEAR=2023 URL=https://www.frontiersin.org/journals/cardiovascular-medicine/articles/10.3389/fcvm.2022.1040053 DOI=10.3389/fcvm.2022.1040053 ISSN=2297-055X ABSTRACT=

Abdominal aortic aneurysm (AAA) is one of the leading causes of death worldwide. AAAs often remain asymptomatic until they are either close to rupturing or they cause pressure to the spine and/or other organs. Fast progression has been linked to future clinical outcomes. Therefore, a reliable and efficient system to quantify geometric properties and growth will enable better clinical prognoses for aneurysms. Different imaging systems can be used to locate and characterize an aneurysm; computed tomography (CT) is the modality of choice in many clinical centers to monitor later stages of the disease and plan surgical treatment. The lack of accurate and automated techniques to segment the outer wall and lumen of the aneurysm results in either simplified measurements that focus on few salient features or time-consuming segmentation affected by high inter- and intra-operator variability. To overcome these limitations, we propose a model for segmenting AAA tissues automatically by using a trained deep learning-based approach. The model is composed of three different steps starting with the extraction of the aorta and iliac arteries followed by the detection of the lumen and other AAA tissues. The results of the automated segmentation demonstrate very good agreement when compared to manual segmentation performed by an expert.