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Abdominal aortic aneurysm (AAA) is one of the leading causes of death

worldwide. AAAs often remain asymptomatic until they are either close to

rupturing or they cause pressure to the spine and/or other organs. Fast

progression has been linked to future clinical outcomes. Therefore, a reliable

and e�cient system to quantify geometric properties and growth will enable

better clinical prognoses for aneurysms. Di�erent imaging systems can be

used to locate and characterize an aneurysm; computed tomography (CT)

is the modality of choice in many clinical centers to monitor later stages of

the disease and plan surgical treatment. The lack of accurate and automated

techniques to segment the outer wall and lumen of the aneurysm results

in either simplified measurements that focus on few salient features or

time-consuming segmentation a�ected by high inter- and intra-operator

variability. To overcome these limitations, we propose a model for segmenting

AAA tissues automatically by using a trained deep learning-based approach.

The model is composed of three di�erent steps starting with the extraction

of the aorta and iliac arteries followed by the detection of the lumen and

other AAA tissues. The results of the automated segmentation demonstrate

very good agreement when compared to manual segmentation performed by

an expert.

KEYWORDS

abdominal aortic aneurysm, computed tomography imaging, deep learning, medical

image analysis, tissue characterization

1. Introduction

Abdominal aortic aneurysm (AAA) is defined as a focal dilation of the aorta where

the maximum diameter exceeds the normal diameter by at least 1.5 times (1). When not

diagnosed and treated, an aneurysm may continue to enlarge until it ruptures, resulting

in significant mortality and morbidity (2). AAA is accompanied by the alteration of

the major structural proteins (elastin and collagen) in the aortic wall, which results

in irreversible enlargement and loss of structural integrity. The majority of aneurysms

are characterized by the presence of intraluminal thrombus (ILT), which is associated
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with hypoxia and is a locus of inflammatory processes that

contribute to arterial wall weakening and growth (1–3).

Calcification is often present in AAAs and is recognized as one of

the factors contributing to the progression of aneurysmal disease

through local stiffening and stress concentration (4, 5).

The presence of an aneurysm and its progression are

normally assessed using CT imaging. Figure 1 shows an axial

image from a CT scan of the abdomen of a patient. The

aorta, a small fraction of the whole image, is located anteriorly

to the spinal column and is composed of the wall, lumen,

ILT, and calcification. The adoption of a three-dimensional

assessment of the aorta is limited by the lack of standardized

automated segmentation tools for the aorta, in particular for the

aortic wall (6).

Several traditional machine-learning methods have

been proposed to segment the different surfaces and

volumes comprising the aneurysm, including the wall-to-

lumen/thrombus interface and the lumen volume. Applications

have included graph cut theory (7, 8), intensity- and gradient-

based segmentation approaches (9), and variable neighborhood

search (10). Many studies have focused on identifying the ILT as

the wall-to-ILT surface is difficult to segment due to similarities

in the image intensity with neighboring structures. The ILT was

segmented using a trained deep convolutional neural network

(CNN) on post-operative CT images by López-Linares et al.

(11). A level set method was applied to detect the ILT and the

outer wall boundary by Zohios et al. (12). A segmentation of

the lumen and ILT was also achieved using an active contour

approach by Lareyre et al. (13). A semi-automatic interactive

image segmentation method was proposed by Maiora et

al. (14) to detect the aorta. In this approach, the gray level

co-occurrence matrix (GLCM) and the local binary patterns

were used as features to train a random forest classifier. An

intensity-based approach followed by neural networks was

used to detect the lumen and wall contours by Shum et al.

(15). Another contour-based segmentation approach to extract

the aorta was proposed by Drapikowski and Domagala (16).

An interactive segmentation model based on active shape was

developed to extract the AAA tissues after manual segmentation

of the first slice of the CT stack by de Bruijne et al. (17). A

semi-automatic, interactive image segmentation model was also

proposed by Maiora et al. (18) to detect lumen and ILT.

One recurring feature of published methods to segment

the aortic wall is the need for some user intervention

(semi-automated methods). Another commonality is

the use of pre-processing steps, often used to define

thresholds. These methods lack generality due to the possible

inconsistencies between operators and the considerable

geometrical and structural variability among different

patients’ aneurysms.

More recently, convolutional neural networks have been

proposed for AAA segmentation from CT images (19–

23). CNNs are very good feature extractors and good

classifiers to discriminate between various extracted tissues,

but they are not recommended for detecting and segmenting

different tissues.

Finally, there are a few published examples of deep

convolutional neural networks to segment the aorta,

for example, the work by López-Linares et al. (24). In

another recent study, thrombus segmentation using a

region-based convolutional neural network was performed

by Hwang et al. (25). A thrombus segmentation model

followed by lumen segmentation using a U-net was

proposed by Brutti et al. (26). Most of these recent studies

approach the segmentation by directly segmenting the

thrombus first. The ILT has a very irregular morphology

and inconsistent tissue properties that vary considerably

from patient to patient and even within one patient.

Therefore, starting the segmentation directly by detecting

the thrombus, results in training the model on very

inconsistent features.

This study proposes a fully automatic segmentationmodel to

segment the whole AAA. The model first detects the “aorta” as

a whole, including the aortic wall, ILT, lumen, and calcification,

and masks the original image to remove all surrounding similar

organs and structures for more precise wall segmentation. This

allows the subsequent networks to concentrate on identifying

the wall, ILT, lumen, and calcification within an image that

comprises only the aorta.

2. Materials and methods

For the purpose of this article, the ROI was defined as the

abdominal aorta including wall, lumen, ILT, and calcification

from the celiac artery to the common iliac arteries, and the

external and internal iliac arteries. The proposed model is

composed of four trained networks. The first network receives

the original CT image to detect and extract the ROI including the

abdominal aorta and iliac arteries. Histogram equalization was

performed on the input images to ensure that the trained model

will be generalized to CT images from different CT scanners. The

output of the first network is received by the second network

to detect and extract the lumen. By extracting the lumen from

the ROI, the remaining tissue is a combination of wall and ILT

(ILT/wall). The third network receives the extracted ILT/wall

and categorizes it slice-by-slice as calcified if any calcification is

detected. Otherwise, the ILT/wall is categorized as non-calcified

(Figure 2). A final fourth network was trained separately for

landmark detection. This network receives the original CT

image to detect and extract the ROI including the abdominal

aorta, iliac, celiac, and renal arteries. The celiac and renal

arteries are considered landmarks. The model architecture and

segmentation steps are shown in Figure 2.

Experiments were performed according to the following

steps: 1. Designing the model. 2. Fine-tuning and transfer
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FIGURE 1

Axial acquisition of an abdominal CT scan showing an AAA. The

aorta is a small fraction of the whole image and is composed of

the lumen (black), ILT (blue), wall (green), and calcification

(orange).

learning to adapt a pre-trained network to our segmentation

problem. 3. Training and validation of the networks at each step

of the model. 4. Evaluating the performance of the final trained

model on a set of 19 new patients that were not involved in

any of the training, validation, and test sets. 5. Selecting two

challenging cases and evaluating the performance of the final

model on challenging cases. 6. Evaluating the performance of the

proposed segmentation model on an external cohort of patients

from a different institution. All the experiments were performed

in MATLAB R2021b.

2.1. Data collection

The experiments were performed on 6030 CT slices from

abdominal CT scans obtained from 56 different patients with

AAA. Image acquisition was performed at the Peter Lougheed

Centre in Calgary, Alberta, Canada.

The studies involving human participants were reviewed

and approved by the Conjoint Health Research Ethics

Board (CHREB), University of Calgary. Written informed

consent to participate in this study was provided by the

patient/participants.

The imaging protocol consisted of retrospectively gated

multi-phase CT angiography (64-row helical GEMedical System

CT scanner) with variable radiation dose to capture the R-R

interval, with spatial resolution of approximately 0.7× 0.7× 2.0

mm. Notably, some scans had lower or higher image resolution

varying from 0.6 × 0.6 × 2 mm to 0.9 × 0.9 × 2 mm. Gantry

rotation time was equal to 0.35 s. Inclusion criteria were patients

with diagnosed AAA from 2016 to 2020, aged 18+, and no prior

aortic surgery.

We evaluated the generalizability of the algorithm

performance on CT images obtained from 19 different patients

that were not included in any of the training, validation, and test

sets. This dataset had the same inclusion criteria.

As an external validation, we evaluated the performance

of our proposed segmentation model on CT images obtained

from six AAA patients with imaging performed at a different

center. The images were collected from Centre hospitalier de

l’Université de Montréal (CHUM) using TOSHIBA CT scanner

with a spatial resolution of 0.8 x 0.8 x 0.8 mm.

Due to the retrospective nature of the study, we have

demographic information only on a subset of 47 patients. The

mean age±standard deviation is 77.4 ± 8.0. Also, five out of 47

patients are female.

All data were annotated by an expert operator using the

commercial segmentation software Simpleware (Simpleware

ScanIP, R-2020.09). On a subset of 10 patients, the manual

annotations were validated pixel-by-pixel by an experienced

vascular radiologist. The segmentation accuracy was deemed

acceptable by the radiologist to be used as ground truth. To

further verify the quality of the expert operator segmentation,

an additional operator was trained, and inter-operator variability

was quantified by comparing the masks obtained by the two on

19 patients.

2.2. Detection and extraction of the ROI

Inspired by the study of Chen et al. (27), we employed a

Resnet-based fully convolutional network (FCN) with dilated

convolutions. This network, an encoder–decoder with dilated

convolution based on ResNet-18 architecture, was used as a

pre-trained network. The model was developed in two steps:

design of the model and transfer learning. First, we trained the

model in different steps by detecting the ROI, which is the whole

aortic structure including a combination of the aortic wall, ILT,

lumen, and calcification. This way, the model searches for a

combination of the aortic wall, lumen, ILT, and calcification as

an extra feature, which helps remove all surrounding structures

and organs with almost the same gray-scale level as the

aortic wall. As a consequence, in the next steps, all other

tissues including ILT, wall, and lumen can be segmented more

accurately. Transfer learning and fine-tuning were performed

by initializing the weights of the networks at each step by the

weights of the pre-trained network and finding the optimal

learning parameters. Each network is composed of stacked

complex building blocks, each consisting of a combination of
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FIGURE 2

Visual representation of the network architecture and output for AAA tissue segmentation.

convolutional layers with kernel sizes of 1×1 and 3×3. The

output features from each building block are concatenated

into a single vector, which is the input of the next block.

1×1 convolutions were used for dimensionality reduction. The

factorization of convolutions into small convolutions reduced

the number of parameters as well as the computational cost

while maintaining high efficiency. Dilated convolutions were

used instead of standard convolutions for a larger field of

view with the same computational cost, stride, and number of

parameters as the standard convolution. This resulted in denser

output features and higher segmentation performance. Dilated

convolution was applied as follows:

y[i] = 6kx[i+ r.k]w(k) (1)

where x is the input feature map and y is the output feature map.

Dilated convolution was applied with a convolutional filter w

over the input feature map x at each location i of the output

feature map y for dimensionality reduction and providing a

larger field of view.

We started fine-tuning from deeper network layers using

grid searching for an extensive interval of values. Upper layers

in the network architecture are responsible to extract more

generic features of the images such as edges, borders, and

shapes, which are common attributes in various applications.

Caution was taken to allay over-fitting concerns in consideration

of our small patient data set. The weights of all other layers

remained constant by forcing the learning rates to zero for

those layers. The learning process was performed using Adam as

the model optimization algorithm. The optimization algorithm

is used to minimize the loss function. The most important

learning parameter that controls the adjustment of the model

according to the updated weights at each iteration is the learning

rate. The scheduling rate controls the learning rate at the

end of each epoch according to the behavior of the learning

curves and model convergence. In fast model convergence, the

scheduling rate can be decreased after a few epochs but in slow

convergence, a larger scheduling rate is required. Momentum is

another parameter to be considered. Momentum is responsible

to control the step sizes, while the optimization algorithm is

searching for the global minimum. Small values of momentum

may result in sub-optimal results since the algorithm can

reach a local minimum by taking a small searching step and

incorrectly consider it as the global minimum. The optimal

learning parameters were obtained by evaluating the model

performance on the validation set for each assigned value. The

optimal learning parameter was determined to be 0.02. The

momentum and scheduling rate were assigned as 0.8 and 0.9 at

each step of the fine-tuning. The dilation rate was assigned as 2

and 4 for the last two blocks. An up-sampling factor of 4 was

assigned to the decoder to up-sample the encoder output. The

output of the decoder was combined with the low-level features

after applying 1 x 1 convolution. The ROI was labeled as the

first class and all the other surrounding tissues and the image

background were labeled as the second class. Since the ROI is

a small fraction of the whole image, we considered weighted

loss functions. The performance of the network was evaluated

by using both weighted cross-entropy and weighted generalized

dice as loss functions. Weighted cross-entropy demonstrated

better performance with the weight defined as follows:

w = (N − 6npn)/6npn (2)

where N is the number of images annotated as foreground

with predicted probabilistic map elements pn. Adam network
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optimizer was applied with L2 regularization of 0.0005, mini-

batch size of 8, and validation patience of 6. The dataset was split

into training, validation, and test sets. A total of 80% of the data

was randomly selected for training, and the remaining 20% was

split into two for validation and test sets. To avoid any bias, we

ensured that there was no overlap between the three datasets.

To validate the performance of the model on new patients’ data,

leave-one-out cross-validation was performed by leaving one

patient data as the validation set and training the model on the

data of all the other patients. This process was repeated 32 times

for a subset of 32 different patients used in this study. To evaluate

the results, at each step of the work, we measured the per-

class accuracy, sensitivity, specificity, BF-score, and intersection-

over-union (IoU) score based on the obtained confusion matrix

as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Sensitivity =
TP

TP + FN
(4)

Specificity =
TN

TN + FP
(5)

Precision =
TP

TP + FP
(6)

BFscore =
2× Precision× Sensitivity

Precision+ Sensitivity
(7)

IoUscore =
TP

TP + FP + FN
(8)

where TP, FP, FN, and TN are true positive, false positive, false

negative, and true negative, respectively, for each patient.

2.3. Lumen, wall, and calcification
detection

In this step, we segmented and extracted the lumen from

the ROI. By extracting the lumen from the ROI, the remaining

tissues are a combination of ILT and wall (ILT/wall). The

same configuration of Resnet-based FCN was adapted in this

step for lumen segmentation. The output of the previous step

(extracted ROI including the whole aortic structure) was fed

into the network for further processing to detect and extract

the lumen. The lumen and the image background were labeled

as the foreground and background, respectively, to train the

model. A total of 80% of the data was used as the training

set, and the remaining 20% was split into the validation and

test sets. The results were validated by measuring the per-class

accuracy, sensitivity, specificity, BF-score, and IoU-score using

the obtained confusion matrix. Leave-one-out cross-validation

was performed, and the process was repeated 32 times for a

sub-set of 32 different patients used in this study.

In the next step, we evaluated the extracted ILT/wall to

discriminate between calcified and non-calcified regions. Since

calcification may not occur in all images, it is not efficient

to train an FCN with a small number of images to detect

calcification. With the existing dataset, we chose to discriminate

between calcified and non-calcified ILT/walls by extracting deep

features from all the extracted ILT/walls and training a classifier

to consider the similarity between deep features and classify

the calcified vs. non-calcified slices. Deep features are apt to

describe various tissues and are strong discriminators. In CNN,

the defined filter at each convolutional layer is responsible to

move along the whole image with a defined stride and create a

feature map. The upper layers of the network are responsible

to extract abstract-level image information such as borders,

shapes, and corners, while deeper layers are responsible to

extract detailed image information such as complex texture

features. A combination of a CNN as a feature extractor and

a feed forward neural network as the classifier was applied. All

the extracted ILT/walls were labeled manually as calcified or

non-calcified. To be consistent in using the networks, we used

features from the ILT/walls that were detected and extracted

in the previous step. The extracted deep features were fed to

a feed-forward neural network with 479 hidden layer neurons,

which acts as the classifier. To find the optimal hidden size for

the network, we evaluated the performance of the network for

an extensive interval of hidden size values from 100 to 500.

The training process was based on the scaled conjugate gradient

method, while the parameter Sigma estimates the weight change

for the second derivative approximation. To obtain the optimal

value of Sigma, the performance of the classifier was evaluated

by assigning various values from 0.0001 to 0.01. The highest

performance of the network was obtained for the value of

0.085. The training was performed for 1,153 epochs, with a

maximum validation failure of 191. For the number of epochs

and validation failures, the performance of the network was

evaluated for values ranging from 1 to 2,500 and 0 to 500,

respectively.

2.4. Landmark detection

For added generality, we decided to perform the landmark

detection separately from the rest of the structures in the aorta.

The location of celiac and iliac arteries were considered as

landmarks. Automated segmentation lends itself to be used

successfully in accurately determining changes from baseline to

follow-ups if appropriate landmarks are identified and labeled

to ensure that the same segments of the aorta are evaluated

for both baseline and follow-up. In addition, the renal artery

was also included as a landmark because it is used by clinicians

Frontiers inCardiovascularMedicine 05 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1040053
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Abdolmanafi et al. 10.3389/fcvm.2022.1040053

FIGURE 3

Visual representation of each network output for segmenting the ROI including the abdominal aorta, lumen, ILT, and wall. Calcification

accumulation in ILT and wall was determined in the final step.

when planning surgical repair. To detect landmarks, the same

configuration of the first network was trained to segment the

aorta, iliac, celiac, and renal arteries as the ROI. Eighty percent

of the data was selected randomly as a training set, and the

remaining 20% of data was split equally into validation and

test sets. We ensured that there was no overlap between any of

the training, validation, and test sets. To evaluate the landmark

network performance, the output of the network was compared

against the ground truth by measuring accuracy, sensitivity,

specificity, BF-score, and IoU-score on the test set.

3. Results

In the first step of the model, we segmented and extracted

the ROI including the abdominal aorta and iliac arteries using a

Resnet-based FCN (Figure 3). The measured per-class accuracy,

sensitivity, specificity, BF-score, and IoU-score for the extraction

of the ROI are shown in Table 1. Leave-one-out cross-validation

was performed by leaving one patient data as the validation set

and training the model on the data of all the other patients.

The measured accuracy over all 32 patients was obtained as 0.94

± 0.04. A network with the same configuration was trained in

the second step to detect the lumen from the extracted ROIs

(Figure 3). The measured accuracy, sensitivity, specificity, BF-

score, and IoU-score for lumen extraction are shown in Table 1.

At this step, leave-one-out cross-validation was performed, for a

sub-set of 32 different patients used in this study. The measured

accuracy over all 32 patients was obtained as 0.95 ± 0.03.

Finally, a neural network was trained to classify the ILT/walls

as calcified or non-calcified (Figure 3). The results are shown in

Table 2.

The results of landmark detection are shown in Table 1

and Figure 4. The final 3D reconstruction was performed in

Simpleware (Synopsis) following the extracted ROIs for four

different patients using our proposed automatic segmentation

algorithm (Figure 5) only to visualize the results of our proposed

segmentation model in 3D.

After preparing the network architecture and finding the

optimal parameters and training options, the performance
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TABLE 1 Measured accuracy, sensitivity, specificity, BF-score, and IoU-score to evaluate the performance of the segmentation model.

Tissues under review Accuracy Sensitivity Specificity BF-Score IoU-Score

Aorta 0.99± 0.01 0.98± 0.02 0.99± 0.01 0.97± 0.03 0.98± 0.02

Lumen 0.98± 0.01 0.97± 0.03 0.99± 0.01 0.99± 0.01 0.97± 0.03

Landmark 0.99± 0.01 0.97± 0.03 0.99± 0.01 0.98± 0.02 0.97± 0.03

TABLE 2 Measured accuracy, sensitivity, and specificity for the

classification of calcified vs. non-calcified ILT/wall.

Tissues under
review

Accuracy Sensitivity Specificity

Calcified ILT/wall 0.91 0.91 0.90

Non-calcified

ILT/wall

0.85 0.81 0.90

of the final trained networks was evaluated on 19 different

patients with AAA. These patients were never introduced

to the trained networks. They were not included in any

of the training, test, or validation sets and were used

solely to evaluate the generalizability of the proposed model.

Measured accuracy, sensitivity, specificity, BF-score, and IoU-

score of all 19 patients are shown in Table 3. In these

19 patients, we selected two challenging cases to report

the model performance. Patients 1 and 2 were considered

challenging cases. Patient 1 presented a very tortuous aorta.

This tortuosity created a visual artifact in the axial CT

acquisition and resulted in a select number of images presenting

two lumens in the middle portion of the aorta. The iliac

bifurcation for patient 2 also presented some tortuosity,

with the two iliac arteries developing mostly in a horizontal

direction with respect to the acquisition plane instead of

the longitudinal direction. Therefore, the iliac arteries of

this patient did not appear as circular but as structures

elongated in the acquisition plane. The CT images of these

two challenging cases were used as the input of each

trained network. The mean and standard deviation of the

accuracy, sensitivity, specificity, BF-score, and IoU-score were

measured for each patient separately. The results are shown in

Tables 4–6.

We also evaluated the performance of the segmentation

model on an external cohort. The images were collected

from a different center and CT scanner that were never

introduced to the network and were not included in any of

the training, test, or validation sets. The results are shown in

Table 7.

Results of inter-operator variability are shown in Table 8.

This comparison was performed by comparing the masks

created by two expert operators.

4. Discussion

In this study, we proposed a fully automatic model to

segment the whole AAA. The following considerations were

taken into account in designing the model to improve the

existing limitations of recent studies. Most of the recent articles

started by training a deep learning model to segment and extract

the ILT/wall as a first step (24–26). The ILT is a complex

tissue with highly inconsistent properties. It is highly variable

among patients not only as a result of patient variability but

also as a result of the stage of disease progression and thrombus

formation. Furthermore, within the same patient we may have

ILT exhibiting different features (more or less porous, more

or less calcified) depending on how the ILT is responding

and adapting to the regional environment and also depending

on the deposition and formation stage of the thrombus. In

addition, the aorta is a small subset of an abdominal CT

scan image and many of the structures in view have similar

intensities. For this reason, the direct segmentation of the

ILT/wall is challenging and increases the need to include pre-

processing steps. We overcame this limitation by proposing a

model which segments and extracts the aorta including ILT/wall

and lumen in two main steps: 1. Segmenting and extracting

the whole aortic structure as the ROI in the first step. To

achieve this, in addition to the extracted deep features from

the ROI, we introduced an extra feature to the network to

look for the whole aortic structure as a combination of the

aortic wall, ILT, lumen, and calcification. The early detection

and extraction of the ROI removes all the surrounding organs

and structures resulting in precise and accurate detection of

the ILT/wall and lumen in the next step. 2. Training the

second network to receive the extracted ROI as the input

and recognize the lumen in the ROI. Once the lumen is

segmented and extracted from the ROI, the remaining tissue is

the ILT/wall.

The use of pre-processing steps for AAA images can lead to

problems due to the variations in the background at different

levels along the abdomen. Most pre-processing methods are

based on filtering and defining specific thresholds, which cannot

be generalized to a variety of CT acquisitions (8–11, 13, 19,

20, 22–24, 28, 29). Our only pre-processing step is histogram

equalization to ensure that the proposed segmentation model

can be applicable to different CT scanners.
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FIGURE 4

Visual representation of the landmark detection including the detection of the aorta, iliac, celiac, and renal arteries.

FIGURE 5

3D reconstruction obtained from the results of the automatic

segmentation model for four di�erent patients (A–D). For each

patient, the lumen is visualized in blue, the aortic ILT/wall is

transparent, while the celiac and renal arteries are shown in red

and yellow, respectively.

One of the improvements of our approach with respect

to many prior studies is that it does not employ patch-based

segmentation using CNNs (19–24). In a CNN-patch-based

segmentation, the patches will overlap in order to analyze all

the pixels, resulting in a redundant feature extraction which

is computationally expensive and time-consuming. Moreover,

since the input size is fixed in CNNS, the patch size needs to be

adapted to it.

Fully convolutional networks can overcome the limitations

of patch-based segmentation using CNNs. FCNs can be

trained on a smaller number of images with higher pixel-

wise segmentation precision. In FCNs, the pooling operators

are replaced by up-sampling operators to enhance the

output resolution. An arbitrary image size can be fed

to the network since there is no fully connected layer

involved in the network architecture and the network is

trained end-to-end, pixel-to-pixel to optimize the process

for accurate segmentation. One of the clearest advantages is

that extensive pre-processing is not necessary when using

FCNs. Another advantage of our method with respect to

existing FCN studies (24–26) is the automatic extraction of

the ROI using semantic segmentation, which greatly simplified

the subsequent steps of segmenting the structures inside

the aorta.

One of the main limitations of this study is the use of

2D segmentation, which may cause inconsistencies between

two adjacent slices. To address the limitations of our

proposed model, we plan on implementing a 3D version

of the networks, once a sufficient number of patients is

available. Future improvements can also be achieved by

training on more data from different CT scanners and

different institutions.

A possible future advantage of using a fully automatic

segmentation model is to eliminate the need for a

contrast agent during CT angiography imaging since

the detection of the AAA tissues is not done visually.

The automatic model can detect various tissues by

recognizing their features including shape, borders, and

detailed texture instead of relying mainly on differences in

pixel intensities.

5. Conclusion

This study was focused on developing an automatic

deep learning-based segmentation model for the segmentation

of the whole AAA, including the wall, lumen, ILT, and

calcification in the aorta and iliac arteries. The proposed

model overcomes many existing limitations of automated

segmentation models by introducing a first step of detecting

and extracting the full aortic structure from the image. Future

studies will focus on extending the fully automatic segmentation

model to cover other aortic diseases including thoracic AA

and dissections.
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TABLE 3 Measured accuracy, sensitivity, specificity, BF-score, and IoU-score to evaluate the model performance on 19 di�erent patients, which

were not included in any of the training, test, and validation sets and were only used for algorithm verification.

Tissues under review Accuracy Sensitivity Specificity BF-Score IoU-Score

Aorta 0.94± 0.06 0.88± 0.09 0.99± 0.01 0.92± 0.08 0.88± 0.09

Lumen 0.96± 0.04 0.92± 0.08 0.99± 0.01 0.93± 0.07 0.92± 0.08

Landmark 0.92± 0.06 0.84± 0.10 0.99± 0.01 0.86± 0.09 0.84± 0.09

We reported mean (±) std of measured accuracies, sensitivities, specificities, BF-scores, and IoU-scores in all 19 patients.

TABLE 4 Measured accuracy, sensitivity, specificity, BF-score, and IoU-score for the detection of the aorta in CT images of the two challenging

cases.

Patients Aorta accuracy Aorta sensitivity Aorta specificity Aorta BF-score Aorta IoU-score

Patient1 0.98± 0.02 0.95± 0.05 0.99± 0.01 0.92± 0.08 0.95± 0.05

Patient2 0.96± 0.04 0.91± 0.09 0.99± 0.01 0.89± 0.09 0.91± 0.09

TABLE 5 Measured accuracy, sensitivity, specificity, BF-score, and IoU-score for lumen detection in CT images of the two challenging cases.

Patients Lumen accuracy Lumen sensitivity Lumen specificity Lumen BF-score Lumen IoU-score

Patient1 0.99± 0.01 0.98± 0.02 0.99± 0.01 0.92± 0.08 0.98± 0.02

Patient2 0.96± 0.04 0.93± 0.07 0.99± 0.01 0.92± 0.08 0.93± 0.07

TABLE 6 Measured accuracy, sensitivity, specificity, BF-score, and IoU-score for the landmark detection including the aorta, iliac, celiac, and renal

arteries on CT images of the two challenging cases.

Patients Landmark
accuracy

Landmark
sensitivity

Landmark
specificity

Landmark
BF-score

Landmark
IoU-score

Patient1 0.97± 0.03 0.95± 0.05 0.99± 0.01 0.93± 0.07 0.95± 0.05

Patient2 0.96± 0.04 0.91± 0.09 0.99± 0.01 0.93± 0.07 0.91± 0.09

TABLE 7 Measured accuracy, sensitivity, specificity, BF-score, and IoU-score to evaluate the model performance on an external cohort of six

di�erent patients that were not included in any of the training, test, and validation sets and were only used for algorithm verification.

Tissues under review Accuracy Sensitivity Specificity BF-Score IoU-Score

Aorta 0.94± 0.06 0.88± 0.09 0.99± 0.01 0.88± 0.10 0.88± 0.09

Lumen 0.98± 0.02 0.96± 0.03 0.99± 0.01 0.91± 0.09 0.96± 0.04

Landmark 0.94± 0.05 0.88± 0.10 0.99± 0.01 0.90± 0.09 0.88± 0.10

We reported the mean (±) std of measured accuracies, sensitivities, specificities, BF-scores, and IoU-scores in all six patients.

TABLE 8 Inter-operator variability by comparison the segmentation masks created by two expert operators.

Operators Tissues under review Accuracy Sensitivity Specificity BF-Score IoU-Score

Operator1 VS Operator2 Aorta 0.98± 0.02 0.95± 0.05 0.99± 0.01 0.98± 0.02 0.95± 0.05

Lumen 0.94± 0.05 0.88± 0.10 0.99± 0.01 0.98± 0.02 0.88± 0.11

Landmark 0.97± 0.03 0.94± 0.06 0.99± 0.01 0.97± 0.02 0.94± 0.04

The results are reported as mean (±) std of all the measured accuracy, sensitivity, specificity, BF-score, and IoU-score for the CT images of all 19 patients.
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6. Patent

A PCT entitled “METHOD AND SYSTEM FOR

SEGMENTING AND CHARACTERIZING AORTIC

TISSUES” was filed with the international application number

PCT/IB2022/051558.
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