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Introduction: Modified Linggui Zhugan Decoction (MLZD) is a Traditional

Chinese Medicine prescription developed from Linggui Zhugan Decoction

(LZD) that has been used for the clinical treatment of ischemic cardiovascular

diseases. However, the cardioprotective mechanism of MLZD against post-

myocardial infarction (MI) ventricular remodeling remains unclear.

Methods: We explored the effects of MLZD on ventricular remodeling and

their underlying mechanisms, respectively, in SD rats with MI models and in

H9c2 cardiomyocytes with oxygen-glucose deprivation (OGD) models. The

cardiac structure and function of rats were measured by echocardiography,

HE staining, and Masson staining. Apoptosis, inflammation, mitochondrial

structure and function, and sirtuin 3 (SIRT3) expression were additionally

examined.

Results: MLZD treatment significantly ameliorated cardiac structure and

function, and thus reversed ventricular remodeling, compared with the

control. Further research showed that MLZD ameliorated mitochondrial

structural disruption, protected against mitochondrial dynamics disorder,

restored impaired mitochondrial function, inhibited inflammation, and thus

inhibited apoptosis. Moreover, the decreased expression level of SIRT3 was

enhanced after MLZD treatment. The protective effects of MLZD on SIRT3

and mitochondria, nevertheless, were blocked by 3-TYP, a selective inhibitor

of SIRT3.
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Discussion: These findings together revealed that MLZD could improve the

ventricular remodeling of MI rats by ameliorating mitochondrial damage and

its associated apoptosis, which might exert protective effects by targeting

SIRT3.

KEYWORDS

Modified Linggui Zhugan Decoction, myocardial infarction, ventricular remodeling,
mitochondrial damage, apoptosis

1. Introduction

Coronary artery disease (CAD) remains the leading cause
of death in developed as well as developing countries (1),
among which myocardial infarction (MI), one of the worst
heart diseases (2), accounts for the majority of CAD deaths
(1). Although 85% of the estimated 800,000 Americans who
suffer MI each year reportedly survive, these survivors are
left with cardiac dysfunction and a shortened life expectancy
(3). Cardiac remodeling is caused or exacerbated by a series
of pathological changes after MI, manifests pathologically as
myocardial hypertrophy and fibrosis, and results in cardiac
dysfunction, heart failure, malignant arrhythmia, and even
cardiac death (1, 4, 5). Despite the widespread clinical use of
multiple techniques, there is still a need for more effective
treatments (2).

Mitochondria are more commonly found in cardiomyocytes
than in other mammalian cells (6), and have been investigated
as therapeutic targets in myocardial infarction (7). Ischemic
oxidative damage leads to mitochondrial Ca2+ bursts, non-
selective mitochondrial permeability transition pore (MPTP)
opening, and mitochondrial membrane potential (MMP)
collapse (8). These mitochondrial changes above will lead to
the release of pro-apoptotic factors and thus apoptosis (9,
10). Apoptosis is closely associated with LV remodeling and
heart failure following acute myocardial infarction and is a
potential target for therapeutic intervention (11). Mitochondrial
fusion/fission, also described as the mitochondrial dynamics
that change rapidly in response to external damage and
metabolic status, is crucial to maintaining mitochondrial
homeostasis (12). Mitochondrial dynamics exert a significant
influence on the process of myocardial infarction, cardiac
hypertrophy, and heart failure (13–15).

Traditional Chinese Medicine (TCM) is regarded as
complementary and alternative medicine for the primary
and secondary prevention of cardiovascular diseases (16).
Linggui Zhugan Decoction (LZD) is a well-known TCM
formula that contains Poria, Ramulus cinnamomi, Rhizoma
atractylodis macrocephalae, and Radix Glycyrrhizae, which
was documented in Jin Gui Yao Lue, a classical work of
Zhongjing Zhang in the Han dynasty. LZD is deemed as one

of the effective and mild classic prescriptions for applying
in the clinical treatment of heart failure, and its efficacy has
been shown through clinical studies in HF patients (17–19).
Modern pharmacological studies revealed that LZD could
improve the structure and function of the heart, and reverse
the pathological progression of cardiac hypertrophy to heart
failure (17, 20). The Modified Linggui Zhugan Decoction
(MLZD) was modified from LZD, consisting of Radix astragali
[Astragalus membranaceus (Fisch.) Bge.], Panax ginseng [Panax
ginseng C. A. Mey.], Ramulus cinnamomi [Cinnamomum
cassia Presl], Poria [Poria cocos (Schw.) Wolf], Rhizoma
atractylodis macrocephalae [Atractylodes macrocephala Koidz.],
Rhizoma alismatis [Alisma orientalis (Sam.) Juzep.], Radix
salviae miltiorrhizae [Salvia miltiorrhiza Bunge.], Pericarpium
areca [Areca catechu L.], Semen lepidii [Lepidium apetalum
Willd.], and Radix angelicae sinensis [Angelica sinensis
(Oliv.) Diels], which exerts crucial protections on the heart.
For example, an extract of Radix astragali, calycosin, was
reported to inhibit neutrophil infiltration and protect heart
integrity in isoproterenol-induced MI by synergizing with
gallic acid (21). The cardioprotective effects of Panax ginseng
or ginsenosides have been reported, through preventing MI
and heart failure (22). The ethyl acetate extract of Ramulus
cinnamomi and its bioactive substance cinnamic acid play
a protective role in myocardial ischemia/reperfusion injury
(23, 24). Cinnamaldehyde, another core active ingredient of
Ramulus cinnamomi (25, 26), was revealed to protect against
MI injury as a transient receptor potential ankyrin 1 agonist
(27), and to protect rats from cardiac inflammation and fibrosis
through inhibiting Nod-like receptor pyrin domain 3 (NLRP3)
inflammasome activation (28). Atractylenolide I, an active
ingredient isolated from Rhizoma atractylodis macrocephalae,
protects against myocardial ischemia/reperfusion injury
by attenuating mitochondrial dysfunction and caspase-3
activity (29).

Nevertheless, what remains to be further explored is whether
MLZD can protect against ventricular remodeling after MI,
and the mechanisms through which it acts. Investigating these
important questions may be helpful in providing a promising
therapy for these heart diseases. In this work, we investigated
the underlying mechanisms of MLZD in ventricular remodeling,
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respectively using SD rats with MI models and H9c2 cells with
OGD models, seeking to verify our hypothesis that MLZD exerts
pharmacological effects targeting mitochondrial damage and
apoptosis, thereby alleviating post-MI ventricular remodeling.

2. Materials and methods

2.1. Screening of MLZD ingredients

Modified Linggui Zhugan Decoction ingredients were
screened via network pharmacology and qualitatively analyzed
via liquid chromatography-mass spectrometry (LC-MS)
analysis. From the Traditional Chinese Medicine System
Pharmacology (TCMSP) database,1 the chemical constituents
of 10 traditional Chinese medicines in MLZD were sequentially
retrieved. Referring to the screening conditions of TCMSP,
that is, oral bioavailability (OB) ≥ 30% and drug-likeness
(DL) ≥ 0.18, eligible potential active ingredients were obtained.
LC-MS analysis was subsequently performed. A hundred
milligrams of MLZD powder was dissolved in water (5 ml) with
the assistance of ultrasound. Then the solution was filtered. The
50 µl of the filtrate was diluted with MeCN to 1 ml, then it was
analyzed by LC-Mass (Waters Acquity ultra-performance LC).
The data was collected from the spectrum of positive charges.

2.2. Model induction of MI in rats

Male SD rats (200–220 g) were obtained from Beijing
Huafukang Biotechnology Co., Ltd (Animal license number:
SCXK(Beijing) 2020-0004) and fed adaptively for 3 days. A MI
model was induced through proximal left anterior descending
coronary artery (LAD) ligation as has been described (30,
31), which remains the most acceptable method in rodents
to explore the pathophysiology of acute myocardial infarction
due to its similarity to humans (32). Simply put, following an
intraperitoneal injection of sodium pentobarbital (40 mg/kg)
for anesthesia and then intubation, the heart was exposed via
a lateral thoracotomy, and finally, the LAD was ligated between
the pulmonary cone and left atrial appendage with a 5–0 nylon
suture (Shanghai Medical Suture Needle Factory Co., Ltd). Rats
in the sham-operated group underwent the same procedure but
without ligation. After the surgery, in addition to the sham-
operated group (Sham, n = 10), the surviving and successfully
modeled rats were randomly divided into the model group (MI,
n = 9) and the Modified Linggui Zhugan Decoction group
(MLZD, n = 9). All of the animals were housed under the same
conditions in a temperature-controlled room (24 ± 1◦C) with
a natural day/night cycle light and were given ad libitum access

1 https://old.tcmsp-e.com/tcmsp.php

to standard chow and water for 4 weeks. All the experimental
procedures were approved by the Institutional Animal Care and
Use Committee of Guang’anmen Hospital, China Academy of
Chinese Medical Sciences, in accordance with the regulations on
the management and use of experimental animals.

2.3. Preparation of MLZD and
interventions

The 10 drugs of the MLZD formula, including Radix
astragali (21081961), Panax ginseng (21040161), Ramulus
cinnamomic (21092511), Poria (21102131), Rhizoma
atractylodis macrocephalae (21100541), Rhizoma alismatis
(21090051), Radix salviae miltiorrhizae (21080651),
Pericarpium areca (21081271), Semen lepidii (21071351)
and Radix angelicae sinensis (21082271), were purchased from
Jiangyin Tianjiang Pharmaceutical Co. Ltd. (Jiangsu, China) or
Sichuan New Green Pharmaceutical Science and Technology
Development Co. Ltd. (Sichuan, China), which met the grade
standards of the Chinese Pharmacopoeia. These drugs were
provided by the Chinese Pharmacy of Guang’anmen Hospital,
China Academy of Chinese Medical Sciences (Beijing, China),
and the voucher specimens of all drugs were deposited at the
Cardiovascular Laboratory, Guang’anmen Hospital, China
Academy of Chinese Medical Sciences (Beijing, China). The
clinical dose of MLZD was 190 g, with 30, 10, 10, 30, 15, 30, 20,
15, 15, and 15 g for Radix astragali, Panax ginseng, Ramulus
cinnamomi, Poria, Rhizoma atractylodis macrocephalae,
Rhizoma alismatis, Radix salviae miltiorrhizae, Pericarpium
areca, Semen lepidii, and Radix angelicae sinensis, respectively.
In reference to previous studies (33), the MLZD dose was
calculated by the equation: Dm = Dh/W × F. Where Dm was
the administrated dose of MLZD for rats, Dh was the clinical
dose of MLZD, W represented the weight of the human body
that was set as 60 kg, and, F was the dose conversion factor that
was 6.3 between rats and humans. The drug was dissolved in
distilled water and administered at a dose of 19.95 g/(kg day)
in this study. The rats were therefore treated with MLZD via
gavage once daily starting on the first postoperative day for 4
weeks. Rats in the sham and MI groups were fed equal volumes
of physiological saline solution.

2.4. Echocardiography and specimen
collection

After 28 days of continuous intragastric administration,
the cardiac structure, and function of rats were determined
by non-invasive transthoracic echocardiography in M-mode,
implementing a Vevo-2100 high-resolution echocardiography
system (Visual Sonics Inc., Canada). Following being
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anesthetized with sodium pentobarbital (40 mg/kg), two-
dimensional echocardiograms of the left ventricular (LV)
long-axis were recorded at the level of the papillary muscle
tips for detecting LV ejection fraction (LVEF), LV fractional
shortening (LVFS), LV end-diastolic anterior wall thicknesses
(LVAW; d), LV end-systolic anterior wall thicknesses (LVAW;
s), LV end-diastolic internal diameters (LVID; d), LV end-
systolic internal diameters (LVID; s), LV end-diastolic volume
(LV Vol; d) and LV end-systolic volume (LV Vol; s). These
echocardiographic parameters were obtained by averaging the
corresponding parameters of three cardiac cycles.

After echocardiography, the rats were immediately
euthanized and their hearts were excised, cut off attachments,
irrigated clean with cold saline buffer, measured for weight and
size, and transected into two parts at the maximum transverse
diameter. The upper part of cardiac tissue was fixed with
4% paraformaldehyde (P1110, Solarbio, CHN) at 4◦C for
examinations like histopathology and immunohistochemistry,
and the apex part was stored at −80◦C or fixed with 2.5%
glutaraldehyde (P1126, Solarbio, CHN) for western blot
analyses, transmission electron microscopy, and the like. The
tetramethylrhodamine methyl ester (TMRM) staining should
be performed immediately with fresh heart tissue.

2.5. Histopathology,
immunohistochemistry, and TUNEL

After being fixed in 4% paraformaldehyde overnight,
myocardium, liver, and kidney specimens were dehydrated,
rendered transparent, embedded with paraffin, and cut into 4-
µm-thick transverse sections for hematoxylin and eosin (HE)
and Masson staining. The specimens were eventually observed
under an optical microscope to assess histopathological changes,
and Image J software (National Institutes of Health, USA) was
used to quantify the ratio of the blue-positive stained region to
the entire surface, which reflected the severity of cardiac fibrosis.

For detecting several crucial proteins through
immunohistochemistry, the paraffin slices were boiled in
an autoclave for 3 min to repair the antigen. The slices
were afterward placed at 60◦C for 2 h, deparaffinized, and
hydrated with xylene and ethanol, followed by phosphate-
buffered saline (PBS) and double-distilled water to wash the
retrieved nuclear antigen. Following that, the samples were
incubated with primary antibodies overnight at 4◦C: SIRT3
antibody (1:200, 2627S, Cell Signaling, USA), anti-mitofusin
2 antibody (10 µg/ml, ab101055, Abcam, UK), phospho-
Drp1 (p-Drp1) antibody (1:100, 4867S, Cell Signaling, USA),
anti-Bax antibody (1:60, BM3964, BOSTER, CHN), and
anti-Bcl-2 antibody (1:500, 26593-1-AP, Proteintech, CHN).
The samples were then interacted with HRP-conjugated goat
anti-rabbit immunoglobulin G (IgG) at 37◦C for 30 min,

followed by staining with diaminobenzidine (DAB) detection
kit (ZLI-9017, ZSGB-BIO, CHN).

Apoptosis in cardiac tissue was eventually analyzed via
terminal deoxynucleotidyl transferase-mediated dUTP nick
end labeling (TUNEL) staining using a TUNEL kit (Roche,
Switzerland) according to kit protocols. Images were observed
under a microscope (Olympus, Japan), and the ratio of apoptosis
in randomly selected visual fields was quantified using Image J
software (National Institutes of Health, USA).

2.6. Transmission electron microscopy

The ultrastructure of cardiomyocytes was observed utilizing
a transmission electron microscope (TEM) as has been
described (34–36). Briefly, the heart tissues were sectioned into
small granules less than 1 mm3, fixed in 2.5% glutaraldehyde
(P1126, Solarbio, CHN) for 24 h, and then washed in
PBS. After that, the tissues were secondary fixed with 1%
osmium tetroxide, dehydrated with graded ethanol, embedded
in the ultra-thin epoxy part, sliced, uranyl acetate stained,
and eventually photographed using a transmission electron
microscope (Hitachi, Japan). The mitochondrial numbers and
average mitochondrial areas were analyzed and quantified with
Image J software.

2.7. Cell culture and treatments

H9c2 cells (CL-0089, Procell, CHN) were cultured in
Dulbecco’s modified Eagle’s medium (DMEM, 11995, Solarbio,
CHN) containing 10% fetal bovine serum (FBS,16000044,
Gibco, USA) and 1% streptomycin-penicillin (P1400, Solarbio,
CHN) at 37◦C in a 5% CO2 atmosphere. Oxygen-glucose
deprivation (OGD) was performed to emulate the MI model
in vitro (37, 38). Briefly, cells were incubated with glucose-free
and FBS-free DMEM (11966025, Gibco, USA) and low-oxygen
incubator (5% CO2, 1% O2, and 94% N2), at 37◦C for 4 h.
After that, the culture solution was replaced with standard
culture media or treated with MLZD, in normoxic conditions
for another 24 h. The cells were divided into seven groups:
CON, OGD, 3-TYP (1 µM, IT1960, Solarbio, CHN), OGD+3-
TYP, MLZD, OGD+MLZD (0.5 mg/ml), and OGD+MLZD+3-
TYP. 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP) is a selective
inhibitor of SIRT3 (39, 40), and its dosage was based on previous
studies (40).

2.8. Cell viability assay

Cell viability was evaluated with the Cell Counting
Kit-8 (CCK-8) (CK04, Dojindo, Japan) according to the
manufacturer’s instructions. Briefly, H9c2 were inoculated in
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96-well plates at a density of 3,000 cells/well and cultured
for 48 h. Then, the cardiomyocytes were treated as described
above. Hundred microliter mixture (90 µl DMEM+10 µl CCK8
solution) was then added to each well and incubated at 37◦C
for 1–4 h. The absorbance was eventually measured with a
microplate reader (Rayto, CHN) at 450 nm. Cell viability was
expressed as the percentage of OD450 values in the control
group, which was set at 100%.

2.9. Measurement of mitochondrial
electron transport chain complex I and
IV, and ATP content

Concentrations of cytochrome c oxidase (Complex IV)
in cardiomyocytes were determined using a Rat Cytochrome
C Oxidase ELISA kit (RJ16349, RENJIEBIO, CHN). The
standard substance at known concentrations, cell supernatant
and enzyme-conjugate reagents were pipetted into the wells
of microplate strips, and incubated for 60 min at 37◦C.
Then bound enzyme and chromogenic substrate was added
successively. Finally, the OD450 values were detected that
correspond to the complex IV concentration.

According to the manufacturer’s instructions of
Mitochondrial Complex I Activity Detection Kit (BC0515,
Solarbio, CHN), cells were collected to the extracting solution
for homogenization, centrifugation, and ultrasonic crushing.
After adding samples and detection reagents into the 96-well
plate, the OD340 values in 10 s and 2 min were recorded,
respectively, as A1 and A2. Complex I activity (U/mg
prot) = 2680 × (A1 − A2)/Cpr. Where Cpr was the protein
concentration of samples.

Based on the instructions of Adenosine Triphosphate (ATP)
Chemiluminescence Assay Kit (E-BC-F002, Elabscience, CHN),
the cells were collected and mixed in the extracting solution,
then bathed in boiling water for 10 minutes, centrifuged, and
diluted of the supernatant. After adding enzyme reagents,
standard solutions, and samples into the 96-well enzyme label
plate, the fluorescence values of each well were measured on the
chemiluminescence detector.

2.10. Measurement of mitochondrial
membrane potential

Mitochondrial membrane potential was detected by
tetramethylrhodamine methyl ester(TMRM) staining as
described in a previous study (41). Fresh myocardium
specimens were cut into 4-µm-thick frozen sections and fixed
with 80% ethanol. As for H9c2, they were seeded onto 24-well
plates until 80% confluence. After that, the heart tissue or
cardiomyocytes were washed with tap water and distilled water
successively and then incubated with TMRM at 37◦C for 1 h.

Fluorescence was subsequently monitored and quantified using
laser confocal microscopy and Image J software, respectively.
The decreased fluorescence intensity implied mitochondrial
membrane depolarization because in normal cells TMRM
accumulates in mitochondria and emits bright orange-red
fluorescence but the fluorescence weakened significantly when
mitochondrial membrane potential decreased.

2.11. Western blot analyses

A total of 20 µg of protein extract from myocardial
tissues and cardiomyocytes was separated using a 10% Omni-
easyTM one-step PAGE gel rapid preparation kit (PG212,
Epizyme, CHN) and then transferred to the 0.22 or 0.45 µm
PVDF membranes (YA1700/YA1701, Solarbio, CHN). The
PVDF membranes were subsequently blocked with 5% nonfat
dry milk (9999S, Cell Signaling, USA) at room temperature
for 2 h and incubated with primary antibodies at 4◦C
overnight: anti-SIRT3 antibody (1:1,000, 2627S, Cell Signaling,
USA), anti-SOD2/MnSOD antibody (1:2,000, ab16956, Abcam,
UK),anti-mitofusin 2 antibody (1 µg/ml, ab101055, Abcam,
UK) or anti-mitofusin 2 antibody (1:1,000, bs-2988R, Bioss,
CHN), phospho-Drp1 (p-Drp1) antibody (1:1,000, 4867S,
Cell Signaling, USA), Drp1 antibody (1:5,000, 12957-1-AP,
proteintech, CHN), COX IV antibody (1:1,000, 4850S, Cell
Signaling, USA), PGC-1α antibody (1:1,000, ab54481, Abcam,
UK), PPAR-γ (1:500, WL01800, Wanleibio, CHN), cytochrome
c antibody(1:1,000, 11940S, Cell Signaling, USA), cleaved
caspase-3 antibody (1:1,000, 9664S, Cell Signaling, USA),
anti-Bax antibody(1:700, WL01637, Wanleibio, CHN), anti-
Bcl-2-antibody (1:500, WL01556, Wanleibio, CHN), NLRP3
(1:500, R30750, NSJBIO, USA), ASC (1:1,000, DF6304, Affinity
Biosciences, CHN), caspase-1 (1:500, sc-392736, santa cruz,
USA), NFκB p50 (1:5,000, ab32360, Abcam, UK), NFκB
p65 (1:1,000, ab194726, Abcam, UK) and IL-1β (1:1,000,
AF5103, Affinity Biosciences, CHN). We next incubated
the PVDF membranes with the secondary antibody HRP-
conjugated goat anti-rabbit IgG (H&L) (1:10,000, bs-40295G-
HRP, Bioss, CHN) or goat anti-mouse IgG (H&L) (1:1,000,
A0216, Beyotime, CHN) at room temperature for 1 h. The
gels were finally visualized utilizing Gel DocTM XR+ System
(Bio-Rad, USA) and Image Lab Software (Bio-Rad, USA) with
clarity max western ECL substrate (1705062, Bio-Rad, USA),
followed by quantitative analysis with Image J software, and
the results expressed as density values were normalized to
GAPDH or tubulin.

2.12. Statistical analyses

Graphpad Prism software (version 8.0) was used for
statistical analysis, and the detection was repeated at least
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three times independently. The data were presented as the
mean ± standard deviation(x s). Comparisons among multiple
groups were performed through repeated one-way analysis of
variance (ANOVA), with P values <0.05 considered to be
statistically significant.

3. Results

3.1. Chemical composition of MLZD

To preliminarily identify MLZD ingredients and explore
their roles in protecting against ventricular remodeling, network
pharmacology and LC-MS analysis were implemented to detect
the bioactive components of MLZD in this study. Through
the TCMSP database, 112 active ingredients were obtained,
which are shown in Supplementary Table 1. Based on these
components, LC-MS analysis was conducted, and a total of
7 components were finally identified, including 2-isopropyl-
8-methylphenanthrene-3,4-dione, dan-shexinkum d, fumarine,
kaempferol, luteolin, β-sitosterol, and tanshinone iia. The LC–
Mass spectrogram of MLZD after extraction with ultrapure
water is shown in Figure 1.

3.2. MLZD improved cardiac structure
and functions after MI

We first implemented echocardiography and hemodynamic
analyses to monitor the establishment of MI models induced
by LAD ligation and the influences exerted by MLZD on
cardiac structure and function. Representative two-dimension
echocardiograms are shown in Figure 2A and comparisons of
corresponding parameters among three groups are illustrated
in Figure 2B. Four-week disposal-free feeding following
LAD ligation produced significant remodeling manifestations,
evidenced by augmentation in LVID;d, LVID;s, LV Vol;d, and
LV Vol;s. Other structural changes are represented by decreased
LVAW;d and LVAW;s. Furthermore, worse cardiac function
was found in rats of the MI group than that of the sham
group, according to deductions in LVEF and LVFS. However,
all these parameters were improved to some extent after MLZD
treatment versus the MI group, and no significant difference was
exhibited between the sham and MLZD groups.

3.3. MLZD ameliorated cardiac fibrosis
and remodeling

The heart appearance and results of heart weight to total
body weight ratios (HW/BW) revealed slightly enlarged hearts
in MI rats and improved conditions after MLZD intervention
(Figures 3A, B). Through HE staining of heart sections from

rats in each group, destroyed cardiomyocyte arrangement and
inflammatory infiltration were observed in the infarcted hearts.
Furthermore, the quantification of heart fibrosis exhibited
more collagen deposition and enlarged fibrosis areas in model
rats, which were evidenced by increased blue region. These
histopathological injuries were alleviated following MLZD
treatment to some extent, maintaining cardiomyocyte integrity
and relieving myocardial fibrosis (Figures 3C, D). These data
suggest that MLZD reversed cardiac fibrosis and remodeling
exacerbated following MI.

3.4. MLZD inhibits
mitochondrial-associated apoptosis

To further verify MI-induced myocardial damage and the
role of MLZD in this process, we examined whether apoptosis
occurred and its related pathways. As shown by results for
TUNEL staining in the heart tissue (Figures 4A, B), the
apoptosis rate in infarcted myocardium increased, while it was
ameliorated following MLZD intervention. Consistently, the
expression of the mitochondria-associated apoptotic proteins
was altered in the hearts of rats (Figures 4C–F). The results were
shown with increased levels of Bax, Cyt c, and cleaved caspase-3
but decreased Bcl-2 in the MI group, while the expression levels
were reversed in the drug intervention group.

3.5. MLZD ameliorates myocardial
inflammation

To verify the regulating effect of MLZD on myocardial
inflammation, inflammation-related proteins including NLRP3,
caspase-1, ASC, IL-1β, NFκB p65, and NFκB p50 in the
myocardial tissue of rats in three groups were detected.
As shown in Figure 5, the expression level of the above
inflammatory proteins was increased in the MI group, but
improved after drug administration.

3.6. MLZD repairs mitochondrial
damage

To examine the effects of MLZD on mitochondrial
morphology and dynamics changes, mitochondrial
ultrastructure was observed through an electron microscope,
and Mfn2, p-Drp1, PGC-1α, and PPAR-γ expression were
detected by western blot or immunohistochemistry. Intact
outer membrane and dense cristae of mitochondria were
mainly shown in the normal group, while more abnormal
mitochondrial morphologies were provoked in the MI rats
along with decreased mitochondria volume, disarrayed cristae,
and swollen matrix. The MLZD treatment gradually recovered
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FIGURE 1

The ingredients of Modified Linggui Zhugan Decoction (MLZD) were identified, and 7 active components were finally obtained.

the mitochondrial structure (Figure 6A). Further quantitative
analyses showed that MLZD significantly decreased the average
numbers of mitochondria but significantly increased their

average sizes (Figure 6B). Moreover, disturbed expression
of Mfn2 and p-Drp1, and decreased levels of PGC-1α and
PPAR-γ were induced by MI but substantially reversed via
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FIGURE 2

Modified Linggui Zhugan Decoction (MLZD) exerted protective effects on cardiac morphological abnormalities and dysfunctions.
(A) Representative images of echocardiographic measurements in three groups. (B) Quantitative analysis of cardiac structure and function via
echocardiography parameters, n = 9 or 10 per group. Data are mean ± standard deviation (x ± s); ∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001.

MLZD administration (Figures 6C–F). Superoxide dismutase 2
(SOD2) detection and TMRM staining were further performed
to assess mitochondrial antioxidant capacity and MMP. The
level of SOD2, along with MMP, decreased in the MI group
compared with the sham group but improved following MLZD
treatment (Figures 6G–J).

3.7. MLZD might achieve mitochondrial
protection via SIRT3

To clarify the possible pathways by which MLZD
ameliorates mitochondrial abnormalities, the relative protein
expression of SIRT3 in the cardiac tissue was detected
considering its regulation of mitochondria. The results revealed
the downregulated generation of SIRT3 in the MI rats compared

with the healthy ones, while treatment of MLZD blocked the
effect (Figure 7). These results suggested that SIRT3 could
be one of the targets of MLZD in mitochondrial oxidative
stress, mitochondrial dynamics disorder, MMP decrease,
mitochondria-induced apoptosis, and even the pathological
process of ventricular remodeling.

3.8. 3-TYP blocked the effects of MLZD
on promoting SIRT3 expression and
protecting cardiomyocytes

To determine the role of SIRT3 in MLZD-mediated
cardioprotection, H9c2 was treated with 3-TYP, a selective
inhibitor of SIRT3. The expression level of SIRT3 and cell
viability of treated cardiomyocytes were detected. As shown in
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FIGURE 3

Modified Linggui Zhugan Decoction (MLZD) ameliorated cardiac fibrosis and reversed ventricular remodeling. (A) The appearance of hearts in
three groups. (B) Ratios of heart weight to total body weight. (C) Representative images of HE and Masson trichrome staining, scale
bar = 200 µm. (D) Quantification of myocardial fibrosis by fibrosis area, n = 3 per group. Data are presented as mean ± standard deviation
(x ± s); ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001.

Figures 8A–D, MLZG stimulated SIRT3 expression in OGD
cells, but its effect was blocked by 3-TYP. In addition, 3-
TYP attenuated MLZD-mediated cardiomyocyte protection
(Figure 8E). To exclude the specific contribution of the
single elements, the effects of 3-TYP on normal or OGD
cardiomyocytes were evaluated, and the results showed that
3-TYP had no additional effects except inhibiting SIRT3.
According to MLZD vs. CON, in addition, MLZD showed no
significant adverse effects.

3.9. 3-TYP inhibited the protective
effects of MLZD on mitochondria

The effects of MLZD on mitochondria in OGD cells and the
role of 3-TYP in this process were evaluated by detecting Drp1,
p-Drp1, Mfn2, PGC-1α, cytochrome c oxidase subunit 4 (COX

IV), mitochondrial electron transport chain complex I and IV,
ATP content, and MMP. The results showed that in OGD model
cells MLZD alleviated increased Drp1 and p-Drp1 expression,
while it promoted Mfn2, PGC-1α, and COX IV expression.
However, this effect was reversed by the SIRT3 inhibitor 3-
TYP (Figures 9A,B). And 3-TYP additionally blocked the
protective effects of MLZD on complex I and IV, ATP, and MMP
(Figures 9C–G). Furthermore, in the present study 3-TYP and
MLZD showed no obvious adverse effects on normal or OGD
cardiomyocytes.

4. Discussion

Due to a lack of effective interventions, MI and MI-caused
ventricular remodeling have become serious health threats
worldwide. As a complementary and alternative medicine,
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FIGURE 4

Modified Linggui Zhugan Decoction (MLZD) ameliorated apoptosis. (A) TUNEL staining for heart tissue, scale bar = 50 µm. (B) Quantitative
analysis for apoptosis, n = 6 or 8 per group. (C,D) Immunoblot analyses of Bax, Bcl-2, Cyt c, and cleaved-caspase-3 in the hearts of different
groups. The widths of the images have been compressed at a ratio of 1:0.6. n = 4 or 6 per group. (E,F) Immunohistochemical analyses for
detecting Bax and Bcl-2 expression, n = 3 per group, scale bar = 100 µm. Data are represented as mean ± standard deviation (x ± s); ∗P < 0.05,
∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001.
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FIGURE 5

Modified Linggui Zhugan Decoction (MLZD) inhibits the expression of inflammatory proteins. (A,B) Western blot analyses of the expression of
NLRP3, caspase-1, ASC, IL-1β, NFκB p65, and NFκB p50 in cardiac tissue. The widths of the images have been compressed at a ratio of 1:0.6.
n = 3 or 4 per group. Data are represented as mean ± standard deviation (x ± s); ∗P < 0.05, ∗∗P < 0.01.

TCM has great potential to alleviate this health burden. In
this pharmacological study through in vivo experiments
in rats, we found that MLZD protected against post-MI
ventricular remodeling, in part by alleviating mitochondrial
injury and mitochondrial-associated apoptosis. Further
experimental verification revealed that the cardioprotective
mechanism of MLZD may be exerted partly by promoting
SIRT3 expression.

The active components of 10 TCM in MLZD were
analyzed by the TCMSP database and LC-MS analysis.
A total of 7 compounds were identified, including 2-
isopropyl-8-methylphenanthrene-3,4-dione, dan-shexinkum d,
fumarine, kaempferol, luteolin, β-sitosterol, and tanshinone IIa.
Studies have shown that kaempferol exerts protective effects
on cardiac/cardiomyocyte injury by inhibiting inflammation
mediated by STING/NF-κB (42), regulating miR-15b/Bcl-
2/TLR4 (43), and through some other mechanisms. Luteolin, a

falconoid compound, can exert myocardial ischemia protection
by reducing MI area, apoptosis, and inflammation (44). Luteolin
may additionally alleviate doxorubicin-induced cardiotoxicity,
including apoptosis, ROS accumulation, and mitochondrial
membrane potential collapse (45). β-Sitosterol may alleviate
cardiac necrosis and apoptosis by inhibiting inflammatory
responses and oxidative stress (46). In the animal experiments
to test the safety of the drug, there was no significant change
in weight and mortality of rats treated with MLZD, and no
obvious pathological changes were found by HE staining of
liver and kidney tissues (Supplementary Figure 1). In vitro
experiments, additionally, we first examined the viability of
H9c2 cardiomyocytes treated with MLZD alone without OGD,
and subsequently tested the effects of MLZD on OGD,
finding that MLZD had a protective effect on cell viability
(Supplementary Figure 2). Therefore, in the current study,
by referring to similar grouping schemes (17), the rats were
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FIGURE 6

(Continued)

divided into sham, MI, and MLZD groups, not setting the group
receiving MLZD without MI.

Cardiac dysfunction involving MI triggers maladaptive
myocardial responses—including fibrosis, wall thinning, and
ventricular dilation—which contribute to post-infarction
myocardial remodeling, thereafter leading to impaired
contractile function, and eventually heart failure (5, 47).
Ventricular remodeling mainly results from the reduction
of cardiomyocytes and the undesirable development of
surviving cardiac cells and extracellular matrix (5). Ventricular
myocyte fibrosis is deemed as the characteristic appearance

of cardiac hypertrophic remodeling and is closely related to
heart failure (17). After 4 weeks of intervention, the results
of echocardiography, histological analysis, and quantitative
fibrosis analysis indicated that the deterioration of cardiac
structure and function, histopathological changes, and fibrosis
caused by MI were partially reversed by MLZD.

Apoptosis may cause infarction extension (48), cardiac
remodeling (49), cardiac dysfunction, and even heart failure
(50, 51). The Bcl-2 family plays a crucial part in the promotion
or inhibition of the intrinsic apoptotic pathway triggered by
mitochondrial dysfunction (52). And the relative expression
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FIGURE 6

Modified Linggui Zhugan Decoction (MLZD) repairs mitochondrial damage. (A) The representative transmission electron microscope (TEM)
images of mitochondria in the hearts at a magnification of 8.0k and 3.0k, respectively (Scale bar = 0.5 or 1 µm). (B) The mitochondrial number
changes and the average mitochondrial area (µm2) under TEM in heart tissue, n = 20 visual fields (5 visual fields per rat, 4 rats per group). (C,D)
Western blot analyses of the expression of p-Drp1, Mfn2, PGC-1α, and PPAR-γ in cardiac tissue. The widths of the images have been
compressed at a ratio of 1:0.6. n = 4 per group. (E,F) Relative expression of p-Drp1 and Mfn2 in heart detected through immunohistochemical
analyses, n = 3 per group, scale bar = 100 µm. (G,H) Western blot analyses of SOD2 expression in the heart. The widths of the images have been
compressed at a ratio of 1:0.6. n = 4 per group. (I) Representative images of TMRM staining captured via fluorescent microscopy, scale
bar = 200 µm. (J) Quantitation of fluorescence intensity in different groups, n = 3 per group. Data are mean ± standard deviation (x ± s);
∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001.

levels of Bcl-2 and Bax determine cell fate after apoptotic
stimulation (53). Beyond that, cytochrome c (Cyt c) and cleaved
caspase-3 are also important indicators of apoptosis (54, 55).
Specifically, rupture of the outer mitochondrial membrane
leads to Cyt c release from the intermembrane space and

subsequent inner mitochondrial membrane depolarization (56).
At the same time, mitochondrial membrane potential(MMP)
decrease, in turn, leads to Cyt c release (57). In the cytoplasm,
apoptosomes formed with Cyt c, apoptotic protease-activating
factor 1 (Apaf-1), and caspase-9 trigger caspase-3 activation,
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FIGURE 7

Modified Linggui Zhugan Decoction (MLZD) promoted SIRT3 expression in cardiac tissue. (A,B) Relative expression of SIRT3 detected via
immunoblot analyses. The widths of the images have been compressed at a ratio of 1:0.6. n = 4 per group. (C,D) Immunohistochemical analysis
for detecting SIRT3, n =3 per group, scale bar = 100 µm. Data are represented as mean ± standard deviation (x ± s); ∗P < 0.05, ∗∗P < 0.01,
∗∗∗P < 0.001.

ultimately leading to apoptosis (10, 58). Bcl-2 blocks cytochrome
c and apoptosis-inducing factor release (59). Bax, conversely,
increases the permeability of the outer mitochondrial membrane
and promotes the release of apoptotic factors (60–62). From the
results in Figure 4, MLZD alleviates mitochondrial-associated
apoptosis and regulates the expression of apoptosis-related
proteins to near-physiological levels. Apoptosis is a process
of programmed cell death, representing a critical pathway for
eliminating unnecessary and significantly damaged cells, and
causes disease when miscontrolled (63, 64). Based on the report
that apoptosis is critical to the morphogenesis of the human
cardiac conduction system and redintegration of the right
ventricle (65) and that, what’s more, myocytes are just a subset
of cells in the heart (66), these may explain the high rates of
TUNEL positivity and cleaved caspase-3 in normal myocardial
tissue of the sham group. A similar pattern has been found in
other reports (67, 68).

The NLRP3 inflammasome, a multiprotein binding
compound consisting of NLRP3, connector protein ASC
and effector protein pro-caspase-1, is activated under stress
and plays an important role in cardiac fibrosis (69–71). The
inflammasome exerts an inflammatory effect by regulating the
release of proinflammatory cytokines including IL-1β and IL-18,
contributing to cardiomyocyte apoptosis and dysfunction, and
leading to ventricular remodeling and heart failure (69, 72, 73).

NFκB is a master regulator of inflammatory gene expression and
is activated in a variety of cardiac diseases, including congestive
heart failure and cardiac hypertrophy (74). More and more
reports have shown that the NFκB pathway plays an important
role in the regulation of NLRP3 inflammasome (74–76). In the
present study, we demonstrated that MLZD applied to MI rats
can inhibit the expression of the above inflammatory proteins.

Mitochondria are the major source of pro-apoptotic factors
(77). Mitochondria are most sensitive to ischemia and hypoxia,
which generally first damage mitochondrial structure and
function (78). Mitochondrial dysfunction is deemed a precursor
to cell death (79), and the core reason for heart failure
progression (6). Among the many mechanisms that influence
mitochondrial stability, mitochondrial dynamics is crucial to
cell quality control and function (80, 81) and its disturbance
is one cause of apoptosis (82). For instance, mitochondrial
fusion promotes structural and functional stability of the inner
membrane, thus protecting cells from apoptosis, while fission
is related to cell apoptosis (36). Mitochondrial fission alters
the outer mitochondrial membrane permeability, resulting
in Cyt c release into the cytoplasm, which activates the
caspase pathway in a permanent manner and eventually causes
apoptosis (83). Besides, mitochondrial damage also activates
the NLRP3 inflammasome and causes cell death through ROS
overproduction, MMP collapse, and other processes (72, 84, 85).
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FIGURE 8

3-TYP inhibited SIRT3 expression and prevented the cardiomyocyte protective effect of MLZD. (A,B) Relative expression of SIRT3 in
cardiomyocytes detected via western blot. The widths of the images have been compressed at a ratio of 1:0.8. (C,D) Immunohistochemical
analysis for detecting SIRT3, scale bar = 100 µm. (E) The cell viability in seven groups evaluated through the CCK-8 test kit. Data are represented
as mean ± standard deviation (x ± s); ∗∗P < 0.01, ∗∗∗∗P < 0.0001 vs. CON; #P < 0.05, ##P < 0.01, ####P < 0.0001 vs. OGD; $$$P < 0.001,
$$$$P < 0.0001, vs. OGD+MLZD.
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FIGURE 9

3-TYP reversed the regulation of mitochondria by Modified Linggui Zhugan Decoction (MLZD). (A,B) Detection of Drp1, p-Drp1, Mfn2, PGC-1α,
and COX IV in cardiomyocytes by western blotting. The widths of the images have been compressed at a ratio of 1:0.8. (C,D) Detection of
mitochondrial electron transport chain complex I and IV in cardiomyocytes. n = 8 per group. (E) Determination of ATP content in
cardiomyocytes. n = 8 per group. (F,G) TMRM staining for assessing mitochondrial membrane potential, n = 3 per group, scale bar = 200 µm.
Data are represented as mean ± standard deviation (x ± s); ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001 vs. CON; #P < 0.5, ##P < 0.01,
####P < 0.0001 vs. OGD; $P < 0.05, $$P < 0.01, $$$$P < 0.0001 vs. OGD + MLZD.
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FIGURE 10

The mechanisms of Modified Linggui Zhugan Decoction (MLZD) in ventricular remodeling of left anterior descending coronary artery
ligation-induced myocardial infarction models. Modified Linggui Zhugan Decoction (MLZD) intervention could exert protective effects on
mitochondria, including enhancing mitochondrial antioxidant capacity, regulating mitochondrial dynamics disorder, and inhibiting
mitochondrial membrane potential collapse, which contributed to preventing mitochondrial-mediated cardiomyocyte apoptosis. The
heart-protective effect of MLZD might associate with SIRT3 activation in the cardiac tissue. MI, myocardial infarction; MMP, mitochondrial
membrane potential; SIRT3, sirtuin 3; SOD2, superoxide dismutase 2; ROS, reactive oxygen species; Mfn2, mitofusin2; Drp1, dynamin-related
protein 1; PGC-1α, peroxisome proliferator-activated receptor-γ coactivator-1α; Cyt c, cytochrome c; PPAR-γ, peroxisome
proliferator-activated receptor – γ; Bcl-2, B cell lymphoma-2; Bax, Bcl-2-associated X; Apaf-1, apoptotic peptidase activating factor 1.

Unbalanced mitochondrial dynamics, inclined to fission and
fragmentation, were found in the models of myocardial
injury and heart failure (86–88). Among many regulatory
proteins, Mfn2 and Drp1 are involved in mitochondrial fusion
and mitochondrial fission, respectively (89, 90). Peroxisome
proliferator-activated receptor-γ coactivator-1α (PGC-1α), a
powerful transcription factor, is the major regulator of
mitochondrial biogenesis due to its regulatory effect on
processes like energy metabolism and dynamics (91). It
functions as a crucial regulator of mitochondrial fusion and
fission mainly by influencing Mfn1, Mfn2, and DRP1 and
thus maintaining the stabilization of the mitochondrial network
(92). PGC-1α is also significant for apoptosis inhibition and,
as reported, increased Bcl-2 levels but decreased Bax, cleaved
caspase-3, and apoptotic DNA fragmentation were shown in
the presence of PGC-1α (93, 94). PGC-1α is a coactivator

of peroxisome proliferator-activated receptor (PPAR)-γ (12),
and additionally, PPAR deletion significantly decreases PGC-
1 expression, thereby leading to mitochondrial structural
damage and dysfunction (13). Previous reports suggest that
PPAR-γ activation increased MMP and protected cells from
apoptosis (95). Mitochondrial electron transport chain complex
I and IV, COX IV content, along with ATP, are regarded as
markers of mitochondrial function (96, 97), and COX IV is
a classic enzyme marker of electron transport chain (97). In
the present experiment, abnormal mitochondrial morphologies,
increased mitochondrial numbers, decreased mitochondrial
areas, disturbed expression of Mfn2, p-Drp1 or Drp1, PGC-1α,
PPAR-γ, and COX IV induced by MI or OGD, were ameliorated
through MLZD administration. Studies have shown that ROS
formation induces the opening of the MPTP and the destruction
of MMP, resulting in the subsequent increase of Cyt c, followed
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by a succession of caspase cascades, and finally apoptosis (98).
Additionally, high levels of ROS induce MMP depolarization,
triggering mitochondrial fragmentation, and shortening and
thus promoting mitochondrial fission (99, 100). SOD2, the key
mitochondrial antioxidant enzyme to eliminate free radicals, is
located in the mitochondrial matrix following transcription and
synthesis and is endowed with the responsibility of converting
superoxide to hydrogen peroxide (101, 102). According to the
results of Figure 6, the activity of SOD2 was suppressed by
ischemia, which was consistent with previous studies (101),
but improved to some extent following treatment with MLZD.
MLZD could, additionally, inhibit the collapse of MMP in the
hearts of rats subjected to MI.

Sirtuin 3 (SIRT3) is a prominent deacetylase mainly found
in mitochondria and influences almost all the main aspects of
mitochondrial function (103). It is involved in mitochondrial
metabolism, redox balance, and mitochondrial dynamics
through governing mitochondrial protein acetylation, thereby
exerting protective effects against mitochondrial damage (6).
It was demonstrated to deacetylate the mitochondrial SOD2,
reducing ROS generation and mitochondrial fragmentation
(101). Moreover, SIRT3 also regulates the opening of the
MPTP through CyPD deacetylation, thereby inhibiting
mitochondrial swelling and rupture under stress, maintaining
mitochondrial morphology and function, and preventing
cardiomyocyte apoptosis and compensatory hypertrophy
of residual cardiomyocytes (104). As for MLZD, various
components hold great potential for SIRT3 activation. For
example, ginsenoside Rg3, a bioactive ingredient of Panax
ginseng, ameliorates mitochondrial dysfunction and apoptosis
through the SIRT1/PGC-1α/SIRT3 pathway (105); long-
term consumption of ginseng extract exerted protective
effects on intermediate-aged hearts in rats, which might be
mediated partly through the upregulation of SIRT3 (106);
Kaempferol could not only increase SIRT3 gene expression
but also promoted the expression of deacetylase SIRT3 in the
mitochondria (107); Kaempferol could additionally alleviate
H9c2 cardiomyocyte ischemia/reperfusion injury through
the activation of SIRT3 to inhibit oxidative stress (108); In
researches investigating the role of luteolin in cerebral ischemia-
reperfusion and ultraviolet radiation B-induced photoaging,
luteolin has been reported to exert cellular protection by
targeting and promoting SIRT3 (103, 109). In the current study,
3-TYP, the SIRT3 inhibitor 3-TYP blocks the protective effect
of MLZD on cardiomyocytes and mitochondria. Therefore,
MLZD may protect hearts by targeting SIRT3 to inhibit
mitochondrial oxidation, regulate mitochondrial dynamics, and
improve mitochondrial structure and function abnormalities.
Even though the inhibition of 3-TYP on SIRT3 expression
and its adverse effects on cells or animals have been widely
reported (39, 110–113), it is noteworthy that a few studies have
shown that 3-TYP can only inhibit the activity of SIRT3 but
not affect its expression (114, 115). This may be due to the

difference in the study subjects, the effects of the combined
drugs, the effects of the dose and duration of 3-TYP, or some
other factors. The absence of concentration and time gradient,
other SIR3 inhibitors and in vivo blocking of SIRT3 is a
limitation of our results.

5. Conclusion

Evaluating the collective evidence, it indicated that
MLZD treatment could ameliorate post-myocardial infarction
ventricular remodeling by inhibiting apoptosis induced
by mitochondrial abnormalities. This research described a
promising therapy for MLZD, indicating that it prevented
apoptosis by protecting mitochondria, including ameliorating
mitochondrial structural disruption, protecting against
mitochondrial dynamics disorder, restoring impaired
mitochondrial function and inhibiting inflammation, which
may be exerted by promoting SIRT3 expression (Figure 10).
MLZD might therefore represent a new therapeutical possibility
for ventricular remodeling and even heart failure following MI,
despite the need for further work.
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