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Immunology, Medical University of Vienna, Vienna, Austria

Aims:We assessed the e�cacy of the traditional Chinesemedicine formulation

Jia-Wei-Si-Miao-Yong-An decoction (HJ11) in the treatment of acute coronary

syndrome and evaluated its impact on the intestinal microbiota and

their metabolites.

Methods: An acute coronary syndrome model was established in rats, which

were randomly assigned to the model, HJ11 treatment, and atorvastatin

treatment groups. Rats were then administered saline solution (model

and sham operation control groups) or drugs by oral gavage for 28

d. Echocardiography was performed and serum creatine kinase-MB and

cardiac troponin I levels were monitored to examine the cardiac function.

Inflammation was evaluated using hematoxylin and eosin staining of

heart tissue, and serum interleukin-2, interleukin-6, tumor necrosis factor

alpha, and high-sensitivity C-reactive protein measurements. Gut microbiota

composition was analyzed via 16S rRNA gene sequencing. Metabolomics was

used to determine fecalmetabolites and elucidate themodes of action of HJ11

in acute coronary syndrome treatment.

Results: HJ11 improved cardiac function and attenuated inflammation

in rats with acute coronary syndrome. Relative to the untreated

model group, the HJ11-treated group presented normalized

Firmicutes/Bacteroidetes ratio and reduced abundances of the

bacterial genera norank_f__Ruminococcaceae, Desulfovibrio,

Clostridium_sensu_stricto_1, Adlercreutzia, Staphylococcus, Bacteroides,

Prevotella, Rikenellaceae_RC9_gut_group, unclassified_o__Bacteroidales,

and Ruminococcus_gauvreauii_group. We found 23 di�erentially expressed

intestinal metabolites, and the enriched metabolic pathways were mainly

related to amino acid metabolism. We also discovered that asymmetric

dimethylarginine levels were strongly associated with cardiovascular disease.

Correlation analyses revealed strong associations among intestinal microflora,

their metabolites, proinflammatory factors, and cardiac function. Hence,

the therapeutic e�ects of HJ11 on acute coronary syndrome are related to

specific alterations in gut microbiota and their metabolites.
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Conclusion: This work demonstrated that HJ11 e�ectively treats acute

coronary syndrome. HJ11 seems to increase the abundance of beneficial

bacterial taxa (Bacteroides and Rikenellaceae_RC9_gut_group), mitigate

the risk factors associated with cardiovascular disease, alter bacterial

metabolites, lower asymmetric dimethylarginine levels, and e�ectively treat

acute coronary syndrome.
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1. Introduction

Acute coronary syndrome (ACS) is a severe form of

heart disease. Its incidence and mortality rate are high and

annually increasing, imposing a heavy financial burden on

health care systems worldwide (1). ACS is mainly characterized

by destabilization, fragmentation, and dislodgement of coronary

atherosclerotic plaques, thrombosis, and coronary arteries

luminal narrowing or occlusion, being a rapidly progressing

disease with poor prognosis (2).

The function of coronary vascular endothelial cells is highly

affected by endothelial injury and inflammatory factors (3).

Moreover, the inflammatory response plays an important role

in ACS development (4) and, according to traditional Chinese

medicine (TCM) theory, “inflammatory” is closely related to

“heat toxicity” in the pathogenesis of coronary heart disease

(5). The intestinal microflora has also been shown to affect

the vasculature inflammatory state (6). Hence, restoring the

intestinal microflora homeostasis might prevent and treat

cardiovascular disease (CVD) (7).

TCM has shown certain advantages over Western medicine

in the treatment of ACS (8–11). Systematic clinical and

experimental studies have been conducted on the renowned

TCM therapeutic Si-Miao-Yong-An decoction (SM) and its

administration for the treatment of CVDs such as ACS (12,

13). SM consists of Lonicerae japonicae flos, Scrophularia

ningpoensis Hemsl., Angelicae sinensis Radix, and Glycyrrhizae

Radix et Rhizoma. Jia-Wei-Si-Miao-Yong-An decoction (HJ11),

which contains Forsythiae Fructus, Salvia miltiorrhiza Bunge,

Abbreviations: ACS, Acute coronary syndrome; ADMA, asymmetric

dimethylarginine; CACMS, China Academy of Chinese Medical Sciences;

CK-MB, creatine kinase-MB; CRP, C-reactive protein; cTnI, cardiac

troponin I; CVD, cardiovascular disease; DEM, di�erentially expressed

metabolite; EF, ejection factor; F/B, Firmicutes/Bacteroidetes; FS,

fractional shortening; GM, gut microbiota; HJ11, Jia-Wei-Si-Miao-Yong-

An decoction; HPLC, high-performance liquid chromatography; hs-CRP,

high-sensitivity C-reactive protein; IL, interleukin; PLS-DA, partial least

squares discriminant analysis; SM, Si-Miao-Yong-An decoction; TCM,

traditional Chinese medicine; TNF-α, tumor necrosis factor alpha.

Cinnamomum osmophloeum, and Polygoni cuspidati Rhizoma et

Radix in addition to the herbs present in SM, is a formulation

developed based on the TCM theory and clinical practice.

SM was found to downregulate proinflammatory factors, such

as oxidized low-density lipoproteins, interleukin (IL)-6, tumor

necrosis factor alpha (TNF-α), and C-reactive protein (CRP),

promote endothelial repair, and inhibit thrombosis (14, 15).

Certain herbs in SM attenuate the inflammatory response,

protect endothelial function, regulate lipid metabolism, stabilize

plaque, and improve cardiac function (16–18). Furthermore,

most herbs in SM modulate the intestinal microflora (19–23).

However, the effects of SM and HJ11 on the intestinal microflora

and ACS are unknown.

In this study, we investigated the ability of HJ11 to regulate

the intestinal microflora and metabolites in rats with induced

ACS (Figure 1). Our objective was to lay theoretical and

empirical foundations for the clinical application and efficacy

improvement of TCM in ACS therapy.

2. Materials and methods

2.1 Materials

2.1.1 Instruments

The apparatus and equipment used in the experiments

included an animal ventilator (HX-200; Chengdu Taimeng

Technology Co. Ltd., Chengdu, China), biosignal and pressure

measurement system (RM6240BD; Chengdu Instrument

Factory, Chengdu, China), small animal ultrasound imaging

system (P6-VET; Jiangsu Dawei Medical Co. Ltd., Jiangsu,

China), time-of-flight mass spectrometer (Pegasus HT; Leco

Corp., St. Joseph, MO, USA), Agilent 7890B gas chromatograph

(Gerstel, Muehlheim, Germany), RXI-5MS capillary column

(30m × 250µm i.d., 0.25 µm-thick film; Restek Corporation,

Bellefonte, PA, USA), Repeater Xstream electronic pipette

(Eppendorf, Hamburg, Germany), hemostatic forceps, forceps,

needle holders, tissue and eye scissors, rat surgical table with

fixed plates, and cold light source.
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FIGURE 1

Workflow for predicting the therapeutic mechanism of HJ11 in ACS.

Frontiers inCardiovascularMedicine 03 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1038273
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Zhao et al. 10.3389/fcvm.2022.1038273

2.1.2 Reagents and drugs

The herbs used in the experiments were purchased from

the Beijing Shuangqiao Yanjing Traditional Chinese Medicine

Company (Beijing, China). L. japonicae flos was produced in

Shandong, China (production batch No. 2010007); Forsythiae

Fructus was produced in Shanxi, China (production batch

No. 20041001); S. ningpoensis Hemsl. was produced in Hebei,

China (production batch No. 20112103); C. osmophloeum was

produced in Fujian, China (production batch No. 20131101);

A. sinensis Radix was produced in Gansu, China (production

batch No. 20100018); S. miltiorrhiza Bunge was produced in

Shandong, China (production batch No. 2010009); Glycyrrhizae

Radix et Rhizoma was produced in Xinjiang, China (production

batch No. 20090201); and P. cuspidati Rhizoma et Radix was

produced in Hunan, China (production batch No. 20072901).

All herbs were authenticated by the China Academy of Chinese

Medical Sciences (CACMS). Atorvastatin (production batch No.

S56741) was purchased from the Xiyuan Hospital CACMS,

Beijing, China.

Methoxyamine hydrochloride, fatty acid methyl ester

(C7–C30) standards, pyridine, and anhydrous sodium sulfate

were obtained from Sigma-Aldrich (St. Louis, MO, USA).

N-methyl-N- (trimethylsilyl) trifluoroacetamide with 1% (v/v)

trimethylchlorosilane, methanol (Optima LC-MS), acetonitrile

(Optima LC-MS), hexane, dichloromethane, chloroform,

and acetone were purchased from Thermo Fisher Scientific

(Fairlawn, NJ, USA). Ultrapure water was generated using a

Milli-Q Reference System fitted with the LC-MS Pak filter (EMD

Millipore, Billerica, MA, USA).

The following enzyme-linked immunosorbent assay

(ELISA) kits were purchased from the Nanjing Jiancheng

Bioengineering Institute, Jiangsu, China: creatine kinase-MB

(CK-MB; lot No. R20210327), cardiac troponin I (cTnI; lot No.

R20210327), high-sensitivity CRP (hs-CRP; lot No. R20210328),

IL-2 (lot No. R20210328), IL-6 (lot No. R20210328), and TNF-α

(lot No. R20210328). The PowerSoil
R©

DNA Isolation Kit was

purchased from VWR (Radnor, PA, USA).

2.1.3 Animals

Male Sprague–Dawley rats (n = 48, weight 200 ± 20 g)

were purchased from the China Academy of Food and

Drug Administration (Beijing,China) under license No. SCXK

(Beijing) 2017-0005. They were housed at the Institute of Basic

Theory for Chinese Medicine of the CACMS in a specific

pathogen-free laboratory at 20–25◦C, 40–60% relative humidity,

12 h light/12 h dark cycle, and with ad libitum food and

water access. The chow was purchased from Beijing Keao

Company (Beijing,China) under license No. Beijing Feeding

Certificate 2018-06073. All procedures were in accordance with

the National Institute of Health Guide for the Use and Care

of Laboratory Animals, and were approved by the Animal

Ethics Committee of the Institute of Basic Theory for Chinese

Medicine (CACMS) (ethics approval No. IBTCMCACMS21-

1903-01) [128].

2.1.4 Drug preparation

The HJ11 formula was composed of L. japonicae flos

(15 g), S. ningpoensis Hemsl. (15 g), A. sinensis Radix (15 g),

Glycyrrhizae Radix et Rhizoma (9 g), Forsythiae Fructus (15 g),

S. miltiorrhiza Bunge (15 g), C. osmophloeum (15 g), and P.

cuspidati Rhizoma et Radix (9 g). The herbs were combined

with 500ml distilled water, soaked for 30min, and decocted

at atmospheric pressure for 30min. Dregs were filtered, the

concentration was adjusted to 1 g raw herbs/mL, and the diluted

decoction was stored at 4◦C.

Atorvastatin was pulverized and dissolved in distilled water.

The solution concentration was adjusted to 1 mg/mL, and the

dilution was stored at 4◦C.

2.2 Methods

2.2.1 Determination of major components

The HJ11 components were determined according to

the Chinese Pharmacopeia 2020 directives regarding the

content requirements of the main components of TCM herbs

and component detection method. High-performance liquid

chromatography (HPLC) was used for quality control testing.

2.2.2 Animal grouping and treatment

The ACS rat model was established by performing ligation of

the left anterior descending branch of the coronary artery (24).

Successfully modeled, surviving rats were randomly assigned to

the model, HJ11, and atorvastatin groups (n = 6/group). Rats

that survived the sham operation were assigned to the control

group (n = 6). Rats were administered 7 g HJ11/kg/d (HJ11

group) (19), 10mg atorvastatin/kg/d (atorvastatin group), or

saline (0.9% [w/v] NaCl; control and model groups) by oral

gavage for 28 consecutive days.

2.2.3 General state observation

Changes in body weight, activity, hair luster, and diet were

recorded. Body weight growth rates were calculated as follows:

Body weight growth rate =
finalweight− startingweight

startingweight

× 100%

2.2.4 Echocardiography

Echocardiography was performed to evaluate cardiac

function 28 d after the treatments. The rats were placed supine
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on a thermostatic heating plate, and their extremities were

fixed with adhesive tape. The transducer frequency was 10

MHz. The echocardiograms were recorded at the papillary

muscle level in the left ventricular short axis. The parameters

measured included heart rate, ejection factor (EF), fractional

shortening (FS), and left ventricular internal end-diastolic

dimension (LVDD), and left ventricular internal end-systolic

dimension (LVDS).

2.2.5 Biochemical parameters

After 28 d of treatment, the rats were fasted without water for

12 h and anesthetized intraperitoneally using 3% (w/v) sodium

pentobarbital. Then, 5mL blood was taken from the abdominal

aorta, centrifuged at 1,000 rpm 4◦C for 10min, and the serum

was collected. The latter was analyzed using ELISA to quantify

CK-MB, cTnI, IL-6, IL-2, hs-CRP, and TNF-α levels.

2.2.6 Pathological observations

Hematoxylin and eosin (HE) staining was used to observe

the myocardial histomorphology. At the end of the experiment,

the animals were anesthetized intramuscularly using sodium

pentobarbital (30 mg/kg) and sacrificed. The left ventricular

tissues were excised, fixed in 10% (v/v) neutral formaldehyde

for 1 week, dehydrated using ethanol gradient series, embedded

in paraffin, sectioned, and stained with HE. The myocardial

histomorphology was observed under a microscope and

photographed. Cardiac tissue lesion assessment criteria included

myocardial fibrosis, myocardial fibrotic necrosis, and interstitial

inflammatory cell infiltration. Lesions were scored 0–4, from

none to severe. All scores were cumulative, and the mean score

was “X± SD.”

2.2.7 Intestinal flora analysis using 16S rDNA
sequencing

Fresh fecal samples were collected from the ilea of sacrificed

rats. Fecal DNA was extracted using the PowerSoil
R©

DNA

Isolation Kit and verified on 1% (w/v) agarose gel. DNA

concentration and purity were determined using a NanoDrop

2000 UV-vis spectrophotometer (Thermo Fisher Scientific,

Wilmington, DE, USA). PCR amplification of the 16S rDNA

sequences was performed using primer sets specific for the

V3–V4 variable regions. The PCR product was extracted using

2% (w/v) agarose gel and purified using an AxyPrep
R©

DNA

Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA)

according to manufacturer’s instructions. The PCR product

was then quantified using a QuantusTM fluorometer (Promega,

Madison, WI, USA). The purified amplicons were pooled in

equimolar quantities and paired-end sequenced on an Illumina

MiSeq PE300 platform/NovaSeq PE250 platform (Illumina,

San Diego, CA, USA) according to the standard protocols

by Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai,

China).The raw sequencing reads were deposited into the NCBI

Sequence Read Archive (SRA) database.

Fastp 0.19.61, FLASH 1.2.112, UPARSE 7.13, RDP classifier

2.114, and PICRUSt2 2.2.05 were used to cluster and analyze the

valid sequences comprising the operational taxonomic unit set.

The latter was then subjected to taxonomic analysis. Information

regarding the bacterial species richness and evenness of each

sample was obtained based on the results of the operational

taxonomic unit analysis. Microbial α- and β-diversity analyses,

and linear discriminant analysis effect size were then performed

for each sample. A sample grouping analysis was performed

based on a partial least squares discriminant analysis (PLS-DA).

The bacterial community structure was statistically analyzed

based on the taxonomic information, and its correlation with

CK-MB, cTnI, hs-CRP, IL-2, IL-6, and TNF-α levels, and

other clinical factors was determined via Spearman’s rank

correlation. Correlation heatmaps were then plotted. Differences

among groups were determined using the Student’s t-test. R

language and Gephi 0.9.2 in a network analysis were used to

unveil the differences in gut microbiota complexity among and

within groups.

2.2.8 Metabolomics analysis of the intestinal
content

Untargeted metabolomics profiling was performed on

the XploreMET platform (Metabo-Profile, Shanghai, China).

Approximately 100mg of each fecal sample from the ilea was

placed in a centrifuge tube, frozen, stored in an Eppendorf

SafeLock microcentrifuge tube (Eppendorf), and mixed with

25mg pre-chilled zirconium oxide beads and 10 µL internal

standard. Each 50 µL aliquot of 50% (v/v) pre-chilled methanol

was added for automated homogenization. The suspensions

were centrifuged at 14,000 × g and 4◦C for 20min, and the

supernatants were transferred to autosampler vials. Each 175

µL aliquot of pre-chilled methanol/chloroform (3:1 [v/v]) was

added to the residue for the second extraction. The suspensions

were centrifuged at 14,000 × g and 4◦C for 20min, and each

100 µL supernatant was transferred to an autosampler vial. All

samples in the autosampler vials were briefly evaporated using

a CentriVap vacuum concentrator (Labconco Corp., Kansas

City, MO, USA) to remove chloroform and lyophilized using

a FreeZone freeze dryer (Labconco) fitted with a stopping tray

dryer. Samples were derivatized and injected via a robotic

MultiPurposeSampler MPS Dual Head. Each dried sample

was derivatized using 50 µL methoxyamine (20 mg/mL in

1 https://github.com/OpenGene/fastp

2 http://www.cbcb.umd.edu/software/flash

3 http://drive5.com/uparse/

4 http://rdp.cme.msu.edu/

5 https://github.com/picrust/picrust2
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pyridine) at 30◦C for 2 h, followed by 50 µL N-methyl-N-

(trimethylsilyl)trifluoroacetamide (1% trimethylchlorosilane) at

37.5◦C for another 1 h using the sample preparation head. The

derivatized samples were then injected in parallel using a sample

injection head.

Helium was the carrier gas, and the flow rate was a constant

1.0 mL/min. The temperature of the injection and transfer

interface was 270◦C, and the source temperature was 220◦C.

Measurements were made using electron impact ionization

(70 eV) in full scan mode (m/z 50–500).

Test mixtures, internal standards, retention indices, and

pooled biological quality control samples were routinely used

on the comprehensive metabolomics platform. ChromaTOF

software was used to annotate the metabolites by comparing the

retention indices and mass spectral data against those previously

generated from reference standards with known structures and

appearing in the JiaLib metabolite database (Metabo-Profile).

2.2.9 Statistical analyses

The experimental data were expressed as mean ± standard

deviation. GraphPad Prism 7.0 (GraphPad Software Inc., La

Jolla, CA, USA) was used to plot data, while the SPSS v.

21.0 (SPSS Inc., Chicago, IL, USA) statistical software was

used to process data. Weight, cardiac ultrasound, and serum

indices were compared among multiple treatment groups

using one-way analysis of variance. Pairwise comparisons were

made using the Student’s t-test. P < 0.05 was considered

statistically significant.

3. Results

3.1 Determination of major components
in HJ11

HPLC was used to identify the components in HJ11. Based

on the Chinese Pharmacopeia 2020 requirements and detection

methods of the main ingredients of Chinese herbs, we analyzed

eight herbs and 18 components, and found that all met the

required standards. The results are shown in Figure 2 and

Table 1.

3.2 E�ects of HJ11 on cardiac function
and serum inflammatory cytokine levels

There were no significant differences among groups in terms

of activity, hair, or diet. Compared with the model group, the

HJ11 (P < 0.01) and atorvastatin (P < 0.05) groups showed

reduced body weight growth rates (Figure 3A). HJ11 reversed

the effects of ACS on the serum CK-MB and cTnI levels

(Figure 3B). It also significantly reduced the serum IL-2, TNF-

α, and hs-CRP levels but not that of serum IL-6 (Figure 3C). The

echocardiography results are shown in Figures 3D, E. Compared

with the model group, the HJ11 group exhibited increased EF

and FS (P < 0.05), and decreased left ventricular internal end-

diastolic dimension and -systolic dimension (P < 0.05). These

results suggest that HJ11 lowers proinflammatory cytokine levels

and ameliorates the ACS-induced damage to cardiac function.

3.3 Histopathological examination

The histopathological examination and score (Figures 3F,G)

showed that the model group had significant cardiac lesions

compared to the control group (P < 0.01), including

disorganized myocardial tissue, broken myocardial bundles,

widened gaps, myocardial cell degeneration and damage,

massive inflammatory cell infiltration in the interstitium,

nuclear consolidation and deviation, and blood vessel

proliferation, dilatation, and hemorrhage. In contrast, the

cardiac lesions in the HJ11 group showed amelioration of

myocardial fiber degeneration/necrosis, myocardial fibrosis,

and interstitial inflammatory cell infiltration compared to those

in the model group (P < 0.01).

3.4 HJ11 regulation of intestinal flora in
rats with ACS

We sequenced the 16S rRNA gene to evaluate the effects

of HJ11 on the intestinal flora in ACS rats. Systematic

bioinformatics analysis showed that HJ11 stabilized the gut

microbial community structure and composition. The α-

diversity was estimated to investigate the relative changes in gut

microbiota (GM). The Ace and Chao indices are operational

taxonomic unit values representing GM species richness,

while the Shannon and Simpson indices are quantitative

indices. Compared with the control group, the model group

presented a significantly reduced Shannon index, whereas the

remaining indices did not significantly change between these

two groups. Compared with the model group, the HJ11 group

displayed restored Ace, Chao, and Shannon indices (Figure 4A),

suggesting that HJ11 improves gut microbial diversity in

ACS rats.

PLS-DA was used to assess sample grouping (Figure 4B).

The four groups were separated, with no crossover. An analysis

of similarities was conducted to judge whether sample grouping

was meaningful and revealed significant differences between

groups (P = 0.001).

Differential microbiota analyses were performed on various

bacterial taxa. At the phylum level, the groups with the

highest relative abundances were Firmicutes, Bacteroidetes,

Spirochaetota, Campylobacterota, Desulfobacterota, and
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FIGURE 2

HPLC determination of major components in di�erent herbs. (A) Lonicerae japonicae flos (Jinyinhua). (B) Scrophularia ningpoensis Hemsl.

(Xuanshen). (C) Glycyrrhizae Radix et Rhizoma (Gancao). (D) Polygoni cuspidati Rhizoma et Radix (Huzhang). (E) Forsythiae Fructus (Lianqiao). (F)

Angelicae sinensis Radix (Danggui). (G) Cinnamomum osmophloeum (Guizhi). (H) Salvia miltiorrhiza Bunge (Danshen).
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TABLE 1 Determination of major components in di�erent herbs (n = 3).

Herb Components Measured content (%) Minimum content
standard (%)

Lonicerae japonicae flos (Jinyinhua) Chlorogenic acid 2.82 1.50

Chlorogenic acid,

3,5-di-O-caffeoylquinic acid, and

4,5-di-O-caffeoylquinic acid

4.79 3.80

Lignocerebroside 0.07 0.05

Scrophularia ningpoensisHemsl. (Xuanshen) Harpagoside and habaroside 1.28 0.45

Angelicae sinensis Radix (Danggui) Ferulic acid 0.08 0.05

Glycyrrhizae Radix et Rhizoma (Gancao) Glycyrrhizin 1.07 0.5

Ammonium glycyrrhetinate 2.54 2.00

Forsythiae Fructus (Lianqiao) Forskolin 0.44 0.15

Forskolin A 9.02 3.50

Salvia miltiorrhiza Bunge (Danshen) Tanshinone IIa, 0.32 0.25

Salvianolic acid B 5.92 3.00

Cinnamomum osmophloeum (Guizhi) Cinnamon aldehyde 1.42 1.00

Polygoni cuspidati Rhizoma et Radix (Huzhang) Rhodopsin 4.65 0.60

Tectorigenin 1.96 0.15

Actinobacterota, with Firmicutes and Bacteroidetes

being the predominant ones (90%) (Figure 4C). The

Firmicutes/Bacteroidetes (F/B) ratio in the HJ11 group

differed from that in the control group (Figure 4D).

Moreover, there were substantial differences among

groups in terms of bacterial genera (Figure 4E), we

speculate that these changed bacterial genera may be

related to HJ11 treatment of ACS model rats, which merits

further investigation.

3.5 Specific microbiota in di�erent
treatment groups

We used R and Gephi in a network analysis to unveil the

differences in GM complexity among and within groups. The

edges and avg degrees corresponded to GM complexity. Figure 5

shows that ACS increased the relative GM complexity, whereas

HJ11 decreased it. Thus, HJ11 might affect the GM and play a

role in treating ACS.

Linear discriminant analysis effect size (LEfSe) was

used to identify the dominant microbial taxa in each group

and determine those contributing to the effect of HJ11

on ACS (Figure 6A), forty-one different taxa from the

four groups are displayed. The bacterial genera that were

inhibited by HJ11 included norank_f__Ruminococcaceae,

Desulfovibrio, Clostridium_sensu_stricto_1,

Adlercreutzia, Staphylococcus, Bacteroides, Prevotella,

Rikenellaceae_RC9_gut_group, unclassified_o__Bacteroidales,

and Ruminococcus_gauvreauii_group (Figures 6B–K).

3.6 Metabolite analyses

A metabolite assay identified 219 metabolites in the

intestinal contents. They included carbohydrates, fatty acids,

amino acids, organic acids, inorganic oxides, pyridines, lipids,

alkylamines, phenylpropanoic acids, and bile acids. The

intestinal metabolites varied among groups (Figure 7A). An

orthogonal PLS-DA model effectively reduces complexity and

was used to screen differentially expressed metabolites (DEMs).

The data “points” of each group showed wide separation

and spatial distribution, which suggests metabolic differences

between groups (Figure 7B).

We used unidimensional statistics (Student’s t-test) to screen

DEMs between the model and HJ11 groups (Figure 7C). There

were 14 upregulated and 21 downregulated metabolites. The

significant DEMs are listed in Table 2. Based on the relative

abundances of the altered metabolites, a KEGG enrichment

analysis was conducted and showed that the metabolic pathways

of valine, leucine, and isoleucine biosynthesis; aminoacyl-

tRNA biosynthesis; pantothenate and CoA biosynthesis; and

valine, leucine, and isoleucine degradation were significantly

enriched after HJ11 treatment (Figure 7D; with adjusted P

< 0.05 and ≥2 annotated metabolites). The main enriched

pathways were associated with amino acid metabolism. In

this pathway,Asymmetric dimethylarginine (ADMA) was the
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FIGURE 3

E�ects of HJ11 on ACS model rats. (A) Changes in body weight in di�erent groups. (B) Cardiac enzyme detection in di�erent groups. (C)

Inflammatory factor detection in di�erent groups. (D) Echocardiogram data. (E) Echocardiogram images. (F) HE staining of heart tissue. (G)

Pathological scores of heart tissue. ##P < 0.01 compared with the control group; *P < 0.05, **P < 0.01, ***P < 0.001 compared with the

model group.

most noticeable metabolism which attracted us. ADMA is an

endogenous nitric oxide synthase inhibitor and is associated

with endothelial dysfunction, it plays a key role in CVD

pathogenesis and atherosclerosis progression (25). Furthermore,

ADMA upregulation is an important and independent risk

factor for various CVDs (26).
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FIGURE 4

Microbial community structures in di�erent groups. (A) α-Diversity in di�erent groups. (B) PLS-DA of di�erent groups. Points with the same color

and shape represent samples from the same group. Distances between points reflect di�erences between samples. (C) Comparison of

community composition at the phylum level. Each column represents a group. (D) F/B ratio. (E) Comparison of community composition at the

genus level. Each column represents a group. #P < 0.05, #P < 0.01 compared with the control group; *P < 0.05, ***P < 0.001 compared with

the model group.
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FIGURE 5

Dominant phylotypes (relative abundance > 0.05) in di�erent groups. Connection indicates strong (Spearman’s r > 0.8) and significant (P <

0.001) correlation. The co-occurrence network is colored according to the phylum or genus. The size of each node is proportional to the relative

abundance of each phylotype. The thickness of each connection between two nodes (edge) is proportional to the Spearman’s correlation

coe�cient. Purple edge indicates positive correlation between two nodes. Green edge indicates negative correlation between two nodes.

3.7 Correlations among immunity
indices, cardiac function, intestinal
metabolites, and GM

Correlations among gut bacteria, inflammatory indices,

cardiac function indices, and intestinal metabolites were

determined via Spearman’s rank correlation to identify

ACS-associated bacterial taxa and metabolites affected by

HJ11 treatment. Figure 8A shows that TNF-α levels were

significantly correlated with increasing Bacteroides and

decreasing Desulfovibrio abundance. The abundance of the

genus norank_f__Ruminococcaceae was negatively correlated

with IL-6 levels. Staphylococcus abundance was positively

correlated with hs-CRP levels and negatively correlated with

cTnI levels. Levels of the cardiac function indicator CK-MB

were positively correlated with the abundance of Prevotella and

negatively correlated with that of norank_f__Ruminococcaceae

and Rikenellaceae_RC9_gut_group.
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FIGURE 6

Di�erentially abundant bacterial taxa. (A) Linear discriminant analysis e�ect size from the phylum to the genus level (LDA score > 2.0). (B–K)

Relative abundances of gut bacterial genera that were significantly reversed by HJ11 treatment. Student’s t-test, two-tailed. #P < 0.05, ##P <

0.01 compared with the control group; *P < 0.05, **P < 0.01, ****P < 0.0001 compared with the model group.
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FIGURE 7

E�ects of HJ11 on metabolites in ACS model rats. (A) Distribution of metabolites in di�erent groups. (B) Orthogonal PLS-DA of metabolomics

results in di�erent groups. (C) Volcano plot of metabolites in he model and HJ11 groups (screening conditions: log2FC ≥0 and P < 0.05). (D)

Pathway enrichment based on altered metabolites.

Figure 8B shows that norank_f__Ruminococcaceae,

Desulfovibrio, Clostridium_sensu_stricto_1, Bacteroides,

Prevotella, Rikenellaceae_RC9_gut_group, unclassified_o__

Bacteroidales, and Ruminococcus_gauvreauii_group abundances

were significantly correlated with the metabolite profile.

Bacteroides and Rikenellaceae_RC9_gut_group abundances were

associated with the levels of most metabolites, and with CVD

and its risk factors, such as hypertension and hyperlipidemia.

ADMA levels were also significantly correlated with Bacteroides

abundance.
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TABLE 2 Di�erentially expressed metabolites between the model and HJ11 groups.

Group

Class Metabolite Model HJ11 P

Alcohols Octadecanol 2.23± 0.80 6.64± 2.86 0.0043

1-Hexadecanol 2.20± 0.64 4.79± 1.56 0.0076

Erythritol 3.32± 2.72 1.82± 1.01 0.0411

Alkylamines Spermidine 12.67± 6.94 2.96± 1.14 0.0086

5-Methoxytryptamine 2.23± 1.32 0.84± 0.47 0.0259

3-Amino-2-piperidone 14.61± 5.01 8.42± 0.54 0.0411

Amino Acids Lysine 206.87± 37.19 121.68± 11.87 0.0022

Isoleucine 107.09± 56.26 57.15± 12.59 0.0086

3-Cyanoalanine 1.16± 0.65 0.37± 0.17 0.0086

Alanine 252.58± 95.64 162.42± 18.96 0.0151

Asymmetric dimethylarginine 25.34± 6.20 17.07± 2.36 0.0206

Cysteine 5.59± 1.59 3.50± 1.04 0.0261

Valine 177.24± 73.04 106.62± 33.74 0.0411

4-Hydroxyproline 4.68± 1.69 2.78± 0.97 0.0434

Bile acids Lithocholic acid 12.93± 5.98 22.21± 6.03 0.0232

Carbohydrates Glucaric acid 0.63± 0.23 1.09± 0.24 0.0069

1,5-Anhydroglucitol 15.43± 6.96 24.43± 3.81 0.0247

Gluconic acid 1.49± 2.92 0.14± 0.09 0.0411

Sucrose 2.90± 1.91 0.99± 1.30 0.0411

Turanose 4.66± 2.68 2.40± 3.61 0.0411

Carboxylic acids and derivatives gly_pro 4.71± 1.95 2.51± 1.02 0.0411

Fatty acids Arachidic acid 44.43± 22.09 129.35± 89.41 0.0151

Nonadecanoic acid 3.23± 0.99 5.7± 2.00 0.0290

Heptadecanoic acid 23.48± 11.51 52.6± 23.66 0.0292

Linoleic acid 136.38± 23.69 99.86± 28.00 0.0355

Indoles Indolelacetic acid 2.58± 2.09 0.69± 1.02 0.0259

5-Hydroxyindoleacetic acid 9.14± 6.20 2.73± 1.98 0.0259

Lipids Lathosterol 8.62± 1.76 4.45± 2.09 0.0086

Nucleotides Pseudouridine 1.59± 0.94 4.29± 1.82 0.0086

Xanthine 3.17± 1.45 11.82± 8.09 0.0151

Organic acids Methylphosphate 9.33± 6.12 53.34± 12.32 8.13E-05

3-Methyl-2-oxopentanoic

acid

2.48± 1.03 8.39± 3.09 0.0022

3,4-Dihydroxybutyric acid 1.57± 0.79 0.91± 0.43 0.0411

Phenylpropanoids Caffeic acid 0.88± 0.25 1.39± 0.21 0.0040

Vitamins δ-Tocopherol 0.44± 0.09 0.67± 0.16 0.0171

These findings suggest that, overall, the increased ACS-

ameliorating effect of HJ11 may be associated with specific

bacterial taxa and metabolic pathway alterations, with

Bacteroides and Rikenellaceae_RC9_gut_group potentially

playing important roles in this process. HJ11 may increase the

abundance of beneficial bacteria related to CVDs and their risk
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FIGURE 8

Correlation analysis. (A) Correlations among gut bacteria, proinflammatory factors (TNF-α, IL-2, IL-6, and hs-CRP), and cardiac function indices

(CK-MB and cTnI) (Spearman’s r >0.1 or <0.1; n = 6/group). (B) Correlations among gut bacteria and metabolites (Spearman’s r >0.1 or <0.1; n

= 6/group). *P < 0.05, **P < 0.01, ***P < 0.001.

factors, alter metabolite profiles, lower ADMA levels, and be

efficacious in the treatment of ACS.

4. Discussion

Inflammation is a key factor in ACS development. The

TCM theory proposes that inflammation is closely related to

the pathological changes in heat and toxicity, and treatment

is based on the principle of “clearing camp and cooling blood,

detoxifying and dispersing nodules” (27). In this study, we

ligated the left anterior descending branch of the coronary

artery to trigger ST-segment elevation and establish the

ACS model (24), and examined the therapeutic efficacy of

HJ11 using atorvastatin as a positive control. In model rats,

atorvastatin therapy significantly lowers plasma CK-MB and

lactate dehydrogenase levels (28). Moreover, pretreatment

with atorvastatin significantly reduces plasma IL-6 and

TNF-α levels as well as Rho-kinase activity, myocardial

infarct size, and cardiomyocyte apoptosis (29). Studies

have shown that the intestinal microflora is altered during

the development and treatment of various diseases, and

participates in numerous physiological processes, including the

inflammatory response, and energy and nutrient metabolism

(30). Here, we examined inflammation-related indices in ACS

model rats and found that HJ11 exerted anti-inflammatory

effects and improved cardiac function. We also integrated

microbiomics and metabolomics analyses to reveal alterations

in the intestinal microflora and metabolites induced by HJ11.

We discovered that HJ11 therapy partially normalized

the ACS-induced intestinal microflora and metabolite

profile disruption.

The components of TCM therapeutics are complex, and

their quality widely varies with the plant source, production

area, local climate, among others. To ensure the quality

of Chinese herbs, we used the Chinese Pharmacopeia 2020

standards and HPLC to determine their content and purity of

active ingredients. All herb materials used in this study met

the requirements.

Obesity is a risk factor for heart disease. Every 1 kg/m2

gain increases the risk of heart failure by 5–7%. In addition,

the risk of heart failure is twice as high in patients with obesity

compared to that in those with normal body mass index (31).

Here, HJ11 significantly reduced the weight gain in ACS model

rats, suggesting that it might lower the risk of heart disease by

slowing down weight gain.

We used a small animal ultrasound imaging system (32)

to measure EF and FS. Left ventricular internal end-diastolic

dimension and -systolic dimension affected EF and FS. We

also found that HJ11 improved cardiac function in ACS rats,

which was consistent with previously reported findings (33–

35). Moreover, HE staining showed that HJ11 ameliorated or

mitigated disorganized myocardial tissue, broken myocardial

bundles, and myocardial cell degeneration and damage. Taken

together, these results indicate that HJ11 consistently improved

heart function.
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Proinflammatory factors can play a role in pathogenesis

and promote disease development, contributing to the

“inflammatory load” (36, 37). IL-2, IL-6, TNF-α, and hs-CRP

promote inflammation, thrombosis, matrix degradation, and

apoptosis and are implicated in ACS progression (38–41).

hs-CRP has been found to be positively correlated with ACS

and its prognosis (38). Herein, HJ11 lowered the serum IL-2,

TNF-α, and hs-CRP levels and had a pronounced effect on

inflammation. Myocardial CK-MB and cTnI are specific

injury-sensitive indices of severe myocardial tissue damage.

They are released into the bloodstream, and their serum levels

are important diagnostic and prognostic criteria for ACS

(42, 43). HJ11 also reduced CK-MB and cTnI levels in our

study. Furthermore, echocardiography and HE staining of

cardiac tissues showed the cardioprotective effect of HJ11. The

foregoing results suggest that HJ11 administration for ACS

treatment is efficacious.

The intestinal microflora affects the inflammatory

state of blood vessels. Vascular inflammation may induce

atherosclerosis, promote insulin resistance, and elevate blood

pressure through several metabolic and inflammatory pathways

(42, 43). Thus, restoring the intestinal microflora homeostasis

may help combat CVD. Prior research on the intestinal

microflora associated with CVD showed that the F/B ratio is

altered under this condition relative to normal controls (44, 45).

Here, we found that the intestinal microflora abundance and

diversity were significantly reduced in the ACS model group,

and that HJ11 treatment improved the F/B ratio.

We also found that HJ11 had a restorative

effect on the intestinal microflora at the genus

level. Norank_f__Ruminococcaceae, Bacteroides,

Rikenellaceae_RC9_gut_group, Prevotella, Staphylococcus,

and Desulfovibrio abundances were significantly correlated

with the serum TNF-α, IL-6, hs-CRP, CK-MB, and cTnI

levels. Rikenellaceae_RC9_gut_group predominates in

the Bacteroidetes phylum. However, only few studies

have associated Rikenellaceae_RC9_gut_group with CVD,

hyperlipidemia, and other heart diseases and related factors.

Significant alterations in Rikenellaceae_RC9_gut_group may

contribute to the pathogenesis of acute myocardial ischemia by

affecting intestinal permeability, oxidative stress, and energy

metabolism (46). Moreover, Rikenellaceae_RC9_gut_group

was positively correlated with high fat diet-induced “harmful

indicators” and negatively correlated with “beneficial indicators”

(47). The abundance of Rikenellaceae_RC9_gut_group was

also found to influence the interaction between vitamin

A and Toll-like receptor 4 (48). High fat diet is a risk

factor for ACS, it significantly increases the abundance of

unclassified_o_Bacteroidales, whereas drug therapy decreases

it (47). The cardiovascular outcomes of patients with ST-

segment elevation myocardial infarction are determined by the

translocation of intestinal microbiota into systemic circulation.

Bacteroides is significantly more abundant in patients with

ST-segment elevation myocardial infarction than in normal

controls. Patients with ST-segment elevation myocardial

infarction may also present tight junction disruptions in their

gut barriers (49). Prevotella abundance is relatively higher in

pre-hypertensive and hypertensive patients than in healthy

controls (50). Prevotellamight also contribute to atherosclerosis

progression (51). Staphylococcus has been detected in lesions

and the ilea of patients with atherosclerosis. Hence, GM is likely

to participate in atherosclerosis development (52).

Gut microorganisms can produce a wide variety of

metabolites that regulate different physiological processes. GM-

produced metabolites have both positive and negative effects

on the body. Metabolomics has been widely used to elucidate

CVD pathogenesis (53, 54). Here, we identified 23 DEMs

and four experimentally relevant metabolic pathways. Bile

acids are cholesterol metabolites formed in the liver and play

important roles in lipid metabolism (55). The latter responds to

cholesterol metabolism and is associated with Bifidobacterium

and Lactobacillus abundance (56). We found that bile acid

levels were lower in the ACS model group and significantly

higher in the HJ11 group than in the control group (P <

0.05). Intestinal Escherichia coli breaks down amino acids and

produces indole-like substances that can induce left ventricular

hypertrophy and increase the risk of CVD (57).We found that 5-

hydroxyindoleacetic acid, indolelactic acid, and serotonin levels

were significantly (P < 0.05) elevated in the ACS model group

and reduced in the HJ11 group relative to the control group.

Bacteroides produces various metabolites, such as ADMA and

indoleacetic acid, that are associated with CVD (58). ADMA

attenuates nitric oxide, enhances the production of reactive

oxidants, and is an endogenous nitric oxide synthase inhibitor

(59, 60), thus playing key roles in CVD progression. A high

serum ADMA level is an important independent risk factor

for various CVDs, and can be accounted for the observed

increases in cardiovascular morbidity and mortality in patients

with chronic kidney disease, rheumatoid arthritis, vasculitis,

among others (61, 62). Several drugs (such as statins) that

are administered for the management of CVD and type 2

diabetes mellitus lower serum ADMA levels in tissue fibrosis

pathogenesis (60). Here, we found that HJ11 reduced ADMA

levels in the ACS model. This mechanism as well as intestinal

microflora modulation partially explain the observed effects

of HJ11 on ACS. But could HJ11 regulate the GM and

metabolites first then give play to treat ACS, still need further

study. Moreover, the direct effect of ADMA on the endothelial

dysfunction also should be clarified. Also when HJ11 is used on

ACS in clinical treatment, clinical trails are needed to determine

the specific dose, the time, etc., so as to better treating ACS.

This study showed that HJ11 exerts anti-inflammatory

effects and improves cardiac function in ACS. Microbiome and

metabolomics analyses demonstrated that HJ11 affected the

GM structure and their metabolites. Overall, HJ11 seems to

increase the relative abundance of beneficial bacterial genera
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such as Bacteroides and Rikenellaceae_RC9_gut_group, mitigate

the risk factors associated with CVD, alter microbial metabolites,

lower ADMA levels, and effectively treat ACS. Nevertheless, the

detailed modes of action of HJ11 in ACS therapy remain to

be clarified.
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