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Background: The age of onset and causes of heart failure differ between high-

income and low-and-middle-income countries (LMIC). Heart failure patients

in LMIC also experience a higher mortality rate. Innovative ways that can

risk stratify heart failure patients in this region are needed. The aim of this

study was to demonstrate the utility of machine learning in predicting all-

cause mortality in heart failure patients hospitalised in a tertiary academic

centre.

Methods: Six supervised machine learning algorithms were trained to predict

in-hospital all-cause mortality using data from 500 consecutive heart failure

patients with a left ventricular ejection fraction (LVEF) less than 50%.

Results: The mean age was 55.2 ± 16.8 years. There were 271 (54.2%)

males, and the mean LVEF was 29 ± 9.2%. The median duration of

hospitalisation was 7 days (interquartile range: 4–11), and it did not differ

between patients discharged alive and those who died. After a prediction

window of 4 years (interquartile range: 2–6), 84 (16.8%) patients died

before discharge from the hospital. The area under the receiver operating

characteristic curve was 0.82, 0.78, 0.77, 0.76, 0.75, and 0.62 for random

forest, logistic regression, support vector machines (SVM), extreme gradient

boosting, multilayer perceptron (MLP), and decision trees, and the accuracy

during the test phase was 88, 87, 86, 82, 78, and 76% for random

forest, MLP, SVM, extreme gradient boosting, decision trees, and logistic

regression. The support vector machines were the best performing algorithm,

and furosemide, beta-blockers, spironolactone, early diastolic murmur, and

a parasternal heave had a positive coefficient with the target feature,

whereas coronary artery disease, potassium, oedema grade, ischaemic

cardiomyopathy, and right bundle branch block on electrocardiogram had

negative coefficients.
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Conclusion: Despite a small sample size, supervised machine learning

algorithms successfully predicted all-cause mortality with modest accuracy.

The SVM model will be externally validated using data from multiple

cardiology centres in South Africa before developing a uniquely African

risk prediction tool that can potentially transform heart failure management

through precision medicine.
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machine learning, heart failure, mortality, predict, Africa

Highlights

- Models predicting outcomes in heart failure are built mainly
from data originating in high-income countries, where
ischaemic heart disease predominates.

- In this study, we used data of in-hospital heart failure
patients to train machine learning algorithms to predict all-
cause mortality.

- This is the first sub-Saharan African model demonstrating
machine learning algorithms’ utility in making predictions.

- In addition, the study shows that the performance of machine
learning algorithms is sensitive to the sample size and the
credibility of the data used to train algorithms.

1. Introduction

Patients diagnosed with heart failure experience a high
mortality rate, with 30–50% of patients demising within 5 years
from diagnosis (1). This is despite the introduction of novel
pharmacological and intracardiac device therapy. Furthermore,
due to the high cost associated with the implantation of device
therapy and transplant services, only a select few patients in sub-
Saharan Africa (SSA) can access these life-saving interventions.
As such, there is a need to risk stratify patients with precision,
ensuring that the right patient receives the right therapy
at the right time.

Risk calculators are derived from predictive modeling, and
they are used to estimate the risk of outcomes such as mortality
and rehospitalisation in heart failure. Most readily available risk
calculators were created using data predominantly from high-
income countries (HIC). For example, the Meta-Analysis Global
Group in Chronic Heart Failure (MAGGIC) risk calculator,
created from a statistical Poisson model, estimates the risk
of one and 3-year mortality in heart failure (2). Another
widely available risk calculator predicting in-hospital all-cause
mortality was derived from the Get with the Guidelines Heart
Failure data of multiple sites in HIC, using a multivariable
logistic regression model (3). To the best of our knowledge, risk

calculators derived from SSA do not exist, and existing heart
failure predictive models have not been validated using data
originating from SSA.

Predictive models are population-specific and are prone
to inherent biases such as the availability of therapy, referral
pathways, genotype, and varying population data used to create
these models. Furthermore, most of the available risk calculators
were derived using data from heart failure patients in whom
the primary cause of heart failure is ischaemic heart disease,
unlike in SSA, where the predominant cause of heart failure
is non-ischaemic heart disease. Therefore, there is a need
to create uniquely African predictive models, mainly using
machine learning techniques, since machine learning algorithms
are capable of learning from a labelled dataset prior to making
predictions. Also, the accuracy of predictions may improve over
time as the algorithms are exposed to a larger dataset. This
study aims to use machine learning algorithms to predict all-
cause mortality in heart failure patients hospitalised in a tertiary
academic centre in Johannesburg, South Africa.

2. Materials and methods

2.1. Study design and participants

Patient data was exported from the PMRCardio database,
a Microsoft Structured Query Language Server Management
Studio version 15.0.18330.0, that stores clinical data of patients
hospitalised in cardiology wards. The Charlotte Maxeke
Johannesburg Academic Hospital (CMJAH) is a tertiary-level
state-owned institution equipped with general cardiac wards, a
cardiac intensive unit, a catheterisation and electrophysiological
laboratory, and outpatient clinics.

All acutely and chronically ill patients with cardiovascular
diseases are hospitalised in dedicated cardiac wards. Their
admission data is stored digitally in the PMRCardio
database by trainee physicians rotating in the cardiology
wards. Clinical parameters available in the dataset (features)
include demographic data, clinical history and examination
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findings, laboratory indices, electrocardiogram (ECG) data,
echocardiography data, angiography data, the status of the
patient upon discharge (alive or dead), the date of subsequent
admission, and discharge oral medication (Supplementary
material). In our institution, heart failure patients are routinely
prescribed guideline-directed medical therapy.

After exporting data from the PMRCardio database,
data were merged into a single Microsoft Excel Sheet and
imported into Python software, version 3.10.0. The international
classification of diseases, tenth revision (ICD-10) code, was
used to select patients diagnosed with heart failure due to any
aetiology. The following ICD-10 diagnoses were used to select
patients included in the analysis: “heart failure unspecified,”
“congestive heart failure,” “left ventricular failure,” “dilated
cardiomyopathy,” or “ischaemic cardiomyopathy.” Only heart
failure patients 18 years of age and older with a left ventricular
ejection fraction (LVEF) < 50% hospitalised between 2009 and
2018 were included in the dataset used to build predictive
models. The rationale for only including patients with a
LVEF < 50% is that in our institution, patients with a LVEF
between 40 and 49% (heart failure with a mid-range ejection
fraction) are managed similarly to those with LVEF < 40%.

All retrospective patient data used in the final analysis
was further prospectively verified by comparing hard copies
of medical records with electronic data. Patients without
a documented LVEF were excluded from the analysis.
Biochemical data captured at the time of admission was
obtained from the National Health Laboratory Service (NHLS).
Approval to conduct the study was received from the University
of the Witwatersrand Human Research Ethics Committee
(Clearance certificate number: M190515). Permission to
conduct the study was also obtained from NHLS senior
authorities. Informed consent was not obtained from the

patients as this was a retrospective chart review. The study
protocol conformed to the ethical guidelines of the 1975
Declaration of Helsinki as reflected in a priori approval by the
institution’s human research committee.

2.2. Data cleaning and pre-processing

Packages and libraries required for data analysis were
imported into Python software, version 3.10.0. The following
software, packages and libraries were installed: Jupyter notebook
version 6.0.3, scikit-learn version 1.02, statsmodels version
0.13.2, seaborn version 0.11.2, numpy version 1.21.6, scipystats
version 1.5.4, matplotlib version 3.1.3, and pandas version 1.3.5.
Features with more than 20% missing values, patient identifiers,
and column data without variation were removed from the
dataset. The remaining continuous features with missing data
were imputed using the mean or median value. Categorical
features were coded as 0 for no and 1 for yes, while blank
or missing values were ascribed with zero. Data used to train
machine learning algorithms was normalised, transformed and
scaled between 0 and 1. The rationale for scaling the data
is to standardise the weight of each feature. For example,
sodium levels equal to 120 will have more weight than a
potassium level of 5.0.

2.3. Exploratory data analysis and
hyperparameter optimisation

Exploratory data analyses were carried out visually and
quantitatively. Data were partitioned into training and test
datasets, with 70% of the data used for training. Grid searching

FIGURE 1

Flow chart showing study method and outcomes.
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was implemented for all machine learning models, where
parameters associated with the best performance metrics are
discovered and selected during model hyper-tuning. Since the
data is unbalanced with more patients in the survivors’ class,
cost-sensitive learning was applied at a ratio of 0.14: 0.86,
where a higher weight was allocated to the minority class
(dead = 1).

All demographic and clinical parameters captured during
arrival at the hospital were used as features. A filter method
was then used to identify features that are positively or
negatively correlated with all-cause mortality. Filtering was
done using correlation coefficients. To ascertain feature-to-
target correlation, a correlation coefficient was estimated for
each feature. The threshold was set at 0.5. The lowest and
highest values were furosemide (r = −0.277395, p < 0.001) and
potassium (r = 0.180126, p < 0.001). Since all features were
weakly correlated with the target value, none of the features
were removed. To build predictive models, we only used features
captured during the first hospitalisation. As such, the model with

the best performance metrics will be used to predict the risk of
in-hospital mortality using patient data obtained at the time of
arrival at the cardiology wards at the CMJAH.

In this study, the prediction window is 4 years (interquartile
range: 2–6 years). The prediction window starts from the time of
hospitalisation (index date), where the risk of death is assessed,
and ends at the time when a patient dies while hospitalised. The
EHR system only stores a single entry of data. As such, there is
no time window. For example, although clinical parameters are
measured several times while the patient is hospitalised, only the
first measurement (baseline) was captured in the EHR system.
The parameters presented in the paper were collected from
the baseline index admission for each of the 500 patients. The
following six algorithms were used to build models predicting
all-cause in-hospital mortality.

2.3.1. Decision trees
Decision trees implement a sequential decision process

based on whether the conditions set are true or false.

TABLE 1 Baseline demographic and clinical characteristics of all heart failure patients.

Clinical parameters All patients (n = 500) Died (n = 84) Alive (n = 416) P-value

Age (years) 55.2 ± 16.8 57.3 ± 18.6 54.8 ± 16.6 0.2162

Male 271 (54.2) 47 (55.9) 224 (53.8) 0.1249

Vital signs

Pulse, bpm 102 ± 23.8 95 ± 25.5 103 ± 23.5 0.1963

Systolic BP, mmHg 127 ± 30.4 121 ± 31.7 128 ± 30.1 0.0588

Diastolic BP, mmHg 83 ± 20.4 83 ± 21.2 84 ± 20.3 0.6691

Laboratory tests

Haemoglobin, g/dL 13.1 ± 2.5 13.3 ± 2.2 13.1 ± 2.5 0.4467

Sodium, mmol/l 139 ± 5.5 139 ± 5.5 139 ± 5.5 0.5220

Potassium, mmol/l 4.3 (3.9–4.7) 4.4 (3.9–4.7) 4.3 (3.9–4.7) 0.6610

Urea 8.6 (6.2–12.5) 8.05 (6–11.9) 8.7 (6.2–12.7) 0.2874

Creatinine 104 (80–137) 98 (81–124) 105 (80–142) 0.3774

eGFR, ml/min 65.7 (44.5–85.0) 68.0 (37.0–84.8) 65.4 (46.0– 85.0) 0.6116

Pro BNP, ng/l 8,541 (4,813–14,780) 7,592 (4,402–12,734) 8,709 (4,813–14,998) 0.3267

Troponin 23.5 (0.15–66.0) 4.06 (0.054–77.0) 24.5 (0.17–65.0) 0.3427

Total cholesterol 3.5 (2.8–4.1) 3.3 (2.8–4.1) 3.5 (2.8–4.2) 0.9705

LDL 2.1 (1.5–2.7) 2.1 (1.7–2.5) 2.1 (1.5–2.7) 0.9618

HDL 0.85 (0.6–1.1) 0.9 (0.6–1.2) 0.8 (0.6–1.1) 0.6493

Echocardiogram

LVEF, % 29 ± 9.2 30 ± 9.2 29 ± 9.2 0.7356

LVIDd, cm 5.9 ± 1.0 5.9 ± 0.1 5.8 ± 0.9 0.8655

LVIDs, cm 5.1 (4.5–5.6) 5.0 (4.3–5.7) 5.1 (4.5–5.6) 0.5306

Length of stay (days) 7 (4–11) 7 (4–10) 7 (4–11) 0.5796

Data are represented as mean and standard deviation (SD) for continuous features with a normal distribution and median and interquartile ranges (p25–p75) when the distribution
is skewed. Categorical data are represented as absolute numbers and percentages. BP, blood pressure; eGFR, estimated glomerular filtration rate; HDL, high-density lipoprotein; LDL,
low-density lipoprotein; LVEF, left ventricular ejection fraction; LVIDd, left ventricular internal diameter at diastole; LVIDs, left ventricular internal diameter at systole.
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The decision tree algorithm was trained, and the tree
was plotted based on grid search results by placing the
criterion as Gini, maximum depth at five, and the minimum
sample split at eight.

2.3.2. Random forest
A random forest classifier uses multiple decision trees, and

each of the decision trees outputs a prediction (dead vs. alive).
To estimate the final output, the random forest algorithm
then counts the number of votes for each class predicted
by each decision tree. Grid search identified the following
parameters to be responsible for best model performance: the
number of estimators = 1 757, minimum samples split = 5,
minimum samples leaf = 2, maximum depth = 150, and
criterion = entropy.

2.3.3. Support vector machines
Support vector machines classify data by creating a line

or hyperplane between the classes. The maximum distance
between the classes (support vectors) and the hyperplane is
then chosen. After applying grid search, the best parameters
for creating a model were a linear kernel, gamma = 0.001,
and C = 10. The “C” is a parameter that controls the effect of
support vectors.

2.3.4. Logistic regression
For the machine learning logistic regression model, the

coefficient of each feature was obtained after training and testing
models’ performance. A conventional statistical univariate
and multivariate logistic regression model was also built
to compare predictors of mortality identified by machine
learning algorithms with those extracted from the statistical
model. Clinical parameters with a p-value less than 0.05
were selected and included in the final multivariate logistic
regression model to identify independent predictors of all-cause
mortality. Confidence interval percentiles were set between
0.025 and 0.975.

2.3.5. Extreme gradient boosting
Extreme gradient boosting is an ensemble of weak

algorithms; usually, decision trees added to the model
sequentially. Feature importance is calculated based on the
number of times the feature appears in isolated trees.

2.3.6. Multilayer perceptron
The MLP network consists of one input layer, hidden

layers, and an output layer. Grid search was used to
find the best model parameters. The search for optimal
parameters was performed with the following limits: 0–0.4
dropout rate, batch size between 10 and 60, and epochs

FIGURE 2

Area under the receiver operating characteristic curve of all machine learning algorithms used to build predictive models in the study.
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between 1 and 150, and the activation function was chosen
as the rectified linear unit (ReLU). The learning rate was
set at 0.01. The hyperparameters resulting in the best
performing networks were as follows: a multi-layer network
with 124 nodes using the ReLU activation function, batch
size of 60 and 20 epochs. Shapley additive explanations

(SHAP) values were used to identify features influencing the
construction of the model.

Six supervised machine learning algorithms were trained to
predict all-cause in-hospital mortality in heart failure patients
with a LVEF less than 50% using 123 features. The performance
metrics of each algorithm were summarised using the confusion

TABLE 2 Performance of supervised machine learning algorithms in all-cause mortality prediction on the PMRCardio dataset.

Algorithm Accuracy Precision Recall f1-score

Random forest

Training: Survived 1.00 1.00 1.00 1.00

Mortality 1.00 1.00 1.00

Test: Survived 0.88 0.89 1.00 0.94

Mortality 0.75 0.10 0.18

Weighted training score 1.00 1.00 1.00

Weighted test score 0.87 0.88 0.84

Logistic regression (ML)

Training: Survived 0.78 0.96 0.78 0.86

Mortality 0.39 0.83 0.53

Test: Survived 0.76 0.94 0.78 0.85

Mortality 0.29 0.63 0.40

Weighted training score 0.88 0.78 0.81

Weighted test score 0.86 0.76 0.79

Support vector machines

Training: Survived 0.91 0.91 0.99 0.95

Mortality 0.92 0.44 0.60

Test: Survived 0.86 0.92 0.92 0.92

Mortality 0.45 0.43 0.44

Weighted training score 0.91 0.91 0.90

Weighted test score 0.86 0.86 0.86

Extreme gradient boosting

Training: Survived 0.85 0.94 0.89 0.91

Mortality 0.50 0.67 0.57

Test: Survived 0.82 0.92 0.87 0.90

Mortality 0.36 0.50 0.42

Weighted training score 0.88 0.85 0.86

Weighted test score 0.85 0.82 0.84

Decision trees

Training: Survived 0.86 0.99 0.84 0.91

Mortality 0.50 0.94 0.66

Test: Survived 0.78 0.95 0.79 0.86

Mortality 0.32 0.70 0.44

Weighted training score 0.92 0.86 0.87

Weighted test score 0.87 0.78 0.81

ML, machine learning. Performance metrics for the multilayer perceptron (MLP) model not included as the metrics reported in this table are not routinely generated with MLP model.
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matrix to calculate the accuracy, recall, precision, and F1 score,
except for the MLP, where only the accuracy was reported since
the rest of the performance metrics are not routinely available
after training MLP.

Features identified by the algorithms were ranked, weighed
and compared with predictors identified by logistic regression
using the conventional statistical method. An area under the
receiver operating characteristic (ROC) curve was used to
evaluate the ability of each model to discriminate between the
negative (alive = 0) and positive (dead = 1) classes.

2.4. Biostatistics

Categorical data are reported as absolute numbers and
percentages, while the mean with standard deviation (±) and
median with 25–75th percentile interquartile ranges were used
to summarise numerical data with a normal and non-normal
distribution, respectively. Normality was assessed visually with
histograms and quantitatively with the Shapiro–Wilk and
skewness tests. The Pearson chi-square and unpaired t-tests
were used to compare categorical and normally distributed
numerical data, respectively. In contrast, the Wilcoxon signed-
rank test was used to compare numerical data with a non-
normal distribution between patients that survived and died.
A p-value less than 0.05 represented a statistically significant

difference in the distribution of the features between survivors
and non-survivors.

3. Results

3.1. Demographic and clinical findings

Between January 2009 and December 2018, there were 4,730
acute and chronic heart failure-related hospitalisations. After
excluding patient records with missing LVEF and data that could
not be verified using original hand-written patient records and
biochemical data captured in the NHLS website, a total of 500
heart failure patients with a LVEF < 50% were included in
the descriptive cohort analysis (Figure 1). The mean age was
55.2 ± 16.8 years, and 271 (54.2%) of these patients were males.
The mean LVEF was 29 ± 9.2%. In this cohort, there were 300
(60.0%), 124 (24.8%), 54 (10.8%), and 22 (4.4%) Black, White,
Indian, and Mixed ancestry patients, respectively. The rest of the
baseline clinical characteristics of the study cohort are depicted
in Table 1.

There were 159 (31.8%) patients with hypertension and
268 (53.6%) patients with dilated cardiomyopathy. A total
of 209 (41.8%) patients had hepatomegaly, 110 (22.0%) had
ascites, 350 (55.0%) had mitral regurgitation, 340 (68.0%) had
bipedal oedema, and 395 (79.0%) had an elevated jugular venous
pressure on clinical examination. The mean resting pulse rate

FIGURE 3

Beeswarm plot showing the impact of top nine feature on the multilayer perceptron (MLP) model output based on Shapley additive
explanations (SHAP) values. K, potassium; LVEF, left ventricular ejection fraction; LVIDd, left ventricular internal diameter in diastole. Each dot
represents a single patient. Red and blue refer to a high and low feature value, respectively. For example, both high and low potassium levels
were associated with the risk of death. However, higher potassium levels (red) were strongly associated with the risk of mortality.
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was 102 ± 23 beats per minute. Upon discharge from the
hospital, there were 299 (59.8%) patients on oral beta-blocker
therapy, and angiotensin-converting enzyme (ACE) inhibitors,

FIGURE 4

Feature importance and weight identified by machine learning
algorithms. (A) Logistic regression (ML): ARB, angiotensin
receptor blocker; CAD, coronary artery disease; K, potassium;
LVEF, left ventricular ejection fraction; S4, fourth heart sound.
(B) Support vector machine: CAD, coronary artery disease; ICM,
ischaemic cardiomyopathy; K, potassium; LVIDd, left ventricular
internal diameter in diastole; NYHA, New York Heart Association;
RBBB, right bundle branch block; S2, second heart sound; Early
diastolic, early diastolic murmur. (C) Extreme gradient boosted
trees (XGB) classifier ranked features based on how many times
a feature is used to split the data across all trees. Crepitations,
lung crepitations on chest auscultation; Days admitted, duration
of hospitalisation; DCM, dilated cardiomyopathy; Diastolic,
diastolic blood pressure; Early diastolic, early diastolic murmur;
Hb, haemoglobin; HIV, human immunodeficiency virus; HPT,
hypertension; LVEF, left ventricular ejection fraction; LVIDd, left
ventricular internal diameter in diastole; LVIDs, left ventricular
internal diameter in systole; LVWMA, left ventricular wall motion
abnormality; MR, mitral regurgitation; Pan systolic, pan systolic
murmur; RA, right atrium; RV, right ventricle; S3, third heart
sound; Sinus, sinus rhythm; Systolic, systolic blood pressure; TR,
tricuspid regurgitation; visits, number of hospitalisations.

furosemide and spironolactone were taken by 201 (40.2%), 300
(60.0%), 362 (72.4%) patients, respectively.

3.2. Outcomes

In the selected 500 patients hospitalised with heart failure,
84 (16.8%) patients died before discharge from the hospital.
The median duration of hospitalisation was 7 days (interquartile
range: 4–11), and it did not differ between patients discharged
alive and those who died. Among the 416 patients discharged
alive, 29 (7.0%) patients were readmitted within 30 days, 42
(10.1%) beyond 30 days, and 340 were not readmitted.

3.3. Performance metrics

Multilayer perceptron had an accuracy of 87% during
training and testing. The AUROC curve was 0.82, 0.78, 0.77,
0.76, 0.75, and 0.62 for random forest, logistic regression (ML),
SVM, XGBoost, MLP, and decision trees, respectively (Figure 2).
Support vector machines achieved an accuracy of 86% during
the test phase, followed by XGBoost, decision trees and logistic
regression at 82, 78, and 76%, respectively (Table 2). The
recall rate was above 50% in all algorithms, except for SVM,
with a recall rate of 44 and 43%, respectively, during training
and testing using data of patients that died while hospitalised.
Logistic regression had the lowest precision of 39 and 29%
during training and testing.

3.4. Feature ranking

3.4.1. Multilayer perceptron
The top nine features identified by the MLP model were

peripheral oedema grade, furosemide, enalapril, hepatomegaly,
LVIDd, aspirin, spironolactone, serum potassium, and the LVEF
(Figure 3).

3.4.2. Logistic regression (ML)
Peripheral oedema grade had a coefficient of 0.688.

Furosemide, angiotensin receptor blockers, a fourth heart sound
on auscultation and aspirin, negatively correlated with all-cause
mortality (Figure 4).

3.4.3. Support vector machines
The following top five features had a positive coefficient with

the target feature: furosemide, beta-blockers, spironolactone,
early diastolic murmur, and a parasternal heave, whereas
coronary artery disease, potassium, oedema grade, ischaemic
cardiomyopathy, and right bundle branch block on
electrocardiogram had negative coefficients. The rest of
the features are depicted in Figure 4.

Frontiers in Cardiovascular Medicine 08 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1032524
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-1032524 January 7, 2023 Time: 6:32 # 9

Mpanya et al. 10.3389/fcvm.2022.1032524

FIGURE 5

Features identified by the random forest algorithm. BP, blood pressure; LVEF, left ventricular ejection fraction; LVIDd, left ventricular internal
diameter in diastole; LVIDs, left ventricular internal diameter in systole.

3.4.4. Extreme gradient boosting
Enalapril was the most common feature used to split

decision trees and was used 20 times, followed by oral beta-
blocker therapy, elevated jugular venous pressure, furosemide,
and CAD (Figure 4).

3.4.5. Decision trees
Decision trees identified beta blockers as the root node

(Gini = 0.5). In addition, the following features were placed as
leaf nodes: systolic and diastolic blood pressure, urea, duration,
the number of hospitalisations, and CAD.

3.4.6. Random forest
Urea, potassium, duration of admission, LVIDd,

serum sodium levels, age, LVIDs, diastolic blood pressure,
haemoglobin, and the LVEF, were identified as the top 10
features discriminating the two classes (Alive vs. Dead)
(Figure 5).

3.4.7. The conventional statistical logistic
regression model

In the multivariate logistic regression model, the
following variables were independent predictors of all-cause
mortality: diastolic blood pressure, coronary artery disease,
enalapril, spironolactone, furosemide, sodium, and potassium
(Table 3).

4. Discussion

This study used data from 500 patients with a LVEF less
than 50% on the index or baseline hospitalisation to train six
supervised machine learning algorithms to predict all-cause
mortality. Although the random forest algorithm achieved
a higher AUROC curve, the striking difference in training
and testing performance metrics suggests that the model is
overfitting data. Support vector machines had an AUC of 0.77,
and an accuracy of 91 and 86% during training and testing,
making it an ideal model for validation. The most plausible
explanation for the SVM showing a desirable performance lies
in the ability of the algorithm to process and model complex
and non-linear data by creating a decision boundary that
separates classes.

The all-cause mortality and 30-day rehospitalisation rate
in 500 patients admitted with heart failure were 16.8 and
7.0%, respectively, while the median duration of hospitalisation
was 7 (interquartile range: 4–11) days. In another tertiary-
level hospital in South Africa, the in-hospital mortality rate
among patients with acute heart failure was 8.4% and the mean
duration of hospitalisation was 9 ± 12 days (1). Similarly,
in a multicentre study conducted across Africa involving 169
heart failure patients recruited in South Africa, the 1-year all-
cause mortality was 11.8% (2). In a meta-analysis involving
67,255 heart failure patients hospitalised in Australia, the
pooled 30-day all-cause mortality was 8% (3). Similarly, in
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TABLE 3 Conventional statistical multivariate logistic regression model predicting all-cause mortality.

Univariate regression Multivariate regression

Coefficient P-value CI Coefficient P-value CI

Female 0.4330 0.043 0.013–0.853

Black race 0.5169 0.028 0.055–0.978

Gallop rhythm 0.5399 0.045 0.012–1.068

ED murmur −0.5496 0.012 −0.977 to 0.122

Diastolic BP −0.0356 0.000 −0.049 to −0.022 −0.0239 0.002 −0.039 to −0.009

CAD 0.7432 0.022 0.105–1.381 0.9490 0.033 0.078–1.820

Spironolactone −1.0043 0.000 −1.412 to 0.596 −0.6674 0.012 −1.190 to −0.145

Enalapril −1.3472 0.000 −1.845 to 0.849 −0.6440 0.044 −1.270 to −0.018

Aspirin −0.6101 0.037 −1.183 to −0.037

Furosemide −1.5959 0.000 −2.022 to −1.170 −1.5685 0.000 −2.142 to −0.995

Statins −0.6847 0.012 −1.216 to −0.153

Oedema grade 0.2503 0.002 0.089 to 0.411

Sodium −0.0782 0.000 −0.115 to −0.041 −0.0288 0.001 −0.045 to −0.012

Potassium 0.6609 0.000 0.398–0.924 0.5366 0.001 0.230–0.843

Urea 0.0095 0.032 0.001–0.018

RBBB 0.9321 0.007 0.259–1.606

LVIDd 0.3835 0.000 0.175–0.592

LVIDs 0.3337 0.002 0.122–0.545

Length of stay (days) 0.0257 0.012 0.006–0.046

CAD, coronary artery disease; BP, blood pressure; CI, confidence interval (0.025–0.975); ED, end diastolic; RBBB, right bundle branch block; LVIDd, left ventricular internal diameter in
diastole; LVIDs, left ventricular internal diameter in systole.

another systematic review of research studies conducted in low-
and-middle-income countries (LMIC), the in-hospital all-cause
mortality was 8%, with a confidence interval of 6–10% (4). The
most plausible explanation for our cohort’s higher in-hospital
all-cause mortality is the delay in presentation to the hospital.
As a tertiary academic centre, most patients referred to our
centre are initially managed in primary and secondary level
institutions and eventually referred to our centre in advanced
stages of heart failure.

Despite the variation in the aetiology of heart failure
between patients residing in LMIC and HIC, and limited access
to life-prolonging intracardiac device therapy, particularly in
patients attending state-owned treatment facilities, we found
similar predictors of all-cause mortality using machine learning
algorithms and a conventional statistical logistic regression
model. After training the SVM, furosemide, beta-blockers,
spironolactone, early diastolic murmur and a parasternal
heave, yielded positive coefficients, whereas coronary artery
disease, potassium, oedema grade, ischaemic cardiomyopathy,
and right bundle branch block on electrocardiogram had
negative coefficients. The support vector machines and the
machine learning logistic regression algorithm identified similar

predictors as the MLP model. Some of the predictors of all-
cause mortality in heart failure reported in the literature include
age, sex, diastolic blood pressure, LVEF, serum sodium and
creatinine, estimated glomerular filtration rate, haemoglobin,
haematocrit, and blood urea nitrogen (5–7). Predictors of
mortality specifically in patients with a LVEF above 50% include
blood urea nitrogen and the body mass index (6).

Healthcare databases are notoriously famous for
housing imbalanced datasets. Class imbalance refers to the
disproportionality between the data classes used to train the
predictive model (8), a common problem that is not unique
to medical data. For example, when the training data with the
negative outcome (dead) has significantly fewer observations
than the majority class, the classification algorithm favours the
majority class, by focusing the learning process on the majority
class. Our dataset had fewer entries attributed to the negative
outcome and was imbalanced. This accounts for the suboptimal
performance shown by the algorithms when learning and
making predictions specifically for the minority class. However,
instead of under-sampling the majority class or generating
new synthetic values to increase the number of samples in the
minority class, we used class weights to excessively penalise
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false negative and false positive results from the minority class
(dead).

Six supervised machine learning algorithms were
successfully trained to predict mortality despite an imbalanced
and relatively small dataset. The success implies that data
quality is also essential to consider before building predictive
models. The project’s next phase is to increase the sample
size by collecting data from multiple cardiac centres around
sub-Saharan Africa. Adding new data that was not previously
used to train or test the algorithms tends to improve the models’
performance metrics. Once the performance of the classifier
has been validated, a risk calculator will be developed and
implemented for use in Africa.

The performance of machine learning algorithms is
commonly attributed to the size of the dataset. Indeed, the
higher the number of observations the better the performance
metrics. Some authors have attempted to derive an equation
for calculating a suitable sample size for machine learning
algorithms by calculating the error rate of prediction (9, 10). In
our opinion, the performance of machine learning algorithms is
also influenced by the number of features (clinical parameters)
used, the ratio of observations within the classes, and the
credibility of the data. In our study, 500 patients with 123
features were used to train algorithms. Consider a model
created with over a million patients, but with only five features.
Its performance might be suboptimal. An ideal sample size
calculation should incorporate the number of observations and
features and a measure of data credibility. In general, the
error rate should decrease as the size of the training dataset
increases. The AUROC curve for the machine learning models
can be improved by increasing the size of the training dataset.
Other techniques for improving the AUC such as feature
normalization and scaling, setting class weights, and grid search
were applied in this study.

Machine learning algorithms cannot process data with
empty fields. As such innovative ways of handling missing
data have been introduced. These include deleting incomplete
records, filling incomplete fields with the mean, median or
mode, and predicting missing values using machine learning
algorithms and applying the last observation carried forward
method (11). In this study, we removed clinical parameters
with more than 20% missing values and imputed missing values
using the mean or median value of each feature. The rationale
for using the mean is that overall the mean value (Gaussian
distribution) of each feature does not change. However, this
method does not factor for the covariance between features.

This was a single-centre study conducted in a tertiary
centre since the CMJAH division of cardiology is the only
department equipped with an electronic health record system.
As such, the findings from this study may not be generalisable
to all heart failure patients treated in SSA. In addition, most
pertinent clinical parameters such as comorbidities, causes of
heart failure, angiographic, and ECG findings were available

in the database but underreported, as some of the data were
captured in the free text format and could not be extracted
for analysis and incorporation into the predictive models.
Also, we excluded a significant amount of patient data due to
the unavailability of handwritten patient records or objective
clinical evidence supporting the heart failure diagnosis. This
was a major limitation, since handwritten patient records are
routinely removed from the CMJAH after 5 years from the time
of initial admission, due to the unavailability of storage facilities.
Furthermore, pertinent clinical data, such as the presence of
cardiogenic shock, and the administration of ionotropes and
vasopressors, were documented in the EHR system in free-
text format and could not be extracted. Nevertheless, the study
provides proof of concept for developing a heart failure model
derived from LMIC predicting all-cause mortality.

5. Conclusion

Despite a small sample size, machine learning algorithms
successfully predicted all-cause mortality with modest accuracy.
The SVM model will be externally validated using data from
multiple cardiology centres in South Africa before developing
a uniquely African risk prediction tool.
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