
fcvm-09-1022988 December 1, 2022 Time: 16:9 # 1

TYPE Systematic Review
PUBLISHED 07 December 2022
DOI 10.3389/fcvm.2022.1022988

OPEN ACCESS

EDITED BY

Masanori Aikawa,
Brigham and Women’s Hospital
and Harvard Medical School,
United States

REVIEWED BY

Lingfang Zeng,
King’s College London,
United Kingdom
Nhat Tu Le,
Houston Methodist Research Institute,
United States

*CORRESPONDENCE

Zhou Jianqing
zhoujianqing8878@163.com
Jiangfang Lian
hjmpin@163.com

SPECIALTY SECTION

This article was submitted to
Atherosclerosis and Vascular Medicine,
a section of the journal
Frontiers in Cardiovascular Medicine

RECEIVED 19 August 2022
ACCEPTED 15 November 2022
PUBLISHED 07 December 2022

CITATION

Jun Q, Youhong L, Yuan Z, Xi Y,
Wang B, Xinyi S, Fu Y, Kedan C, Lian J
and Jianqing Z (2022) Histone
modification
of endothelial-mesenchymal
transition in cardiovascular diseases.
Front. Cardiovasc. Med. 9:1022988.
doi: 10.3389/fcvm.2022.1022988

COPYRIGHT

© 2022 Jun, Youhong, Yuan, Xi, Wang,
Xinyi, Fu, Kedan, Lian and Jianqing.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Histone modification of
endothelial-mesenchymal
transition in cardiovascular
diseases
Qiu Jun2, Li Youhong1, Zhong Yuan3, Yang Xi2,
Bingyu Wang2, Sun Xinyi2, Yin Fu2, Cen Kedan2,
Jiangfang Lian2* and Zhou Jianqing1,2*
1Li Huili Hospital Affiliated to Ningbo University, Ningbo, China, 2Medicine School of Ningbo
University, Ningbo, China, 3Ningbo Medical-Industrial Integration Innovation Research Institute,
Ningbo, China

Endothelial-mesenchymal transition (EndMT) is a differentiation process

in which endothelial cells lose their own characteristics and acquire

mesenchymal-like characteristics, which contributes to the formation and

development of atherosclerotic plaques. Until now, there is still a lack of

effective measures to treat atherosclerosis (AS), so there is an urgent need to

understand the underlying mechanisms of AS. In addition, although various

studies have shown that EndMT is involved in the pathological stages of

cardiovascular diseases, such as myocardial fibrosis, myocardial hypertrophy,

and hypertension, the specific molecular mechanisms driving EndMT are

still in the exploratory stage. In this review, we review the role of histone

modifications (methylation, demethylation and acetylation, deacetylation) on

EndMT in cardiovascular disease, aiming to target histone-modifying enzymes

to guide cardiovascular disease therapy.
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Introduction

Endothelial-mesenchymal transition (EndMT) is a special state of endothelial
cells to mesenchymal cells, and the cell morphology changes from oval to spindle-
like fibroblasts, with the loss of intercellular connections and polarity, migration
and collagen synthesis capacity increases. When endothelial cells undergo EndMT,
endothelial cell-specific markers such as CD31, VE-cadherin, and eNOS are lost, and
mesenchymal markers α-SMA, SM22α, and Vimentin are gained (1). Originally EndMT
was discovered during heart development and involved in the formation of heart valves
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and interventricular septum (2). In 2007, it was first discovered
in adult organisms that EndMT can promote myocardial
fibrosis and participate in the process of pathological tissue
remodeling (3). In recent years, researches on EndMT and
atherosclerosis (AS), pulmonary hypertension, myocardial
fibrosis and other cardiovascular diseases have been carried
out continuously, and it has been suggested that EndMT
is the main contributor to these diseases (4–6). Therefore,
targeting EndMT may be of great significance in the prevention
and treatment of cardiovascular diseases. However, EndMT
is a process influenced by complex environmental factors,
and its contribution to cardiovascular events varies across
studies, therefore, we still need to further explore the different
environmental factors and signaling pathways that affect
EndMT and related mechanisms.

Main regulatory pathways and
influencing factors of
endothelial-mesenchymal
transition

Transforming growth factor-β (TGF-β) is a major inducer
of EndMT and regulates vascular homeostasis (7). There are
three family members: TGF-β1, TGF-β2, and TGF-β3, of which
TGF-β2 is the strongest inducer of EndMT, while TGF-β1 and
TGF-β3 can induce EndMT process through paracrine TGF-β2
(8). TGF-β signaling is induced by ligands and serine/threonine
protein kinases. The ligand first binds to the cognate cell
membrane type II receptor, phosphorylates and activates type
I receptors (ALK1 and ALK5), and then Smads (R- Smads)
phosphorylation, the activated Smads and Smad4 assemble into
a complex into the nucleus, where the transcription factors Snail,
Twist, and Slug are activated to regulate the EndT process (9,
10). The effect of TGF-β on EndMT depends on the activated
TGF-β type I receptors. ALK5 promotes EndMT through
Smad2/3 signaling pathway, while ALK1 activates Smad1/5 and
antagonizes EndMT by antagonizing ALK5 (11).

In addition, TGF-β can also affect the EndMT process by
regulating non-Smad pathways, such as ERK/MAPK, PI3K/Akt
(12) and Rho GTPase (13). Other regulation of EndMT signaling
pathways, such as Wnt/β-catenin, Notch and Hippo pathways
can participate in EndMT process alone or in conjunction
with TGF-β (14–16). Under pathological conditions (17, 18),
Wnt/β-catenin signal can induce EndMT by inhibiting glycogen
synthase kinase 3β (GSK3β)-mediated phosphorylation. This
is partly due to the fact that GSK-3β is a major kinase that
phosphorylates Snail and induces the degradation of Snail
(19). TGF-β2 can activate AKT through the PI3K pathway,
which can phosphorylate GSK-3β, stabilize Snail protein, and
promote EndMT (20). In addition, systemic risk factors, such
as hyperglycemia (21), hypoxia (22), blood flow shear stress

(23), oxidative stress (13), etc., also regulate the EndMT process
and affect the progression of cardiovascular disease (Figure 1).
Although these signaling pathways and environmental factors
affect the occurrence and development of EndMT, the specific
regulatory mechanisms need to be further explored. With the
in-depth study of epigenetics, numerous evidences have shown
that various histone modifications and non-coding RNAs are
involved in the EndMT process, and play an important role in
the occurrence and development of cardiovascular diseases.

Epigenetic modification and
endothelial-mesenchymal
transition

Epigenetic modification is a bridge connecting genetic and
environmental factors. It does not modify the DNA sequence,
but can regulate how genes are expressed, including DNA
methylation, histone modification, chromatin remodeling, non-
coding RNA editing and other gene regulation methods.
The dysregulation of any link will affect the abnormality of
chromatin structure and gene expression, which will lead to
the occurrence of diseases (24, 25). In recent years, studies
have found that epigenetic modification plays an important
role in the occurrence and development of cardiovascular
diseases, and many epigenetic changes are reversible, which
provides an optimistic prospect for disease treatment (26,
27). Because EndMT is involved in cell development, it is
a state of cell differentiation, and is involved in epigenetic
regulation-related diseases, therefore, exploring the role of
different epigenetic modifications in the mechanism of EndMT
may help us to combat EndMT-related pathologies, and
then guide the treatment of cardiovascular diseases and the
development of new drugs.

Histone modifications regulate
endothelial-mesenchymal
transition

Histone is a basic protein in eukaryotic cell chromatin
and prokaryotic cells, histone H2A, H2B, H3, and H4 are
surrounded by DNA to form nucleosome structure. The tails
of histones are targets of epigenetic modifications that can
regulate gene expression. Histones can alter gene transcription
in several ways: methylation, acetylation, phosphorylation,
ubiquitination, SUMOylation, etc. (28). Histone methylation
modification is regulated by histone methyltransferases (HMTs)
and histone demethylases (HDMs). According to different
methylation sites and states, methylated histones can be
activated (H3K4me2/3, H3K36me1/3, H3K79me1/2, and
H4K20me1) or inhibit (H3K9me2/3, H3K27me2/3, H3K79me3,
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and H4K20me3) gene transcription (29). Similarly, another
common acetylation modification is acetyltransferases (HATs)
and deacetyltransferases (HDACs) that turn gene transcription
on and off. Under the action of different enzymes, histones
start the process of methylation modification and acetylation
modification. The dynamic balance between different enzymes
ensures the orderly expression of genes and the balance of
various functions of the body (30). The regulation of these
enzymes has made initial progress at the molecular level and
clinical, this article focuses on the research on HMTs, HDMs,
HATs, HDACs, and the regulation of EndMT and the underlying
mechanism, aiming to explore possible targets for the treatment
of cardiovascular diseases from an epigenetic perspective.

Histone methyltransferase
enhancer of zeste homolog 2 and
demethylase JMJD2B regulate
endothelial-mesenchymal
transition in cardiovascular disease

The main cause of most cardiovascular diseases is AS.
As is a chronically progressive inflammatory disease in which
lipid deposition, hemorrhage, and thrombosis occur in diseased
arteries, followed by fibrosis and calcification. This eventually
leads to a hardening of the arterial wall and a narrowing of the
lumen (31). Many studies have confirmed the importance of
fluid shear stress in mediating EndMT and AS, but the specific
molecular mechanism still needs to be explored. Recently,
epigenetic mechanisms have attracted attention in the regulation
of flow shear stress (32–34). Enhancer of zeste homolog 2
(EZH2) is the major methyltransferase of Polycomb repressive
complex 2 (PRC2), its SET domain catalyzes the trimethylation
of histone H3 lysine 27 (H3K27me3), thereby maintaining the
silencing state of downstream target genes (35, 36). EZH2 plays
an important role in endothelial cell dysfunction. In blood
flow low shear stress or oscillatory shear stress (atherosclerosis
susceptible area), endothelial protective mitogen activated
protein kinase 7 (MAPK7) signaling pathway is inhibited to
promote EndMT (37), the increased expression of EZH2, which
further promotes endothelial cell hyperproliferation, leads to
endothelial cell dysfunction (38). During High Uniform laminar
shear stress (atherosclerotic protection zone), activated MAPK7
reduced EZH2 expression by increasing the EZH2 inhibitor
microRNA-101. In turn, decreased EZH2 promotes MAPK7
activation by reducing the phosphatase activity responsible for
MAPK7 inactivation. If the balance between the two is broken,
it will induce EndMT and lead to cardiovascular disease (38,
39). In addition to hemodynamic abnormalities, EZH2 regulates
EndMT in other microenvironments. Left atrium isolated
from mice treated with Ang-II, showing high levels of EZH2
expression and H3K27me3 methyltransferase activity. EZH2

forms a transcriptional complex with Smad2 under the action of
Ang-II, mediates the activation of α-SMA gene, and promotes
fibroblast differentiation. α-SMA, as a mesenchymal gene, is up-
regulated in EndMT, thereby promoting EndMT. This process
was inhibited by the EZH2 inhibitor GSK126 and reversed the
differentiation of atrial fibroblasts in patients with sinus rhythm
and atrial fibrillation (40). However, in the context of endothelial
cells under the action of TGF-β and IL-1β, inhibition of EZH2
attenuated the inhibitory effect of H3K27me3 on the TAGLN
promoter and activated the transcription of the mesenchymal
gene TAGLN/SM22α, so that EZH2 negatively regulates EndMT
(41). Therefore, the exact role of EZH2 on EndMT remains
controversial. A recent study found that the EZH2 inhibitor
GSK126 successfully reduced atherosclerotic plaque progression
in ApoE-/- mice (42).

The extracellular matrix protein sulfatase 1 (SULF1) is
a heparan sulfate proteoglycan involved in epithelial cell
migration (43), which regulates two key EndMT pathways:
promoting TGF-β signaling and post-transcriptionally
inhibiting FGF signaling pathway (44, 45). This key regulator
is epigenetically controlled by the HDM JMJD2B, which
increases SULF1 expression by reducing the H3K9me3 mark,
thereby activating TGF-β signaling and promoting the EndMT
process (46). Small interfering RNA silencing of JMJD2B
attenuates TGF-β-induced expression of NAPDH oxidase
4 (NOX4) and reduces intracellular reactive oxygen species
(ROS) levels, which partially reverses the EndMT process in
tissue fibrosis (47). On the other hand, JMJD2B can enhance
β-catenin nuclear localization and transcription, and bind to
the promoter of the β-catenin target gene Vimentin to increase
its transcriptional activity by inducing H3K9 demethylation,
thereby promoting EndMT (48). In addition, JMJD2B is
regulated by a variety of environmental factors, Under the
action of EndMT contributing factors such as hypoxia,
disturbed flow, and inflammatory stimulation, up-regulation
of JMJD2B expression can demethylate H3K9me3, thereby
reducing the inhibitory effect of H3K9me3 on the mesenchymal
marker gene Calponin1 (CNN1). At the molecular level,
the JMJD2B promoter has a conserved hypoxia response
element that binds to HIF-1α (49). It indicates that JMJD2B
may be an important regulator of endothelial cell phenotype,
and it cooperates with TGF-β signaling and Wnt/β-catenin
signaling to positively regulate the EndMT process under the
participation of multiple factors. Recent studies have found that
JMJD2B can inhibit the expression of lncRNA-AERRIE during
EndMT, and lncRNA-AERRIE in turn regulates SULF1, causing
changes in EndMT markers (50). However, lncRNA-AERRIE
can promote lymphoma EMT process by activating Snail (51),
deletion or overexpression of lncRNA-AERRIE itself did not
affect the EndMT process, so it would be interesting to explore
the association of JMJD2B with lncRNA-AERRIE and SULF1 in
the context of EndMT (Figure 2).
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FIGURE 1

Influencing factors and canonical signaling pathways of endothelial-mesenchymal transition. Transforming growth factor-β (TGF-β) signal is
initiated, type II receptor activates type I receptor ALK1, phosphorylates Smad2/3, and the latter combines with Smad4 to form a complex into
the nucleus to activate transcription factors Snail, Twist1, Slug et al., promoting EndMT; While the type II receptor activates the type I receptor
ALK5 and inhibits EndMT via Smad1/5; Smad6/7 also inhibits EndMT by Smad2/3; The non-Smad pathways activated by TGF-β include: PI3K/Akt,
Rho GTPase, etc. Other pathways that activate EndMT: Wnt/β-catenin and Notch signaling pathways. High glucose, hypoxia, oxidative stress,
and shear stress can all activate the EndMT process through various mechanisms. EndMT manifests as loss of endothelial markers: Vascular
endothelial cell-cadherin, VE-cadherin, Platelet endothelial cell adhesion molecule-1, CD31/PECAM, von Willebrand Factor, vWF, endothelial
Nitric Oxide Synthase, eNOS, Vascular endothelial growth factor receptor, VEGFR; Obtainment of mesenchymal markers: Actin alpha
2,α-SMA/ACTA2, Smooth muscle 22α, SM22α, Vimentin, Fibronectin, FN/FN-EDA, Fibroblast-specific protein 1, FSP1, Collagen Type I and
Collagen Type 3, COL1 and COL3 etc.

Histone acetyltransferase p300
regulate endothelial-
mesenchymal transition

The study found that fibroblast-like cells can be derived
from endothelial cells through EndMT, which can produce
a large amount of collagen and extracellular matrix to
participate in the process of cardiac fibrosis. In EndMT-
derived fibroblast-like cells, transcript and protein levels of
α-SMA, Snail, β-catenin, and acetyltransferase p300 were
elevated, suggesting that elevated p300 levels may contribute
to EndMT (52). The use of p300 small molecule inhibitors-
L002 and C646 can specifically inhibit the activity of p300
acetyltransferase and block the differentiation of fibroblasts
to myofibroblasts induced by TGF-β. They can attenuate
p300-mediated specific histone acetylation (H4, H3K9) to
inhibit collagen transcription, not only control the occurrence
of EndMT, but also reverse hypertension-induced cardiac
hypertrophy and fibrosis (53). These studies suggest that p300
is involved in the regulation of EndMT.

p300 can be regulated under the conditions of different
EndMT stimulators, and its mediated acetylation modification
can further regulate the EndMT process. TGF-β is one of
the strongest stimulators of EndMT, and TGF-β1 stimulates
the phosphorylation of Smad2/3, which directly interacts with
p300/CBP in the nucleus and upregulates the HAT activity of
p300 (54). In turn, elevated p300 leads to chromatin acetylation

of target gene promoters, promotes transcriptional activation
of Smad2/3, and enhances TGF-β signaling (55). Likewise,
Friend leukemia integration-1 (Fli1), a potent inhibitor of
collagen gene expression in dermal fibroblasts, is also a
known target of p300. TGF-β1 induces acetylation of Fli1 by
activating the p300 HAT domain, thereby reducing its stability.
Downregulation of Fli1 expression can drive the EndMT
program, which plays an important role in scleroderma skin
fibrosis (56, 57). In addition, high glucose (25 mmol/L) induces
endothelial cell damage and an inflammatory phenotype, which
in turn triggers EndMT. Exposure to high glucose enhances
the activity of the transcriptional co-regulator p300, which
increases the activity of TGF-β through Smad2 acetylation,
which further aggravates endothelial cell damage and the
EndMT process. Using curcumin, a known p300 inhibitor,
in vitro and in vivo, Antoinette et al. (58) found that inhibition
of p300 activity can reduce Smad acetylation and TGF-β activity,
and reduce cardiac hypertrophy, improve diastolic function,
and reduce extracellular matrix production, but not affect
blood sugar. Similarly, curcumin has been shown to inhibit
IL-6-dependent EndMT and attenuate renal transplant fibrosis
through autophagy activation (59).

Dennis, and colleagues (60) used Immunoprecipitation-
western blot to find that p300 interacts with the EndMT-
specific transcription factor Snail and acetylates Snail at lysine
146 (K146) and K187, thereby reducing Snail ubiquitination
and enhancing its protein stability. p300 is a mediator of
Wnt transcriptional activity, and its mediated Wnt pathway
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transcriptional activity is related to cell differentiation. In
addition to affecting the effects of butyrate on Wnt signaling,
apoptosis and proliferation to varying degrees, P300 can also
bind to the Wnt signaling target gene ZEB1 to enhance ZEB1
transcription and promote the EndMT process (61). p300 can
also activate HIF-1 (positive regulator of VEGF and Twist) and
β-catenin, which then induce EndMT-like phenotypic changes
(62). All in all, as an important epigenetic regulator, p300’s
regulatory role in EndMT cannot be ignored, and p300-targeted
therapy has made initial progress in combating EndMT.

Regulation of endothelial-
mesenchymal transition by histone
deacetylases in cardiovascular
disease

Various studies have shown that in HDAC1-10 of human
ruptured atherosclerotic lesions, HDAC3 is the only gene
that up-regulates HDAC, especially the AS susceptible area
[inflammation area (63) and blood flow disturbance area (64)].
The specific knockout of HDAC3 in mouse macrophages can
promote collagen deposition in atherosclerotic lesions and
reduce lipid accumulation (63). Previous studies have proved
that HDAC3 undergoes unconventional splicing in stem cell
differentiation to produce HD3α isoform, which induces the
EndMT phenotype in mature endothelial cells (65). The use
of HDAC3 specific inhibitor RGFP966 can inhibit EndMT by
reducing the inflammatory response in ApoE-/-mouse AS (66).
HDAC4 knockdown leads to inhibition of Ang II-mediated α-
SMA expression and ERK phosphorylation, and inhibits the
process of myofibroblast transdifferentiation (67). HDAC2 (68)
and HDAC8 (69) can activate a variety of EndMT and pro-
fibrotic signals and transcription factors, inhibit anti-fibrotic
proteins, and promote the (70)process of EndMT and fibrosis.
In addition, Class IIa HDAC inhibition and endothelial-specific
HDAC9 knockout both reverse the phenotypic changes of
endothelial cells induced by EndMT, resulting in a decrease in
lipid content in the plaque and an increase in the thickness of the
fibrous cap, leading to a more favorable plaque phenotype (71).
Therefore, targeting HDACs to improve EndMT and then treat
AS will have a good prospect. The existing HDACI targeting
EndMT will be described later.

SIRTs are a type of NAD + dependent histone deacetylases
that are widely present in life. They are involved in inflammation
(72), oxidative stress (73), aging (74) and other activities.
These activities are related to endothelial cell dysfunction
and cardiac dysfunction, vascular diseases are closely related
(75). The expression of SIRT1 is down-regulated in EndMT
induced by TGF-β, and the activation of SIRT1 can inhibit
EndMT induced by TGF-β. The mechanism involved may be
that SIRT1-mediated Smad7 deacetylation can enhance Smad

ubiquitination regulator 1 (Smurf1)-mediated degradation of
ubiquitin proteasome, resulting in a decrease in Smad7
expression (76). On the other hand, SIRT1 can directly
deacetylate Smad4 to inhibit EndMT of endothelial cells induced
by TGF-β (77). The occurrence of pathological EndMT in
AS plaques requires activation of the MALAT1-dependent
Wnt/β-catenin signaling pathway (78). SIRT6 can directly
bind to the LncRNA MALAT1 promoter and inhibit its
expression in ECs (79). In short, targeting specific HDACs can
interfere with abnormal EndMT signals and provide a new way
to combat EndMT.

SIRTs have been proven to maintain endothelial homeostasis
through their antioxidant effects (80). Various studies have
shown that excessive production of ROS can induce EndMT,
damage endothelial cell function, and then affect the progression
of AS plaques (81, 82). SIRT3 activates the expression of
catalase by inducing forkhead box O3a (Foxo3a) deacetylation
and nuclear localization, thereby reducing oxidative stress
and inhibiting the EndMT process. In SIRT3 knockout mice,
AngII-induced EndMT and renal fibrosis can be aggravated,
while in endothelial-specific transgenic SIRT3 mice, Ang II-
induced EndMT and renal dysfunction can be improved
(83). Interestingly, SIRT3-/- did not change blood pressure.
In hypertensive kidney injury, it may be that the lack of
SIRT3 can impair the systolic function of the heart (84).
Similarly, inhibiting SIRT1 activity can enhance the expression
of fibronectin and TGF-β1 induced by the advanced glycation
end product (AGE). Overexpression of resveratrol or SIRT1 can
prevent this effect, thereby inhibiting mesenchymal transition
(85). Obviously, the regulation of EndMT by HDACs is not
limited to these examples, and the HDACs related to EndMT
are summarized in the following Table 1 and Figure 3.

In short, these studies have proved the existence of the
pathological HDACs/EndMT/AS axis. The involvement of
HDACs in EndMT-related pathways in AS needs further study.
HDACs as targets may be expected to treat the progression of
atherosclerotic disease and stabilize plaque.

Regulation of histone
ubiquitination by endothelial-
mesenchymal transition

Ubiquitin is a small molecule protein composed of 76
amino acids, which is ubiquitinated by ubiquitination under
the action of ubiquitinase. Histone ubiquitination affects gene
expression by affecting chromosomal structure. Inhibition of
ubiquitination has been reported in preclinical studies to
prevent systemic sclerosis (86). Histone ubiquitination is also
increasingly recognized in cardiovascular disease, especially
during EndMT (87). Snail is one of the specific transcription
factors that induce EndMT. Snail can interact with the ubiquitin
E3 ligase Ring1B, and Snail’s carboxyl zinc finger recruits

Frontiers in Cardiovascular Medicine 05 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1022988
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-1022988 December 1, 2022 Time: 16:9 # 6

Jun et al. 10.3389/fcvm.2022.1022988

FIGURE 2

Regulation of EndMT by histone methylation and demethylation. TGF-β promotes fibrosis, inflammation, shear stress, hypoxia and other EndMT
environments, up-regulates JMJD2B expression, demethylates histone H3K9me3, activates target genes Calpoin1, Vimentin, SULF1, and
promotes EndMT process; EndMT stimulators activate E2H2, methylate histone H3K27me3, inhibit the expression of target gene α-SMA, and
inhibit the EndMT process.

TABLE 1 Effects of HDACs on EndMT.

HDACs Inhibitor Pathways and corresponding
mechanisms

Experimental model Disease References

Inducing EndMT

HDAC1 Vaccarin ROS/p38 MAPK signaling pathway In vitro human umbilical vein endothelial cells
treated with ox-LDL

Atherosclerosis (70, 96)

HDAC2 Trichostatin A ROS In vivo streptozotocin (STZ)-induced diabetic
mice; In vitro TGF-β1-treated rat renal tubular
epithelial cells

Diabetic
nephropathy

(68)

HDAC3 RGFP966 Vascular endothelial cell inflammatory
response

In vivo ApoE-/- mice and C57/B6 mice;
In vitro human umbilical vein endothelial cells
(HUVECs)

Atherosclerosis (66)

HDAC4 Valproic acid (VPA) MAPK/ERK signaling pathway In vivo Angiotensin II-induced myocardial
fibrosis mice

Myocardial
fibrosis

(67)

HDAC8 PCI34051 Activates Smad3, STAT3, β-catenin and
snail

In vivo unilateral ureteral obstruction
(UUO)-induced renal fibrosis in mice

Renal fibrosis (69)

HDAC9 MC1568 Deacetylation of histone H3 lysine
residues

In vivo endothelial-specific HDAC9 knockout
mice; In vitro human coronary endothelial
cells (HCAECs) and human umbilical vein
endothelial cells (HUVECs)

Atherosclerosis (70)

SIRT4 – Antagonize Sirt3 and increase ROS
accumulation

In vivo male C57BL/6 Sirt4 knockout mice,
transgenic (Tg) mice exhibiting
cardiac-specific overexpression of Sirt4
(Sirt4-Tg)

Pathological
cardiac
hypertrophy

(97)

SIRT6 Small interfering RNA
(si-RNA)

Binds LncRNA MALAT1 promoter to
inhibit Wnt/β-catenin signaling pathway

In vivo C57BL/6 mice; In vitro human aortic
endothelial cells (HAECs)

Vascular aging (79)

Inhibiting EndMT

SIRT1 Short hairpin RNA
(shRNA)

Decreases Smad7 expression; Deacetylated
Smad4

In vitro human umbilical vein endothelial cells
(HUAECs)

Cardiac fibrosis (76, 77)

SIRT3 Catalytic mutant of SIRT3 SIRT3-Foxo3a-catalase pathway In vivo Endothelial-specific SIRT3 knockout
mice; In vitro primary mouse glomerular
endothelial cells

Hypertensive
kidney damage

(83)

SIRT7 Short hairpin RNA (shRNA) Inhibition of DAPK3 transcription and
inflammatory response

In vivo diabetic nephropathy patients and rats;
In vitro glomerular endothelial cells

Diabetic
nephropathy

(98)
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FIGURE 3

Epigenetic regulation of histone acetylation and deacetylation in cardiovascular disease. (A) Histone acetyltransferases (HATs) relax packaged
chromatin to promote gene transcription, and histone deacetylases (HDACs) promote chromatin packaging to inhibit gene transcription. The
HDACs family is divided into zinc lipoprotein dependent and NAD + dependent, Zinc lipoprotein dependent enzymes include: class I: HDAC1, 2,
3, 8, which are mainly expressed in the nucleus; class II: IIa: HDAC4, 5, 7, 9; IIb: HDAC6, 10, which are expressed in both the nucleus, nucleus,
and cytoplasm; class IV: HDAC11. NAD + dependent enzymes include: Class III: SIRTs1-7. (B) After the heart is pathologically stimulated, HDACs
can activate an inflammatory response and oxidative stress, promote fibrosis, damage endothelial cell barrier function, and promote endothelial
cell senescence and EndMT process leading to cardiovascular diseases such as atherosclerosis, myocardial fiber Cardiac hypertrophy,
hypertension, etc. At the same time, HDACI Can antagonize the adverse effects of HDACs.

Ring1B and its paralog Ring1A to repress its target promoter.
Deletion of Ring1A and Ring1B reduces Snail binding to target
chromatin and reduces histone 2A (H2A) monoubiquitination
at K119, thereby inhibiting Snail-mediated transcription and
cell migration (88). In addition, TGF-β-induced EndMT is
dependent on the transcription of downstream genes and
crosstalk between pathways, and inhibitory Smads (Smad6/7)
can recruit SMAD-specific E3 ubiquitin protein ligase 1
(SMURF2) to degrade activated TβRI through ubiquitination,
thereby inhibiting the EndMT process (89). SMURF1 can inhibit
TGF-β1/Smad3/4-induced vascular endothelial growth factor
(VEGF) expression and reduce EndMT-involved angiogenesis
process (90). Long non-coding RNA SENCR can directly
inhibit SMURF2-mediated TGF-β/Smad signaling pathway and
inhibit EndMT process (91). MEK/ERK acts as a TGF-β non-
canonical Smad signaling pathway, and its activation can
promote the production of collagen and now connexin, and
promote the EndMT process. MEK ubiquitination occurs on
lysine 104, which promotes MEK/ERK pathway activation and
fibroblast maturation, and both Ras and GRB2 ubiquitination
can promote MEK/ERK pathway activation and promote
fibrosis (92).

SUMO1 is a modifier in the process of ubiquitination.
In a hypoxic mouse model of pulmonary hypertension,

SUMO1 expression is significantly increased, and it is
involved in the process of pulmonary artery vascular smooth
muscle dedifferentiation (α-SMA, SM22αreduction), that is,
mesenchymal-endothelial transition process. Targeting SUMO1
not only reversed EndMT, but also treated pulmonary
hypertension by inhibiting autophagic signaling (93). The
sarcoplasmic/endoplasmic reticulum Ca2 + -ATPase (SERCA),
a key determinant of cardiac function, whose enzymatic
activity is reduced is a major feature of heart failure. Studies
have found that ubiquitination is necessary to maintain
the activity and stability of SERCA2a ATPase, and post-
translational modification of SUMO1 can enhance the activity
of SERCA2a to improve cardiac function (94), while the
use of SERCA-specific inhibitor thapsigargin can induce
oxidation Stress aggravates the EndMT process, which leads
to the development of fibrosis (95). The role of other
epigenetic regulation in SERCA2a activity has also been
demonstrated, with acetylation of lysine 492 significantly
reducing SERCA2a activity by interfering with ATP binding to
SERCA2a in both human and animal models of heart failure.
Acetylation/deacetylation of lysine 492 is mediated by P300 and
SIRT1, and pharmacological activation of SIRT1 can restore
SERCA2a activity and failing hearts through deacetylation of
lysine 492 (94).
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Epigenetic regulation of
endothelial-mesenchymal
transition-specific transcription
factors

Endothelial-mesenchymal transition is controlled by several
key transcription factors such as Snail1, Slug (Snail2), Twist,
ZEB, and KLF4. The abnormal activation of these transcription
factors promotes the occurrence of EndMT, which leads to
the development of a variety of cardiovascular diseases. In
normal endothelial cells, these genes are usually silenced or
expressed at low levels to maintain endothelial properties, but
when EndMT is activated by pathways such as TGFβ, Wnt,
and pro-inflammatory cytokines, these genes are activated.
For example, activated Snail1 interacts with SMAD3/4 to
inhibit endothelial gene expression, thereby increasing TGF-β-
mediated mesenchymal transformation (96).

Dennis, and colleagues (60) used Immunoprecipitation-
western blot to find that p300 can interact with EndMT-specific
transcription factor Snail and acetylate Snail at lysine 146
(K146) and K187, thereby reducing Snail ubiquitination and
stabilizing Snail. The acetyltransferase CREB-bindinq protein
(CBP) catalyzes the interaction between its HAT domain and
the C-terminal domain of Slug, acetylating Slug at positions
166 and 211 of lysine, doubling its half-life and increasing
stability (97). Mutations in these lysines will reduce their
ability to transactivate target genes (98), suggesting that the
transcriptional activation ability of the EndMT transcription
factor requires acetylation.

In physiological endothelial cells, the La ribonucleoprotein
domain family member 7 (LARP7) directly interacts with
the apparent inhibitory factor TRIM28 to promote the
loading of its chromatin on the Slug promoter and eliminate
HDAC1-mediated histone H3 acetylation and inhibits Slug
transcription, thereby maintaining endothelial identity and
preventing EndMT. However, when endothelial cells are
subjected to EndMT-Promoting Stimuli such as TGF-β and
inflammatory factors, they reduce LARP7, destroy TRIM28-
HDAC1 chromatin loading chromatin loading, increase histone
acetylation, and release Slug inhibition. This plays an important
role in EndMT-mediated heart valve development (99). Vascular
endothelium (VE)-cadherin is considered to be a calcium-
dependent cell-cell adhesion protein, and its absence is a sign of
EndMT (22). A recent study found that Twist was significantly
expressed during the activation of EndMT by TGF-β. At the VE-
cadherin promoter, H3K9 methylation was up-regulated, and
H3K4/H3K56 acetylation was down-regulated. Twist forms a
functional complex with H3K9 methyltransferase and HDAC
to mediate the transcriptional inhibition of VE-cadherin (100).
In addition, Krüppel-like factor 4 (KLF4) is a zinc-finger–
containing transcription factor, which binds to the TCE site
on the promoter of EndMT-related genes, including: SM22
(101), TGF-βR (102), BMP6 (103), which is important for
EndMT Regulation. Under the stimulation of TGF-β1, KLF4

separates from the phosphatase and tensin homolog (PTEN)-
KLF4 complex, leading to phosphorylation of KLF4, and then
it recruits p300 to the self-regulated gene promoter to activate
transcription. In addition, phosphorylated KLF4 enhances p300
HAT activity through the p38 MAPK pathway, and induces H3
acetylation, which leads to gene transcription (104). HDAC8
phosphorylates Snail motif 2 in the serine-rich region to increase
the stability of Snail protein (105).

A variety of epigenetic pathways control the transcriptional
activation and inhibition of EndMT-specific transcription
factors. Targeted transcription factors have been reported to
inhibit EndMT, revealing the potential mechanism of epigenetic
regulation of EndMT-related transcription factors, which may
be a new anti-abnormal EndMT Treatment methods provide
important clues.

Conclusion

At present, the research on epigenetic regulation of histones
in the cardiovascular field is constantly expanding, and many
new discoveries and new ideas have been proposed. Various
histone-modifying enzymes can be inhibited by a special
inhibitor, and good progress has been made in the treatment of
cardiovascular diseases. However, how the epigenetic regulation
of histones finely regulates various biological progress requires
further study. EndMT is involved in a variety of cardiovascular
diseases, especially the formation of atherosclerotic plaques. By
exploring the role of histone epigenetic modification in EndMT,
it is expected to provide a new direction for the treatment of
cardiovascular diseases.
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