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Objectives: Pressure-strain loop (PSL) is a novel method to quantify

myocardial work in many cardiovascular diseases. To investigate the value of

myocardial work parameters derived from PSL for evaluating cardiac function

and clinical prognosis in patients with pulmonary hypertension (PH).

Methods: A total of 52 patients with PH and 27 healthy controls were enrolled

in this prospective study. PSLs determined by echocardiography were used

to calculate global work index (GWI) of left ventricle (LV) and right ventricle

(RV). Global constructive work (GCW) comprised the sum of myocardial work

performed during shortening in systole and during lengthening in isovolumic

relaxation. Global wasted work (GWW) comprised the sum of myocardial work

performed during lengthening in systole and during shortening in isovolumic

relaxation. Global work efficiency (GWE) was defined as GCW/(GCW + GWW).

Results: LVGWW, RVGWI, RVGCW and RVGWW were significantly higher

in patients than controls (all P < 0.001). LVGWE, LVGWI, LVGCW, and

RVGWE were lower in patients than controls (all P < 0.01). Myocardial

work parameters correlated well with clinical and other conventional

echocardiographic assessments (all P < 0.05). In binary logistic regression

analysis, the combination of RVGWE and estimation of pulmonary arterial

systolic pressure (ePASP) was the best model to predict clinical outcomes

(OR = 0.803, P = 0.002 and OR = 1.052, P = 0.015, respectively). Receiver

operating characteristic curv demonstrated the combination of RVGWE and
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ePASP was the best predictor of adverse events with 100% sensitivity and

76.3% specificity (AUC = 0.910, P < 0.001).

Conclusion: Myocardial work parameters derived from PSL are emerging

markers of cardiac function. And the combination of RVGWE and ePASP is

a useful predictor of clinical outcome in PH patients.

KEYWORDS

pressure-strain loop, pulmonary hypertension, myocardial work, cardiac function,
prognosis

Introduction

Pulmonary hypertension (PH) is a pathological state or
disease caused by abnormal increase of pulmonary circulation
pressure due to various factors or diseases (1). According to
the results from a National Prospective Registry, the median
survival of PH patients is 2.8 years (95% CI 1.9–3.7 years) in the
absence of effective treatment (2).

It is well acknowledged that cardiac function is directly
related to the prognosis of patients. A great number of studies
have shown that PH patients in World Health Organization
functional class (WHO-FC) IIIWH have worse outcomes in the
long-term prognosis (3, 4). Previous studies on PH have mostly
focused on the right ventricular (RV) function, as long-term
RV afterload will directly cause RV dysfunction which is the
major determinant of survival in these patients (5, 6). However,
recently, scholars find that left ventricle (LV) is also impaired in
PH patients despite of normal LV ejection fraction (LVEF) and
LV dysfunction is associated well with poor clinical outcomes (7,
8). Therefore, both RV and LV function should be concentrated
on equally in PH patients.

Echocardiography is widely used to evaluate cardiac
function in PH patients at the advantage of non-invasion (1).
Global longitudinal strain (GLS) has proven benefit for assessing
both LV function and RV function. Yet GLS is load dependency
and is not adjusted for afterload, which may influence the
accuracy of cardiac function evaluation (9), especially in PH
patients at high level of afterload. Recently, Russell et al.
(10) propose a novel non-invasive method by quantifying
myocardial work to assess ventricular systolic function, which
is termed as pressure-strain loop (PSL). It takes account of GLS
data with non-invasive estimated ventricular pressure curves
simultaneously and the area within PSL represents myocardial
work. Study on hypertension has shown that LV myocardial
work parameters are significantly higher in moderate to severe
hypertension patients while LVGLS are preserved compared to
controls (11).

No previous study has assessed myocardial work in PH
patients. Thus, in this study, we aimed to quantify LV and
RV myocardial work in PH patients by non-invasive PSL, and

explore the value of myocardial work parameters of evaluating
cardiac function and clinical prognosis.

Materials and methods

Study population

Fifty-two patients diagnosed with PH between January 2019
and June 2020 in Shanghai Renji Hospital were consecutively
enrolled in this prospective study. Given PH prevalence and
incidence were mostly in middle-aged women, we recruited
twenty-seven age- and gender- matched healthy controls from
medical center for further study. According to 2015 ESC/ERS
Guidelines of PH (1), the diagnosis of all patients was mean
pulmonary arterial pressure (mPAP) ≥ 25 mmHg, pulmonary
artery wedge pressure (PAWP) ≤ 15 mmHg and pulmonary
vascular resistance (PVR) >3 Wood unit at rest detected by
right heart catheterization (RHC), including type I, type IV
and type V pulmonary hypertension. Exclusion criteria were
listed as the following: PH due to left heart disease; PH due to
hypoxia; arrhythmia (atrial fibrillation or flutter, left or right
bundle branch block, et al.); pregnancy; cancer; patients with
obscure endocardium in echocardiography; lost to follow-up.

Clinical data collection

Clinical data of PH patients were acquired by reviewing
electronic medical records. Age, gender, etiological
classification, brain natriuretic peptide (BNP), RHC data
including pulmonary arterial systolic pressure (PASP),
pulmonary arterial diastolic pressure (PADP), mPAP, PAWP,
cardiac output (CO), cardiac index (CI) and PVR, as well as the
specific drug therapy were recorded from all patients. Patients
underwent RHC and echocardiography within 3 days of each
other. Before echocardiography, all patients’ blood pressure
(BP) by a brachial artery cuff were measured immediately. In
order to evaluate the cardiac function, all patients underwent 6-
minute walking distance (6MWD) to identify function capacity
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and functional class was determined by clinical investigator
based on the WHO-FC (12).

Echocardiography

Standard transthoracic echocardiography connecting with
electrocardiogram were performed in all of the 52 PH
patients and 27 controls using a Vivid E95 ultrasound
machine (GE Healthcare, Horten, Norway) equipped with
an M5S probe by an experienced doctor. As recommended
by the American Society of Echocardiography (13), images
in parasternal long-axis, apical four-chamber, apical two-
chamber and apical long-axis views were acquired. All the
images were transferred from the machine at least three
consecutive beats, and then offline measured using EchoPAC
(version 203, GE Healthcare, Horten, Norway) by another
independent echocardiographer who did not take part in
the image acquisition and was blinded to clinical data.
LVEF was measured by using Simpson’s technique. Tricuspid
annular plane systolic excursion (TAPSE) was obtained by
an M-mode cursor oriented to the junction of the RV free
wall and the tricuspid valve plane. RV fractional area change
(FAC) was calculated as following formula: (RV end-diastolic
area – RV end-systolic area)/RV end-diastolic area × 100%.
Right atrial area (RAA) was measured in end-systole. Right
ventricle and left ventricle basal diameter were measured to
get right ventricle/left ventricle basal diameter ratio (RV/LV).
In the absence of pulmonic valve or right ventricular outflow
tract stenosis, the estimation of PASP (ePASP) was equal
to right ventricular systolic pressure (RVSP), which was
calculated by adding tricuspid regurgitation peak gradient
to the right atrial pressure (RAP). RAP was estimated by
observing inferior vena cave (IVC) diameter and its collapse
during inspiration.

Ventricular global longitudinal strain
and myocardial work analysis

Images from apical four-chamber, apical two-chamber
and apical long axis views were put into offline workstation
(EchoPAC version 203, GE Healthcare, Horten, Norway)
to yield LV global longitudinal strain (LVGLS). RV global
longitudinal strain (RVGLS) was assessed by using an apical
four-chamber view focusing on the RV in offline workstation.

Ventricular myocardial work was quantified by a novel
non-invasive PSL method which used GLS combined with
estimated non-invasive pressure (10). The PW Doppler signal
of the LV outflow tract was used to set marker of aortic
valve closure time. As referenced to Russel et al. (10), the
ventricular pressure was estimated using a standard pressure
trace which was personalized by stretching it in time according

to valvular event times (mitral valve open/close and aortic valve
open/close) by echocardiography and in amplitude according
to measured systolic artery pressure. Myocardial work or global
work index (GWI) was calculated as the integral of power from
mitral valve close to mitral valve open which was generated by
differentiating the strain curve over time, giving the myocardial
shortening rate, and then multiplying this with instantaneous
ventricular pressure (Figure 1). Global constructive work
(GCW) comprised the sum of myocardial work performed
during shortening in systole and during lengthening in
isovolumic relaxation, whereas global wasted work (GWW)
comprised the sum of myocardial work performed during
lengthening in systole and during shortening in isovolumic
relaxation (14). Global work efficiency (GWE) was defined as
GCW divided by the sum of GCW and GWW, expressed as a
percentage.

LV pressure was replaced by the cuff systolic pressure.
Because of the particularity of RV, in order to improve the
accuracy of pulmonary arterial systolic pressure obtained by
echocardiography, other right cardiac function parameters
obtained from echocardiography, including ePASP, TAPSE,
FAC, RAP, RAA, RV/LV, LVGLS and RVGLS, were used
for adjusting, then the calculated pulmonary arterial systolic
pressure (PASPcal) were obtained. In the absence of left/right
bundle branch block, the left and right heart could be considered
as synchronous contraction. Similarly, the estimation of real
time RV pressure was acquired by using an empiric reference
curve which was adjusted by stretching it in time according to
valvular event times (mitral valve open/close and aortic valve
open/close) by echocardiography and in amplitude according
to PASPcal. LVGWE, LVGWI, LVGCW, LVGWW, RVGWE,
RVGWI, RVGCW, and RVGWW were eventually obtained by
the algorithm above-mentioned.

The interobserver reliability of GLS and myocardial work
parameters was assessed using the measurements of 10
randomly chosen PH patients and 5 randomly chosen controls
by two experienced cardiologists.

Follow-up

All patients with PH were followed up regularly at 3-month
intervals by telephone calls to ascertain present symptom,
therapy, and cardiac function. The deadline of the last visit of
the last patient was May 2021. Major adverse events defined
as all-cause of mortality, hospitalization and need of new
specific drug therapy or enhancement on the original therapy
basis were recorded.

Statistical analysis

Normally distributed continuous variables were presented
as mean ± standard deviation, and non-normally distributed
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FIGURE 1

The algorithm of ventricular myocardial work by incorporating global longitudinal strain and ventricular pressure. Myocardial work was
quantified by calculating the rate of segmental shortening by differentiating the strain curve and multiplying the resulting value by the
instantaneous ventricular pressure. E, ejection period; IVC, isovolumic contraction period; IVR, isovolumic relaxation period; GCW, global
constructive work; LVP, left ventricular pressure; GLS, global longitudinal strain; GWW, global wasted work.

continuous variables as median (first and third quartiles).
Categorical variables were expressed as numbers (percentage).
Independent sample t-test or Mann-Whitney U test was used
to compare variables between PH patients with controls,
while Pearson’s Chi-Squared test or Fisher exact test to
compare the categorical variables (15). PASPcal was adjusted
for TAPSE, FAC, RAP, RAA, RV/LV, LVGLS and RVGLS
by multiple linear regression, and Bland-Altman plot was
used for agreement analysis. And the Spearmen correlation
coefficients were tested to analyze the relationship between
BNP, 6MWD, WHO-FC, TAPSE, FAC, RAA, RV/LV with
myocardial work parameters in PH patients. At the end
of follow-up, we performed binary logistic regression and
receiver operating characteristic (ROC) curve to predict
the risk factor of adverse events. Hosmer-Lemeshow test
was used to test the fitting degree of logical regression.
Statistical analysis was performed with SPSS 21.0 (IBM

Corp., Armonk, NY, USA). Figures were performed
with MATLAB (R2020, Mathworks, Nattick, USA) and
GraphPad Prism 8 (GraphPad Software, La Jolla, CA). For
all tests, a 2-tailed P value of < 0.05 was considered to be
statistically significant.

Results

Main clinical characteristics of
pulmonary hypertension patients and
controls

A total of 52 PH patients and 27 controls (female 84.6 vs
85.2%, P = 0.947; age 44.1 ± 13.2 vs 43.0 ± 13.7 years, P = 0.748)
were included in this clinical study. Main clinical characteristics
of patients were shown in Table 1.
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TABLE 1 Baseline clinical characteristics of pulmonary
hypertension patients.

Characteristic PH (n = 52)

Gender (% female) 44 (84.6)

Age (years) 44.1 ± 13.2

SBP (mmHg) 120.4 ± 18.1

DBP (mmHg) 75.7 ± 13.4

BNP (pg/ml) 188.0 (44.5,435.5)

6MWD (m) 430.6 ± 109.7

WHO-FC (%)

I 15 (28.8)

II 16 (30.8)

III 18 (34.6)

IV 3 (5.8)

Etiology (%)

Connective tissue disease associated with pulmonary
arterial hypertension

33 (63.5)

Idiopathic pulmonary arterial hypertension 5 (9.6)

Congenital heart disease associated with pulmonary arterial
hypertension

4 (7.7)

Portopulmonary hypertension 1 (1.9)

Chronic thromboembolic pulmonary hypertension 6 (11.5)

Pulmonary hypertension with unclear and/or multifactorial
mechanisms

3 (5.8)

Specific drug therapy

None (%) 5 (9.6)

Endothelin receptor antagonists (%) 35 (67.3)

Phosphodiesterase type 5 inhibitors (%) 35 (67.3)

Riociguat (%) 3 (5.8)

Prostacyclin analogues (%) 7 (13.5)

RHC data

Pulmonary arterial systolic pressure (mmHg) 72.9 ± 18.0

Pulmonary arterial diastolic pressure (mmHg) 34.8 ± 8.3

Mean pulmonary arterial pressure (mmHg) 48.8 ± 10.5

Pulmonary artery wedge pressure (mmHg) 10.5 ± 3.8

Cardiac output (L/min) 4.6 ± 1.6

Cardiac index (L/min·m2) 2.9 ± 0.9

Pulmonary vascular resistance (dyn·s·cm−5) 785.8 ± 403.9

Values are mean ± SD, n (%), or median (first and third quartiles).
6MWD, 6-minute walking distance; BNP, brain natriuretic peptide; DBP, diastolic blood
pressure; PH, pulmonary hypertension; RHC, right heart catheterization; SBP, systolic
blood pressure; WHO-FC, World Health Organization functional class.

Echocardiography and myocardial
work parameters

Multiple linear regression showed that PASPcal
had a good correlation with PASP from RHC
(R2 = 0.560, P < 0.001). The formula was as follows:
PASPcal = 0.609∗ePASP + 0.187∗TAPSE − 0.182∗FAC + 0.153∗

RAP + 0.12∗RAA − 0.128∗RV/LV − 0.153∗LVGLS + 0.135∗

RVGLS. Bland-Altman plot also showed great agreement
between PASPcal and PASP (Figure 2). Intra-class correlation

FIGURE 2

Agreement analysis between PASPcal and PASP from RHC.
Bland-Altman plot showed great agreement between PASPcal
and PASP (mean bias 3.554 mmHg, 95% limits of agreement
−21.17 to 28.27 mmHg). LV-PSL, left ventricular pressure-strain
loop; RV-PSL, right ventricular pressure-strain loop.

TABLE 2 Intra-class correlation coefficient of global longitudinal
strain and myocardial work parameters.

ICC 95%CI P-value

LVGLS 0.961 0.883–0.987 <0.001

RVGLS 0.981 0.944–0.994 <0.001

LVGWE 0.897 0.694–0.966 <0.001

LVGWI 0.939 0.818–0.979 <0.001

LVGCW 0.923 0.770–0.974 <0.001

LVGWW 0.889 0.669–0.963 <0.001

RVGWE 0.804 0.416–0.934 0.002

RVGWI 0.982 0.945–0.994 <0.001

RVGCW 0.990 0.969–0.997 <0.001

RVGWW 0.815 0.449–0.938 0.002

CI, confidence interval; ICC, intra-class correlation coefficient; LVGCW, left ventricular
global constructive work; LVGLS, left ventricular global longitudinal strain; LVGWE, left
ventricular global work efficiency; LVGWI, left ventricular global work index; LVGWW,
left ventricular global wasted work; RVGCW, right ventricular global constructive work;
RVGLS, right ventricular global longitudinal strain; RVGWE, right ventricular global
work efficiency; RVGWI, right ventricular global work index; RVGWW, right ventricular
global wasted work.

coefficients of GLS and myocardial work parameters were
shown in Table 2.

The representative PSL and global work curves of
participants were presented in Figure 3. As summarized
in Table 3, PH patients had higher ePASP (74.0 ± 27.4
vs 25.2 ± 2.6 mmHg, P < 0.001), RAA (18.2 ± 6.6 vs
10.7 ± 2.0 cm2, P < 0.001), RV/LV (1.3 ± 0.4 vs 0.7 ± 0.1,
P < 0.001), LVGLS (−15.3 ± 3.4 vs −19.3 ± 2.0%, P < 0.001),
RVGLS (−13.5 ± 4.3 vs −21.8 ± 2.5%, P < 0.001) and lower
TAPSE (16.5 ± 3.5 vs 24.0 ± 3.2 mm, P < 0.001), FAC
(31.2 ± 12.2 vs 52.1 ± 6.7%, P < 0.001) than controls. However,
there was no significant difference in LVEF (69.9 ± 5.7 vs
67.6 ± 3.9%, P = 0.075). Compared to the controls, LVGWW
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FIGURE 3

Representative pressure-strain loops and global work curves. The difference of LV-PSL (A) and RV-PSL (B) between PH patients and control was
shown. The difference of LV global work curve (C) and RV global work curve (D) was shown. LV-PSL, left ventricular pressure-strain loop;
RV-PSL, right ventricular pressure-strain loop.

Frontiers in Cardiovascular Medicine 06 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1022987
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-1022987 December 12, 2022 Time: 14:4 # 7

Wang et al. 10.3389/fcvm.2022.1022987

TABLE 3 Comparison of myocardial work parameters between pulmonary hypertension patients and controls.

Characteristic Controls (n = 27) PH (n = 52) P-value

Gender (% female) 23 (85.2) 44 (84.6) 0.947

Age (years) 43.1 ± 13.7 44.1 ± 13.2 0.748

SBP (mmHg) 118.4 ± 13.8 120.4 ± 18.1 0.627

DBP (mmHg) 75.7 ± 10.3 75.7 ± 13.4 0.997

Conventional echocardiography measurements

ePASP (mmHg) 25.2 ± 2.6 74.0 ± 27.4 <0.001

TAPSE (mm) 24.0 ± 3.2 16.5 ± 3.5 <0.001

FAC (%) 52.1 ± 6.7 31.2 ± 12.2 <0.001

RAA (cm2) 10.7 ± 2.0 18.2 ± 6.6 <0.001

RV/LV 0.7 ± 0.1 1.3 ± 0.4 <0.001

LVEF (%) 67.6 ± 3.9 69.9 ± 5.7 0.075

LVGLS (%) −19.3 ± 2.0 −15.3 ± 3.4 <0.001

RVGLS (%) −21.8 ± 2.5 −13.5 ± 4.3 <0.001

Myocardial work parameters

LVGWE (%) 94.0 (93.0, 95.0) 84.0 (80.0, 90.0) <0.001

LVGWI (mmHg%) 1,560 (1,364.0, 1,884.0) 1,330.0 (1,061.3, 1,467.5) <0.001

LVGCW (mmHg%) 1,989.0 (1,795.0, 2,323.0) 1,810.0 (1,494.8, 2,024.5) 0.004

LVGWW (mmHg%) 110.0 (83.0, 130.0) 296.5 (172.0, 461.5) <0.001

RVGWE (%) 92.0 (90.0, 95.0) 85.0 (76.3, 92.5) 0.001

RVGWI (mmHg%) 352.0 (314.0, 412.0) 571.5 (373.5, 796.0) <0.001

RVGCW (mmHg%) 474.0 (435.0, 526.0) 793.5 (624.5, 1,173.0) <0.001

RVGWW (mmHg%) 38.0 (23.0, 57.0) 151.5 (60.5, 223.0) <0.001

Values are mean ± SD, n (%), or median (first and third quartiles).
ePASP, estimation of pulmonary arterial systolic pressure; FAC, fractional area change; LVEF, left ventricular ejection fraction; RV/LV, right ventricle/left ventricle basal diameter ratio;
TAPSE, tricuspid annular plane systolic excursion; other abbreviations as in Tables 1, 2.

[296.5 (172.0, 461.5) vs 110.0 (83.0, 130.0), P < 0.001], RVGWI
[571.5 (373.5, 796.0) vs 352.0 (314.0 412.0), P < 0.001], RVGCW
[793.5 (624.5, 1,173.0) vs 474.0 (435.0, 526.0), P < 0.001] and
RVGWW [151.5 (60.5, 223.0) vs 38.0 (23.0, 57.0), P < 0.001]
were significantly increased in PH patients. LVGWE [84.0
(80.0, 90.0) vs 94.0 (93.0, 95.0), P < 0.001], LVGWI [1,330.0
(1,061.3, 1,467.5) vs 1,560.0 (1,364.0, 1,884.0), P < 0.001],
LVGCW [1,810.0 (1,494.8, 2,024.5) vs 1,989.0 (1,795.0, 2,323.0),
P = 0.004], and RVGWE [85.0 (76.3, 92.5) vs 92.0 (90.0, 95.0),
P = 0.001] were significantly lower in PH patients than controls.

Relationship of myocardial work
parameters and other clinical data in
pulmonary hypertension patients

We used linear correlation analysis to assess relationship
between myocardial work parameters and other clinical data
in PH patients, which were described in Figure 4. LVGWE
presented a positive correlation with 6MWD (r = 0.406,
P = 0.003), and FAC (r = 0.457, P = 0.001), but a negative
correlation with WHO-FC (r = −0.415, P = 0.002), and RV/LV
(r = −0.280, P = 0.044). LVGWI significantly correlated with
6MWD (r = 0.466, P< 0.001), WHO-FC (r = −0.455, P = 0.001),

FAC (r = 0.572, P < 0.001), RV/LV (−0.351, P = 0.011). The
correlations between LVGCW and 6MWD (r = 0.344, P = 0.013),
WHO-FC (r = −0.331, P = 0.016), and FAC (r = 0.396, P = 0.004)
were also significant. LVGWW was only correlated with 6MWD
(−0.277, P = 0.047), WHO-FC (r = 0.293, P = 0.035) and FAC
(r = −0.305, P = 0.028). As for RV function, RVGWE showed a
negative correlation with BNP (r = −0.314, P = 0.023), WHO-
FC (r = −0.288, P = 0.039), and RV/LV (r = −0.352, P = 0.010)
and a positive correlation with 6MWD (r = 0.288, P = 0.039),
and FAC (r = 0.461, P = 0.001). In addition, RVGWI correlated
well with BNP (r = −0.297, P = 0.032), TAPSE (r = 0.306,
P = 0.028), and FAC (r = 0.373, P = 0.006). The correlations
of RVGWW with 6WMD (r = −0.294, P = 0.034), WHO-FC
(r = 0.319, P = 0.021), FAC (r = −0.332, P = 0.016) and RV/LV
(r = 0.339, P = 0.014) were significant as well.

Association of myocardial work
parameters and clinical outcomes in
pulmonary hypertension patients

PH patients were followed for a median of 515.0 days (386.5,
535.8) at termination. During the follow-up period, adverse
events occurred in 14 patients (26.9%): 12 patients (23.1%)
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FIGURE 4

(Continued)
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FIGURE 4

Correlation between clinical measurements and myocardial work parameters in the PH patients. The Spearmen correlation coefficients were
tested to analyze the relationship between BNP (A,B), 6MWD (C–H), WHO-FC (I–N), TAPSE (O), FAC (P–V), and RV/LV (W–Z) with myocardial
work parameters. All abbreviations as in Tables 1, 2.

had hospitalization and 2 patients (3.8%) needed enhancement
on the basis of original therapy. Best binary logistic model
for evaluating adverse events was shown in Table 4 (Hosmer-
Lemeshow χ2 = 4.84, P = 0.775). The formula was as follows:
logit (P) = 12.586 − 0.22∗RVGWE + 0.051∗ePASP. In the model,
RVGWE had an OR of 0.803 (95%CI 0.698–0.922, P = 0.002)
and ePASP had an OR of 1.052 (95%CI 1.010–1.096, P = 0.015).
Furthermore, based on the model, ROC curves showed the
combination of RVGWE and ePASP had the biggest area under

curve (AUC) with 0.910 (P < 0.0001), which were described in
Table 5 and Figure 5.

Discussion

PSL was firstly proposed by Urheim et al. (16) to quantify
regional myocardial function by combining LV pressure from
micromanometer with myocardial longitudinal strains from
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TABLE 4 Best binary logistic model for evaluating adverse events.

Variable OR 95%CI P-value

RVGWE (%) 0.803 0.698–0.922 0.002

ePASP (mmHg) 1.052 1.010–1.096 0.015

OR, odds ratio; other abbreviations as in Tables 2, 3.

TABLE 5 Receiver operating characteristic analysis for the prediction
of adverse events.

Parameter AUC P-value Sensitivity
(%)

Specificity
(%)

RVGWE + ePASP 0.910 <0.0001 100.0 76.3

RVGWE (%) 0.861 <0.0001 92.9 73.7

ePASP (mmHg) 0.719 0.016 92.9 44.7

AUC, area under curve; other abbreviations as in Tables 2, 3.

FIGURE 5

ROC curves for the prediction of adverse events. Major adverse
events were defined as hospitalization and need of new specific
drug therapy or enhancement on the original therapy basis. All
abbreviations as in Tables 2, 3.

strain Doppler echocardiography or sonomicrometry. On the
basis of this, Russell et al. (10) established an improved non-
invasive pressure curve and applied this to measure PSL area
which was approximately equivalent to GWI. Furthermore,
GCW, GWW and GWE derived from myocardial work
assessment were put forward and measured to understand
cardiac function more easily (14). Recent studies had shown
that LVGWE, LVGCW, and LVGWW exhibited favorable
applicability to predict response to cardiac resynchronization
therapy (CRT) and long-term cardiac outcome in CRT
candidates (17–21). Besides, it has proven that myocardial
work parameters were superior to GLS to detect significant
coronary artery disease in patients with no regional wall
motion abnormalities and normal LVEF by Edwards et al.
(22). Butcher et al. (23) also applied RV-PSL to assess RV
function in a cohort of patients with heart failure with reduced
left ventricular ejection fraction and found that RVGCW
could reflect RV systolic function well and it correlated

closely with invasively measured stroke volume and stroke
volume index. Recently, Butcher et al. reported that decreased
values of RVGCW and RVGWI were associated with all-
cause mortality in patients with PH (24). This is the first
study that quantifies myocardial work through PSL method
to evaluate cardiac function and predict clinical prognosis in
patients with PH.

Non-invasive PSL refers to estimated ventricular pressure
and strain derived from echocardiography. According to Russell
et al. (10), LV peak ventricular pressure can be substituted
by systolic cuff pressure. Analogously, RV peak ventricular
pressure should be equal to PASP from RHC. Echocardiography
is widely used to measure non-invasive ePASP, and there is a
good correlation between the estimation and actual value (25).
A meta-analysis including 29 studies showed that the correlation
coefficient between ePASP and PASP was 0.70 (26). However,
the accuracy of ePASP is still questioned due to the effect
of tricuspid regurgitation. In order to improve the agreement
between PASP estimated from echocardiography and measured
by RHC, PASPcal is generated by adjusting for TAPSE, FAC,
RAP, RAA, RV/LV, LVGLS and RVGLS. It will be more accurate
to apply PASPcal instead of ePASP to non-invasive PSL method
to calculate RV myocardial work.

In our study, RVGWI, RVGCW and RVGWW substantially
increase in PH patients compared to healthy controls while
RVGWE decrease to a certain extent. RV is not composed
of a single layer of myocardium, but mainly composed of
superficial myocardium from the basal part of interventricular
septum (IVS) and deep longitudinal myocardium. Under
normal conditions, the contraction patterns of RV are mainly
as follows: contraction of LV and IVS pull the free wall of
RV to move inward, resulting in passive contraction of RV
myocardium; the deep longitudinal myocardium of RV free
wall contract, causing the tricuspid annular plane to approach
to the apex (27); IVS rotates and contracts, participating in
the shortening of RV long axis (28). With compensatory
hypertrophy of the longitudinal myocardium of inner layer of
RV in patients with PH, myocardial work increases to maintain
RV ejection volume.

LV and RV are closely related in structure and function,
and there is an interaction between two ventricles (29). In
Hardegree et al. study (30), despite normal LV size and normal
conventional measures of LV systolic function, including end-
diastolic dimension, LVEF, and CI, patients with PH had
reduced LV free wall systolic strain. The phenomenon may
be explained by the reason that chronic RV pressure overload
enlarges RV volume and forces IVS to deviate to LV, which
further causes LV geometric deformation and dysfunction
(31). This is supported by the results of the present study,
in which PH patients have poorer LVGWE, LVGWI and
LVGCW than healthy controls, whereas LVGWW abnormally
increases in PH patients. Meanwhile, we also find that
LVEF of patients was not significantly different from that
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of the control group, which may be due to compensatory
enhancement of RV contractility to support LV systolic
function (32).

In this study, as an emerging quantitative marker of cardiac
function, myocardial work parameter has potential value to
definite present cardiac function in PH patients. In clinical
practice, WHO-FC remains a determinant part for assessing
cardiac function, as it provides cardiologists with valuable
information for determining disease severity, improvement,
deterioration or stability. A follow-up cohort study containing
982 PH patients with WHO-FC III at baseline in the REVEAL
Registry have shown that patients who improve from WHO-FC
III to I/II have better prognosis than those who remain III or
worsen to IV by Kaplan-Meier estimates of 3-year survival (33).
WHO-FC presents substantial utility of evaluation of patients
with PH. However, there is certain subjectivity and interobserver
variation in WHO-FC assessment which is dependent on the
experience of cardiologists (34). As supplements, myocardial
stress markers such as BNP (35), exercise capacity tests such as
6MWD (36) and other echocardiography characteristics such as
TAPSE (37), FAC (38), RAA (39), and RV/LV (40) are referred
to evaluate cardiac function in PH patients more accurately.
The NORRE study had proven LV myocardial work parameters
correlate well with traditional parameters of systolic function
in healthy subjects (41, 42). In the present study, myocardial
work parameters correlate significantly with other clinical
assessments of cardiac function. Myocardial work parameters
will provide quantifiable information for identification of
cardiac function status as another supplement to aid in clinical
decision making.

Management of cardiac function is critical to the prognosis
of patients with PH. Guidelines put emphasis on the importance
of RV function in PH patients (1), as RV function has
proven been a major determinant of prognosis among PH
patients irrespective of etiology (43). RV is sensitive to
pressure overload. And analysis of RV function independent
of the effect of pulmonary artery pressure, does not provide
accurate clinical evidence. RV-pulmonary artery coupling
explains RV function in the perspective of the pulmonary
circulation as a whole (44). There is no conclusive evidence
for non-invasive assessment of RV-pulmonary artery coupling
(45). In our current study, combination of RVGWE and
ePASP is a potential novel model for assessment of RV-
pulmonary artery coupling. RVGWE is a form of RV intrinsic
contractility derived from PSL which is less dependent on
the load. In addition, ePASP can reflect the elasticity of
the pulmonary artery indirectly. In the prognostic study, the
value of combination of RVGWE and ePASP is superior to
individual parameter with the biggest AUC of 0.910. It is
worthwhile to highlight that combination of RVGWE and
ePASP has potential prognostic value to assist physicians
in deliberating on the therapeutic schedule for each patient
during follow-up.

There are some limitations in the present study. First, this
is a single-center and small population cohort study, which may
produce a selection bias. Because of a relatively short follow-up
period, the prognostic use of myocardial work by PSL method
needs to be further demonstrated. Second, in the absence of
myocardial work analysis before specific drug therapy, we have
no chance to explore the short- and long-term effect of specific
drug therapy on myocardial work parameters.

Conclusion

Non-invasive PSL is feasible for quantifying myocardial
work in patients with PH. Myocardial work parameters derived
from PSL method are the emerging markers of cardiac function
and the combination RVGWE and ePASP is a useful predictor
of the clinical outcome in patients with PH.
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