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Oxidative stress markers-driven
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post-discharge mortality in
heart failure with reduced
ejection fraction
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Salma Charfeddine3, Fatma Zouari3, Leila Abid3,
Ahmed Rebai1 and Najla Kharrat1
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University of Sfax, Sfax, Tunisia, 2Digital Research Center of Sfax, University of Sfax, Sfax, Tunisia,
3Unit of Cardiology in Hospital of Hedi Chaker, Faculty of Medicine, University of Sfax, Sfax, Tunisia

Background: Current predictive models based on biomarkers reflective of

different pathways of heart failure with reduced ejection fraction (HFrEF)

pathogenesis constitute a useful tool for predicting death risk among HFrEF

patients. The purpose of the study was to develop a new predictive model for

post-discharge mortality risk among HFrEF patients, based on a combination

of clinical patients’ characteristics, N-terminal pro-B-type Natriuretic peptide

(NT-proBNP) and oxidative stress markers as a potentially valuable tool for

routine clinical practice.

Methods: 116 patients with stable HFrEF were recruited in a prospective

single-center study. Plasma levels of NT-proBNP and oxidative stress markers

[superoxide dismutase (SOD), glutathione peroxidase (GPX), uric acid (UA),

total bilirubin (TB), gamma-glutamyl transferase (GGT) and total antioxidant

capacity (TAC)] were measured in the stable predischarge condition.

Generalized linear model (GLM), random forest and extreme gradient boosting

models were developed to predict post-discharge mortality risk using clinical

and laboratory data. Through comprehensive evaluation, the most performant

model was selected.

Results: During a median follow-up of 525 days (7–930), 33 (28%) patients

died. Among the three created models, the GLM presented the best

performance for post-discharge death prediction in HFrEF. The predictors

included in the GLM model were age, female sex, beta blockers, NT-

proBNP, left ventricular ejection fraction (LVEF), TAC levels, admission systolic

blood pressure (SBP), angiotensin-converting enzyme inhibitors /angiotensin

receptor II blockers (ACEI/ARBs) and UA levels. Our model had a good

discriminatory power for post-discharge mortality [The area under the curve

(AUC) = 74.5%]. Based on the retained model, an online calculator was
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developed to allow the identification of patients with heightened post-

discharge death risk.

Conclusion: In conclusion, we created a new and simple tool that may allow

the identification of patients at heightened post-discharge mortality risk and

could assist the treatment decision-making.

KEYWORDS

heart failure, oxidative stress, mortality, prediction, models

Introduction

Heart failure (HF) is a complex clinical syndrome resulting
from any functional or structural heart disorder, leading to
a reduction of cardiac output or an increase in intracardiac
pressures (1). HF is a major clinical and public health concern
that affects around 63.4 million people worldwide, accounting
for an economic burden of 346.17 billion US $ worldwide in
2017 (2–4). For African countries, HF is still health challenging
and was associated with significant rates of hospitalizations and
mortality (5–8).

Based on the measurement of the left ventricular ejection
fraction (LVEF), HF with reduced ejection fraction (HFrEF)
and HF with preserved ejection fraction (HFpEF) are the
two major HF subtypes (9). HFrEF is a progressive and
multifactorial disease, mainly associated with left ventricular
systolic dysfunction and adverse cardiac remodeling (10).
It develops as the final and serious stage of various cardiac
diseases, including coronary artery disease, myocarditis,
valve disease, arterial hypertension and arrhythmias (11).
Although the significant advance in HF management,
HFrEF remains a serious public health problem with high
morbidity, hospitalizations and mortality rates (12–14). A study
combining the Cardiovascular Health Study and Framingham
Heart Study cohorts reported that 67% of HFrEF patients
died within 5 years after diagnosis (15). Thus, prediction
of mortality risk for HFrEF patients becomes essential to
guide therapy decision-making. Indeed, several demographic
characteristics, comorbidities, clinical variables and HF
medications have been identified as relevant predictors of
mortality among patients with HFrEF (16–18). The Natriuretic
peptides, including B-type Natriuretic peptide (BNP) and
N-terminal pro-B-type Natriuretic peptide (NT-proBNP),
are the gold standard biomarkers used in diagnosis, risk
stratification and prediction of future cardiac events in HFrEF
patients (19–21). Furthermore, the measurement of specific
biomarkers, associated with the different pathways of HFrEF
pathogenesis has emerged as the most appropriate approach
to facilitate the prediction of mortality risk in patients with
HFrEF (19, 22–26).

An ever-growing body of evidence supports that increased
oxidative stress, resulting from an imbalance between the
production of reactive oxygen species (ROS) and antioxidant
defense mechanisms, is involved in the pathogenesis of
HFrEF (27, 28). Indeed, increased production of ROS causes
cellular dysfunction, protein oxidation, lipid peroxidation, and
nucleic acid damage. These alterations contribute to myocyte
apoptosis, cardiomyocyte hypertrophy, collagen deposition
and matrix remodeling eventually leading to progressive left
ventricular remodeling and dysfunction driving HFrEF (29).
The components of the antioxidant defense systems, responsible
for the inactivation of ROS, consist of antioxidant enzymes such
as superoxide dismutase (SOD), catalase, glutathione peroxidase
(GPx), peroxiredoxins; non-enzymatic antioxidants, including
glutathione (GSH), vitamins, uric acid (UA), total bilirubin
(TB) and albumin (30). The assessment of markers relevant to
antioxidant defense systems had indicated an association with
the progression and severity of HFrEF (31–33). Furthermore,
there is growing evidence that antioxidant parameters may
provide valuable new insight into the prognosis of HFrEF.
Indeed, a large number of studies have been conducted to prove
the potential role of UA as a prognostic marker in HFrEF (34–
36). The gamma-glutamyl transférase (GGT), the first enzyme
of the gamma glutamyl cycle that regulates the antioxidant
GSH, has emerged as a promising biomarker for predicting
mortality among patients with HFrEF (37, 38). In 2019, Romuk
et al. demonstrated that SOD activity was associated with long-
term outcomes in HFrEF (39). Other studies showed that total
antioxidant capacity (TAC) and bilirubin levels were associated
with an increased risk of death in patients with HFrEF (36, 40).

Based on these findings, we hypothesized that oxidative
stress markers in combination with NT-proBNP and relevant
clinical factors may provide a good predictive potential for
mortality risk in HFrEF. Accordingly, the present study
aimed to develop a new predictive model for post-discharge
mortality risk among HFrEF patients, based on a combination
of clinical patient characteristics, NT-proBNP and oxidative
stress markers, as a potentially valuable tool for routine
clinical practice.
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Materials and methods

Patients and study design

This study is a prospective single-center study. A total
of 116 consecutive patients, admitted for newly diagnosed or
exacerbated HFrEF to the Cardiology Department of CHU
Hedi Chaker from November 2017 to December 2019, were
recruited. This study was approved by the local ethics committee
of CHU Hédi Chaker of Sfax (Tunisia), in accordance with the
principles expressed in the Declaration of Helsinki (CPP Sud
0276/2017). Written informed consent was obtained from all
enrolled patients.

The diagnosis of HFrEF was based on the Framingham
criteria and the presence of left ventricular systolic reduction
(LVEF < 50%) (41, 42). Only patients discharged alive were
evaluated in the present study. The exclusion criteria were:
Age < 20 years, HFpEF (LVEF ≥ 50%), acute myocardial
infarction, a severe valvular disease requiring surgery, renal
failure requiring dialysis, presence of inflammatory disease,
autoimmune diseases and malignant diseases.

Data collection

Patients’ demographic and clinical characteristics,
comorbidities and treatments are known to influence
the prognosis of HFrEF were documented from medical
records and through patient interviews. For each patient, the
following characteristics were collected: age sex, comorbidities
[hypertension, diabetes mellitus, hyperlipidemia, chronic
kidney disease (CKD), chronic obstructive pulmonary disease
(COPD) and anemia], HF characteristics [previous history of
HF, New York Heart Association (NYHA) class and ischemic
etiology], clinical measures [body mass index (BMI), systolic
blood pressure (SBP), LVEF, electrocardiogram indicators
(atrial fibrillation (AF), left Bundle Branch Block (LBBB) and
QRS duration) and creatinine clearance (CC)] and discharge
medications [beta blockers, angiotensin-converting enzyme
inhibitors /angiotensin receptor II blockers (ACEI/ARBs), loop
diuretics, aldosterone antagonist and statins]. The etiology of
HFrEF was classified as ischemic or non-ischemic, based on a
history of myocardial infarction and/or coronary angiography.
LVEF was determined by two-dimensional echocardiography,
using the biplane Simpson’s method (43). CC was estimated
using the Cockcroft-Gault Equation (44). The prognostic
outcome of the present study was post-discharge all-cause
mortality. Information regarding outcomes was obtained
through hospital records and telephone contact with patients or
their close family members. The follow-up time was calculated
from discharge to all-cause mortality (time to death) or
termination of the study.

Biochemical measurements

Fasting blood samples were collected under stable
conditions before discharge. Samples were centrifuged
upon permanent cooling at 3,500 rpm for 5 min. Obtained
plasma was stored immediately at −20◦C temperature until
assay. UA, TB, and GGT were measured using the Hitachi 912
analyzer (Roche).

SOD activity was measured by the method of Beyer and
Fridovich (45), based on the ability of SOD to inhibit the
oxidation of nitro blue tetrazolium (NBT) in the presence
of oxygen. The reduction of NBT was measured by a
spectrophotometer at 560 nm. SOD activity was calculated by
determining the percentage inhibition per min under standard
conditions. A 50% of inhibition corresponds to one unit
of SOD activity.

GPx activity was determined according to the method of
Flohé and Günzler (46), based on glutathione oxidation by GPx
in the presence of Ellman’s Reagent (DTNB). The absorbance
was measured at 412 nm. GPx activity was expressed as nmoles
of disappeared GSH/min/mg of proteins.

TAC was measured by colorimetric method using
the Colorimetric Assay Kit (Catalog #K274-100;
BioVisionIncorporated; CA 95,035 USA). According to
the manufacturer’s instructions, the antioxidant equivalent
concentrations were measured at 570 nm as a function of Trolox
concentration. TAC was expressed as mM Trolox equivalent.

NT-proBNP levels were assessed by the Human NT
Pro-BNP DuoSet ELISA kit (DY3604-05, R&D, Minneapolis,
MN, USA). According to the manufacturer’s protocol, the
double-antibody sandwich method was applied in this assay.
The measurement range of the NT-proBNP assay was 312–
10000 pg/ml.

Statistical analysis

For descriptive statistics, the Shapiro-Wilk test was used
to assess the normality of continuous variables. Continuous
variables were presented as mean and standard deviations (SD)
or median and interquartile range [(IQR): Q3–Q1] according
to their distribution. Categorical variables were expressed
as numbers and percentages. To examine the differences in
biomarker levels and clinical characteristics between survivors
and non-survivors, T-tests were used for parametric variables,
U Mann–Whitney tests for non-parametric variables and Chi-
square tests for categorical variables. The level of statistical
significance was set at a two-tailed p-values < 0.05.

The association between oxidative stress markers and post-
discharge mortality risk was evaluated by Kaplan-Meier (KM)
survival analysis, log-rank test and Cox proportional hazards
regression. Receiver operating characteristic (ROC) curves were
used to determine the relevant cut-off of biomarkers statistically
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associated with post-discharge mortality for the identification of
low-risk and high-risk subjects. KM survival curves were then
generated to illustrate survival of patients, according to cut-
off values of these biomarkers and Log rank tests were used
to compare between the curves. Univariate Cox proportional

hazards regression analysis was performed to determine the
predictive value of each biomarker and each baseline patient
characteristic. Variables with statistical significance in the
univariate Cox analysis (p-values < 0.05) were then adjusted
for age, sex and BMI in a multivariable model. Multivariate

TABLE 1 Baseline characteristics of study patients stratified according to prognosis outcome.

Post-discharge mortality during follow-up

Total (116) Yes (33) No (83) P-value

Demographics

Age, years 62.5± 11.6 65.7± 12.3 61.3± 11.1 0.067

Sex n (%)

Male 81 (72.4) 20 (60.6) 64 (77.1) 0.061

Female 32 (27.6) 13 (39.4) 19 (22.9)

Comorbidities

Hypertension (Yes) n (%) 44 (37.9) 13 (39.4) 31 (37.3) 0.5

Diabetes mellitus (Yes) n (%) 33 (28.4) 10 (30.3) 23 (27.3) 0.474

Hyperlipidemia (Yes) n (%) 30 (25.9) 10 (30.3) 20 (24.3) 0.321

CKD (Yes) n (%) 22 (18.9) 10 (30.3) 12 (14.5) 0.047

COPD (Yes) n (%) 8 (6.9) 4 (12.12) 4 (4.8) 0.159

Anemia (Yes) n (%) 53 (45.7) 18 (54.5) 35 (42.16) 0.158

Heart failure characteristics

Previous history of HF n (%) 55 (47.4) 21 (63.6) 34 (40.9) 0.023

NYHA class III/IV n (%) 83 (71.5) 29 (87.9) 54 (65.1) 0.010

LVEF (%) 30 (15–48) 25 (15–45) 30 (15–48) 0.034

Ischemic etiology n (%) 47 (40.5) 12 (36.4) 35 (42.2) 0.360

Clinical measures

BMI (Kg/m2) 25.5 (17.4–36.3) 24.2 (18.8–33.9) 25.9 (17.3–36.3) 0.664

Admission SBP (mm Hg) 120 (77–180) 110 (77–170) 120 (88–180) 0.003

QRS duration (ms) 118 (74–196) 108 (80–196) 100 (74–196) 0.044

AF n (%) 46 (39.6) 13 (39.4) 33 (39.7) 0.571

LBBB n (%) 49 (42.2) 18 (54.5) 31 (37.3) 0.069

CC (ml/min) 73.5 (33–174) 60 (33–141) 78 (33–174) 0.025

Discharge medications

Beta blockers (yes) n (%) 90 (77.6) 21 (63.6) 69 (83.1) 0.024

ACEI/ARBs (yes) n (%) 62 (53.4) 11 (33.3) 51 (61.4) 0.006

Loop diuretics (yes) n (%) 100 (86.2) 31 (93.9) 69 (83.1) 0.106

Aldosterone antagonist (yes) n (%) 56 (48.3) 14 (42.4) 42 (50.6) 0.278

Statins (yes) n (%) 58 (50) 17 (51.5) 41 (49.4) 0.5

Biochemical variables

UA (µmol/l) 429.5 (71–1000) 530 (71–970) 401 (224–1000) 0.005

TB (g/l) 15 (4–76) 17 (5–73) 15 (4–76) 0.210

GGT (UI/l) 37 (8.2–197) 36 (14–127) 37 (8.2–197) 0.788

SOD (UI/l) 117.4 (74–174) 120.2 (82.9–174.8) 109.7 (74–174.1) 0.650

GPx (nmol/min/mg protein) 2.6 (1–6.32) 2.5 (1.3–6.3) 2.6 (1–5.7) 0.753

TAC (mM Trolox equivalent) 10.9± 1.7 11.4± 1.5 10.6± 1.7 0.023

NT-proBNP (pg/ml) 3550 (354–7,000) 4393.33 (1,140–7,000) 3380 (354–6733.33) 0.001

ACEI/ARBs, angiotensin-converting enzyme inhibitors/angiotensin receptor II; AF, atrial fibrillation; BMI, body mass index; CC, creatinine clearance; COPD, chronic obstructive
pulmonary disease; CKD, chronic kidney disease; GPx, glutathione peroxidase; HF, heart failure; LBBB, left Bundle Branch Block; LVEF, left ventricular ejection fraction; NT-proBNP,
N-terminal pro-B-type Natriuretic peptide; NYHA, New York Heart Association; SBP, systolic blood pressure; SOD, superoxide dismutase; UA, uric acid; TAC, total antioxidant capacity;
TB, total bilirubin. Bold values indicate the p-values < 0.05.
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analyses were eventually conducted using the backward stepwise
selection process. Variables with p-values ≤ 0.1 were selected
in the multivariate proportional hazards regression analysis.
Results are presented as hazard ratios (HR) with a 95%
confidence interval (CI).

Development of post-discharge
mortality risk prediction models

We developed three predictive models, including the
generalized linear model (GLM), random forest (RF, based on
bootstrap model aggregation of classification trees) model and
extreme gradient boosting (XGBoost) model. Thirty baseline
variables were put into the prognostic models, including
demographics, comorbidities, clinical factors, medications and
biochemical variables (Table 1). A bi-directional stepwise
procedure (backward and forward), method that minimize
the akaike information criterion (AIC), was used for GLM
variable selection with a significance level at 0.10 as criteria
to retain significant variables in the model. The AIC was
used to avoid model overfitting. Results are reported as odds
ratios (OR) with 95% CI. Shapley additive explanation (SHAP)
values were used to evaluate the variables’ importance in
the RF and XGBoost models. Leave-One-Out Cross-Validation
(LOOCV), a special case of k-fold cross validation with k
equal to n (the number of observations in the data set)
(47), was applied in order to evaluate models’ performance.
The evaluation metrics used in this study were area under
the receiver operating characteristic curve (AUC), accuracy,
recall, precision, F1-score and Matthews correlation coefficient
(MCC). The best performing model was then selected to predict
post-discharge mortality risk in this study. Subsequently, we
calculated the probability of death using the predictors of the
selected model. Finally, patients were classified into high and
low risk groups according to this probability and the KM
curve was performed for survival analysis. Statistical analysis
was performed using SPSS (Statistical Package for the Social
Sciences) version 23 and R statistical software version 3.3.3 (R
Project for Statistical Computing). Machine learning algorithms
were performed using Python version 3.9 (Python Software
Foundation) (Supplementary material).

Results

Study population characteristics

Clinical patients’ characteristics
A total of 116 patients with HFrEF were followed for 525

days (7–930). Baseline patients’ characteristics and the difference
between died patients and those surviving during the follow-
up period are summarized in Table 1. Overall, the study

patients present a mean age of 62.5 ± 11.6 years and were
predominantly male (72%). Indeed, anemia and hypertension
were the most prevalent comorbidities among study patients.
A total of 55 (47.4%) patients had a previous history of HF
and the majorities (71.5%) were in NYHA class III/IV. More
than 50% of patients had a non-ischemic etiology for HF. The
median LVEF was 30% (15–48). Loop diuretics (86.2%), beta
blockers (77.6%) and angiotensin-converting enzyme inhibitors
/angiotensin receptor II blockers (ACEI/ARBs) (53.4%) were the
most common medications prescribed to patients at hospital
discharge (Table 1).

During follow-up period, 33 (28%) patients died. The most
frequent cause of death was HF in 60% of cases. Non-survivors
were more likely to have CKD (30.3 vs. 14.5%, p = 0.047),
previous history of HF (63.6 vs. 40.6%, p = 0.023) and NYHA
class III/IV symptoms (78.9 vs. 65.1%, p = 0.010). They also had
a lower SBP [110 mm Hg (77–170) vs. 120 mm Hg (88–180),
p = 0.003], lower LVEF [25% (15–45) vs. 30% (15–48), p = 0.034]
and lower CC rate [60 ml/min (33–141) vs. 78 ml/min (33–
174), p = 0.025] compared with survivors. The death group had
a higher QRS duration [108 ms (80–196) vs. 100 ms (74–196),
p = 0.044]. The dead patients were less likely to be treated with
ACEI/ARBs (33.3 vs. 61.4%, p = 0.006) and beta blockers (63.6
vs. 83.1%, p = 0.024).

Biochemical parameters
Among study patients, the median plasma concentrations

of UA and TB were 429.5 (71–1000) µmol/l and 15 (4–76)
g/l, respectively. Median plasma GGT, GPx and SOD activities
were 37 (8.2–197) UI/l, 2.6 (1–6.32) to nmol/min/mg protein
and 117.4 (74–174) UI/l, respectively. The mean plasma TAC
levels were 10.9 ± 1.7 mM Trolox equivalents. The median
plasma NT-proBNP levels were 3550 (354–7000) pg/ml. When
analyzing oxidative stress marker levels, non-survivors had
higher values of UA [530 µmol/l (71–970) vs. 401 µmol/l (224–
1000), p = 0.005] and TAC (11.4 ± 1.5 mM trolox equivalent
vs. 10.6 ± 1.7 mM trolox equivalent, p = 0.023). However,
GPx, SOD, and GGT activities and TB concentration were
not statistically different between the two groups. The death
group had also elevated levels of NT-proBNP [4393.33 pg/ml
(1140–7000) vs. 3380 pg/ml (354–6733.33), p = 0.001].

Association between oxidative stress
markers and the risk of all-cause
mortality

Kaplan-Meier survival analysis
We performed the KM analysis to estimate survival

probabilities for all-cause mortality, according to cut-off values
of UA, TAC, and NT-proBNP. The ROC curve analysis
showed that the best cut-off value for UA, TAC, and NT-
proBNP to predict all-cause mortality risk were 460 µmol/l

Frontiers in Cardiovascular Medicine 05 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1017673
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-1017673 November 1, 2022 Time: 14:32 # 6

Gtif et al. 10.3389/fcvm.2022.1017673

FIGURE 1

Kaplan-Meier event-free survival curves for post-discharge
mortality relative to plasma levels of UA (A), TAC (B) and
NT-proBNP (C) above or below cut-off values.

(60% sensitivity, 65% specificity, 67% AUC), 11.5 mM trolox
equivalent (55%sensitivity, 70% specificity, 65% AUC) and 3843
pg/ml (60% sensitivity, 71% specificity, 70% AUC), respectively.
KM survival curves illustrate an increasing risk of mortality
rate among patients with UA levels above 460 µmol/l (log-
rank test p = 0.015). Furthermore, subjects with TAC levels
above 11.5 mM trolox equivalent were more likely to die during
follow-up period (log-rank test p = 0.018) (Figure 1). The
predictive utility of NT-proBNP levels for death risk among
HFrEF patients was also evaluated by KM survival curves. Log-
rank test showed that patients with NT-proBNP levels above
3843 pg/ml are more likely to experience death (log-rank test
p = 0.0028) (Figure 1).

TABLE 2 Univariate Cox proportional hazards regression analysis for
predictors of post-discharge mortality.

Variable HR 95% CI P-value

Age 1.028 0.997–1.016 0.076

Female sex 1.798 0.894–3.616 0.1

Hypertension 1.011 0.503–2.033 0.976

Diabetes mellitus 1.055 0.502–2.219 0.887

Hyperlipidemia 1.283 0.609–2.701 0.520

CKD 1.966 0.948–4.199 0.069

COPD 2.179 0.762–6.235 0.146

Anemia 1.547 0.779–3.072 0.212

Previous history of HF 2.198 1.080–4.471 0.030

NYHA class III-IV 3.316 1.165–9.438 0.025

LVEF 0.951 0.912–0.991 0.017

BMI 0.976 0.890–1.076 0.612

Admission SBP 0.972 0.954–0.990 0.003

QRS duration 1.016 1.003–1.029 0.021

AF 0.946 0.471–1.903 0.877

LBBB 1.843 0.928–3.658 0.080

CC 0.986 0.972–1.000 0.045

ACEI/ARBs 0.359 0.173–743 0.006

Beta blockers 0.426 0.209–0.867 0.019

Diuretics 2.609 0.624–10.91 0.189

Aldosterone antagonist 0.784 0.393–1.565 0.491

Statins 1.058 0.543–2.096 0.872

UA 1.002 1.000–1.004 0.042

TB 1.018 0.997–1.040 0.098

GGT 0.998 0.990–1.007 0.715

GPx 1.046 0.713–1.534 0.819

SOD 1.006 0.991–1.020 0.457

TAC 1.226 1.016–1.478 0.033

NT-proBNP 1.001 1.000–1.001 < 10−3

ACEI/ARBs, angiotensin-converting enzyme inhibitors/angiotensin receptor II; AF,
atrial fibrillation; BMI, body mass index; CC, creatinine clearance; COPD, chronic
obstructive pulmonary disease; CKD, chronic kidney disease; GPx, glutathione
peroxidase; HF, heart failure; LBBB, left Bundle Branch Block; LVEF, left ventricular
ejection fraction; NT-proBNP, N-terminal pro-B-type Natriuretic peptide; NYHA,
New York Heart Association; SBP, systolic blood pressure; SOD, superoxide dismutase;
UA, uric acid; TAC, total antioxidant capacity; TB, total bilirubin. Bold values indicate
the p-values < 0.05.

Uni and multivariate cox regression analysis
In univariate Cox-regression analysis, highest UA levels

(HR 1.002, 95% CI 1.000–1.004, p = 0.042) and elevated
TAC levels (HR 1.126, 95% CI 1.016–1.478, p = 0.033) were
significant predictors of post-discharge mortality. Additional
significant determinants of mortality risk were revealed in
univariate analysis, including: previous history of HF, NYHA
class III/IV, NT-proBNP levels, LVEF, admission SBP, QRS
duration, CC rate, beta blockers and ACEI/ARBs (Table 2).
In order to evaluate the independent association of UA and
TAC in the context of other common clinically available data,
a multivariate model was performed, including sex, age, BMI
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FIGURE 2

Multivariable Cox regression for post-discharge mortality prediction.

and all significant clinical predictors. Stepwise multivariate Cox-
regression analysis revealed that elevated UA levels (HR 1.001,
95% CI 1.000–1.003, p = 0.06) of high TAC levels (HR 1.272,
95% CI 1.040–1.560, p = 0.02) remained independent predictors
of death. In the multivariate Cox model, female sex, lower LVEF,
and high NT-proBNP levels were also independent predictors
for post-discharge mortality. Furthermore, multivariate analysis
showed that patients taking of beta blockers or ACEI/ARBs

TABLE 3 Predictive model for post-discharge mortality based on
stepwise generalized linear model.

Variable β-coefficient OR (95% CI) P-value

Age 0.054 1.055 (1.002–1.117) 0.048

Female sex 1.480 4.392 (1.304–16.411) 0.020

LVEF 0.778 0.925 (0.859–0.988) 0.027

Admission SBP –0.022 0.978 (0.947–1.006) 0.142

NT-proBNP 0.001 1.001 (1.0002–1.001) 0.009

UA 0.003 1.003 (1.0001–1.006) 0.044

TAC 0.347 1.414 (1.027–2.009) 0.039

ACEI/ARBs –1.180 0.307 (0.093–0.949) 0.044

Beta blockers –1.825 0.161 (0.038–0.596) 0.008

ACEI/ARBs, angiotensin-converting enzyme inhibitors/angiotensin receptor II; LVEF,
left ventricular ejection fraction; NT-proBNP, N-terminal pro-B-type Natriuretic peptide;
SBP, systolic blood pressure; UA, uric acid; TAC, total antioxidant capacity.

after hospital discharge faced a lower risk of death during the
follow-up period (Figure 2).

Risk prediction model for
post-discharge mortality

In order to predict the post-discharge mortality risk
among HFrEF patients, GLM, RF, and XGBoost models were
performed using clinical and laboratory data. Regarding GLM,
9 independent predictors of mortality were retained in the final
model. They included beta blocker, NT-proBNP levels, female
sex, LVEF, TAC levels, admission SBP, ACEI/ARBs, UA levels
and advanced age (Table 3). In the RF and XGBoost models,
SHAP values were used to explain how the selected features
affect the mortality prediction. In each variable importance row,
all patients’ attribution to post-discharge death risk were plotted
with dots of different colors where the blue dots represent the
lowest risk value and the red dots represent the highest risk
value (Figure 3). In RF model, the top 5 related variables in
mortality prediction were CC rate, UA levels, TAC levels, BMI
and ACEI/ARBs. In XGBoost model, UA levels were the most
important identified feature, followed by admission SBP, NT-
proBNP levels, beta blockers and QRS duration. Among the
three predictive models created, the GLM presented the best
performance. This model achieved the highest AUC (74.5%),
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FIGURE 3

SHAP plots for the ML models in predicting post-discharge mortality using (A) RF and (B) XGBoost. In each variable importance row, all patients’
attribution to mortality risk was plotted using different color dots. The red dots represent the highest risk of death.

accuracy (81.9%), recall (58%), precision (65%), F1-score (64%)
and MCC (53%) compared to the respective values in the RF
and XGboost models (Table 4). Therefore, the GLM model was
selected to predict the risk of post-discharge death in the present
study. The estimated β-coefficients of Glm-selected variables
were used to estimate the logit for a patient using the standard
GLM equation. The estimated individual probability (P) of
dying was then calculated using the following formula:

P =
eLogit

1+ eLogit

According to the estimated probability, study patients were
divided into high (P > 0.5) and low (P ≤ 0.5) risk groups and

KM curve survival analysis was applied. The result of the Log-
rank test showed a gradual decline in survival among high-risk
subjects during follow-up period, indicating that patients with

TABLE 4 Performance comparison between the three models.

AUC Accuracy Precision Recall F1-score MCC

GLM 74.5% 81.89% 73% 58% 64% 53.1%

RF 63% 75.86% 52% 36% 43% 33.3%

XGBoost 61.5% 72.4% 65% 33% 44% 26.1%

AUC, area under curve; GLM, generalized linear model; MCC, matthews correlation
coefficient; RF, random forest; XGBoost, extreme gradient boosting.
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FIGURE 4

Kaplan–Meier survival analysis between the high-and low-risk
groups.

higher mortality risk probability are more likely to die (log-rank
test p < 10−3) (Figure 4).

Based on the GLM model, an online post-discharge
mortality risk calculator was created.1 This tool calculated
the estimated individual probability of dying using clinical
characteristics and laboratory tests (Figure 5).

Discussion

In the present study, we developed a new predictive model
for post-discharge mortality among patients admitted for newly
diagnosed or exacerbated HFrEF. In addition to clinical patient
characteristics and NT-proBNP, 6 oxidative stress markers were
considered as candidate variables for risk prediction. Among
the three developed models, the GLM presented the best
performance for death prediction in HFrEF. Hence, this model
was selected to predict mortality risk among our study patients.
The predictors included in the GLM model were age, female sex,
beta blockers, NT-proBNP levels, LVEF, TAC levels, admission
SBP, ACEI/ARBs and UA levels.

To our knowledge, our study presents the first predictive
model for post-discharge mortality risk among HFrEF patients,
based on a combination of clinical patients’ characteristics, NT-
proBNP and oxidative stress markers. Previous mortality risk
prediction models among patients with HFrEF incorporated
clinical characteristics and NT-proBNP levels (24, 48, 49). The
integration of few readily obtainable variables is also a great
advantage of our model highlighting the potential use and

1 https://heartcheckapp.herokuapp.com/

implementation of this artificial intelligence tool in clinical
practice. A number of the predictors identified in our model
were also included in the PREDICT-HF models, including age,
beta blockers, NT-proBNP levels, LVEF, admission SBP and UA
levels; though the former has fewer variables (48).

On the statistical significance level, our model had a good
discriminative power of post-discharge death with an AUC of
74.5%, which is comparable to the Seattle HF Model, one of the
most extensively used models, achieving an AUC of 72.9% for 1-
year survival (16). Likewise, the AUCs from recently developed
mortality risk prediction models in HFrEF ranked from 67 to
78% (24, 48–50). Furthermore, our model was developed based
on the original statistical approach. The traditional statistical
method based on logistic regression, commonly applied in
previous predictive models for HFrEF, was explored (51). In
addition, two novel machine learning approaches (random
forest and extreme gradient boosting) were also applied to
predict post-discharge mortality in patients with HFrEF.

Regarding oxidative stress markers, UA and TAC were
retained as significant predictors of post-discharge mortality
risk in our model. Our analysis showed that high level of
plasma UA before discharge was significantly associated with
all increased post-discharge death risk among HFrEF patients
using univariate and multivariate analysis. Patients with UA
levels > 460 µmol/l were at high risk to die during follow
up periods. In addition, UA was one of the top five features
selected in RF and XGBoost models. Several clinical studies
showed that elevated level of UA was an important risk factor of
mortality in HFrEF (52, 53). Further, UA has been incorporated
in a clinically validated model to predict mortality in HFrEF,
displaying independent predictive ability in the Seattle Heart
Failure Model (16). UA, the final product of purine degradation,
is one of the major endogenous antioxidants in the human
plasma (54, 55). As a putative protective mechanism, increased
levels of plasma UA may be a compensatory mechanism to limit
the damage of inappropriate ROS production (56). Xanthine
oxidoreductase (XO) is the enzyme that catalyzes the conversion
of hypothanthine to UA in the final steps of purine catabolism
(57). Elevated UA levels reflect the amplified activity of XO, a key
enzyme in the production of ROS (58). Elevated UA levels reflect
the amplified activity of XO, a key enzyme in the production
of ROS (28). Accordingly, previous studies reported that an
increased level of UA was associated with disease severity and
correlated positively with left ventricular remodeling indices in
patients with HFrEF (31, 59).

TAC has also emerged as an important prognostic marker
of mortality in the GLM model. Our study elucidated that an
elevated level of plasma TAC was an independent predictor
for post-discharge mortality even after complete adjustment,
including sex, age, BMI, NT-proBNP and significant risk
factors. We also introduced the 11.5 mM trolox equivalent
cut-off of plasma TAC before discharge as a novel tool for
risk stratification. Previous studies reported an association
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FIGURE 5

Post-discharge mortality risk calculator.

between high levels of TAC and death risk in HFrEF (60)
and urgent heart transplantation among patients with non-
ischemic cardiomyopathy (36). Similar predictive significance of
the TAC level was also found in other cardiovascular diseases
such as coronary artery disease (61). Indeed, Tomandlova et al.
showed that TAC level was significantly higher in patients with
more severe coronary artery disease and worse prognosis. In
addition, previous studies showed an association between high
TAC level and mortality among patients with ischemic stroke
and severe septic (62, 63). TAC is an integrated parameter rather
than a simple sum of measurable antioxidants, representing
the cumulative action of all plasma antioxidants (64). A higher
level of TAC may reflect a greater antioxidant response due
to intensified production of ROS. It has also been suggested
that elevated TAC level in non-survivors patients represents
a compensating mechanism of an organism for depleted
antioxidative components (65). Overall, the association between
increased mortality risk and higher levels of UA and TAC,
observed in this study and earlier studies, suggested that these
easy and accessible markers of oxidative stress could be valuable
biomarkers and prognostic factors in patients with HFrEF.

Our multivariable model confirmed the strong predictive
value of NT-proBNP. Results obtained in this study showed
that an elevated level of plasma NT-proBNP was a strong
predictor of post-discharge mortality risk in both univariate and
multivariate analysis. Previous clinical studies have shown that
NT-proBNP level was significantly associated with increased

mortality risk in HFrEF (24, 66). Moreover, the American Heart
Association/American College of Cardiology HF guidelines
have recommended measuring Natriuretic peptide biomarkers
for prognostication among patients with HFrEF (20). Indeed,
the Natriuretic peptide tests are still underutilized in different
Tunisian centers as in many African countries which could
implement this test in routine clinical practice (5). In the present
study, we present the first prospective evaluation of NT-proBNP
levels among Tunisian patients with HFrEF. In this context, our
study confirms the predictive value of this test and encourages
its implementation in routine clinical practice in Africa.

In addition, the clinical variables identified in our model
include age, female sex, lower admission SBP and lower
LVEF. These variables were established as prognostic markers
in HFrEF (17, 18). Beta blockers and ACEI/ARBs were
also retained in the model. Indeed, our findings reported
a lower risk of post-discharge mortality in patients taking
these medications before discharge, which are similar to those
observed in several reports (67, 68). The protective role of these
drugs impacting mortality risk among HFrEF patients may be
partially due to their potent antioxidant properties (69, 70),
indicating the important prognostic role of oxidative stress in
patients with HFrEF.

Using the GLM model, we created a simple calculator
allowing the identification of patients with heightened post-
discharge death risk. Regarding its practical application, this
calculator is promising to be applied in future clinical
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practice. Indeed, this easy-to-use calculator can be easily
implemented in clinical practice. It is anticipated to aid
physicians to calculate the estimated mortality risk. Indeed, the
identification of patients at heightened post-discharge death
risk can be used to alter care, with closer follow-up and
potential earlier consideration of advanced therapies. Accurate
estimation of mortality risk in patients with HFrEF may
allow clinicians and patients to make important decisions
regarding the appropriateness and timing of disease-modifying
treatments and advanced therapies (48). In addition, identifying
factors common to patients at high risk of post-discharge
mortality may reveal potential targets for interventions
to improve prognosis. The implementation of these risk
prediction tools is relevant to healthcare, particularly in
the clinical decision-making (71). Shared decision making
can improve motivation for therapy adherence and lifestyle
change. Furthermore, the application of these prognosis tools
can guide the allocation of healthcare resources and reduce
costs (71).

Limitations

We present a single center study conducted in Hedi Chaker
Hospital of Sfax presenting a relatively small number of
patients and regional limitations. However, this sample size had
sufficient statistical power to detect mean differences. At the
clinical level, our study was restricted to HFrEF patients due to
its high prevalence in Tunisia (8). Then, this model may not
be generalizable to HFpEF patients and HFrEF patients with
major life-altering comorbidities including, acute myocardial
infarction, severe valvular disease requiring surgery and renal
failure requiring dialysis. We also precise that data regarding
the use of devices, such as implantable cardiac defibrillator and
cardiac resynchronization therapy, were not available. However,
the inclusion of such variables may add prognostic power to
our model. At statistical level, we consider that the absence
of external validation represents an acknowledged limitation,
which was circumvented by good discrimination in internal
validation of our model.

Future directions

Our pilot study should be expanded to different medical
centers in order to include patients from different parts of
Tunisia. We also encourage further validation of our risk
model in other populations of HFrEF patients. Larger future
prospective multicenter studies with larger numbers of patients
are needed to confirm the predictive value of oxidative
stress markers, assess for cost effectiveness and to define the
implications for earlier interventions to improve prognosis.

Conclusion

In conclusion, we developed a new predictive model for
post-discharge all-cause death in patients with HFrEF based on
a combination of clinical patient characteristics, NT-proBNP
and oxidative stress markers. This new model assisted by a
simple-to-use calculator may allow the identification of patients
at heightened post-discharge mortality risk and could assist the
treatment decision-making.
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