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Background: This study aims to investigate the association of epicardial

adipose tissue (EAT) accumulation with cardiac function and atrioventricular

coupling in a cohort of postmenopausal women assessed by cardiac magnetic

resonance imaging (CMR).

Materials and methods: Overall, 283 postmenopausal women (mean age

61.5± 9.1 years) who underwent CMR examination were enrolled. Participants

were classified into four groups by the quartile of EAT volume. EAT volume

was quantified on short-axis cine stacks covering the entire epicardium. CMR-

derived cardiac structure and function, including left atrial (LA)- volume,

emptying fraction, deformation, and left ventricular (LV)- mass, volume,

ejection fraction, and deformation, were compared among the four groups

of graded EAT volume.

Results: Left ventricular mass (LVM) and LV remodeling index were both

increased in the group with the highest EAT volume, compared to those in

the lowest quartile (p = 0.016 and p = 0.003). The LV global longitudinal

strain (LV-GLS), circumferential strain (LV-GCS), and LA- reservoir strain (LA-

RS), conduit strain (LA-CS), and booster strain (LA-BS), were all progressively

decreased from the lowest quartile of EAT volume to the highest (all p < 0.05).

Multivariable linear regression analyses showed that EAT was independently

associated with LV-GLS, LA-RS, LA-CS, and LA-BS after adjusting for body

mass index and other clinical factors.
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Conclusion: Epicardial adipose tissue accumulation is independently

associated with subclinical LV and LA function in postmenopausal women.

These associations support the role of EAT in mediating deleterious effects on

cardiac structure and function.

KEYWORDS

epicardial adipose tissue, left atrial strain, left ventricular strain, cardiac magnetic
resonance imaging, postmenopausal women

Introduction

During menopausal transition, women are susceptible
to metabolic alterations. Redistribution of body fat from
the subcutaneous area to the intra-abdominal visceral
area is an important metabolic change for women after
menopause. Previous studies have shown that epicardial
adipose tissue (EAT) volume tends to be expanded particularly
in postmenopausal women (1, 2). EAT was indicated to
be associated with hypertension, coronary microvascular
dysfunction, and diastolic filling restriction in women
but not in men (1, 3, 4). In addition, studies have shown
that in the presence of hemodynamic stress, women tend
to present more frequently with left ventricular (LV)
hypertrophy, smaller LV volumes, and preserved ejection
fraction, compared to age-matched men (5, 6). These notable
sex differences indicate that estrogen deficiency and EAT
might play a role in mediating cardiac abnormalities in
postmenopausal women.

Cardiac magnetic resonance (CMR) imaging has been
widely used in the evaluation of heart structure and function.
CMR tissue tracking has been validated to have excellent
producibility and reproducibility in evaluating LV myocardial
deformation. Recently, the importance of left atrial (LA) phasic
function and feature tracking strain has been increasingly
recognized. A prior study indicated that LA dysfunction
preceded the onset of heart failure (7). CMR-derived phasic
LA function and strain have been suggested to be able to
serve as sensitive imaging biomarkers in the assessment and
stratification of diastolic dysfunction (8, 9). Furthermore, CMR
has been validated to be able to quantify the epicardial fat

Abbreviations: EAT, epicardial adipose tissue; LV, left ventricular; CMR,
cardiac magnetic resonance; LA, left atrial; LVEF, left ventricular ejection
fraction; eGFR, estimated glomerular filtration rate; EDV, end-diastolic
volume; ESV, end-systolic volume; LVM, LV mass; GRS, global radial
strain; GCS, global circumferential strain; GLS, global longitudinal strain;
RS, reservoir strain; CS, conduit strain; BS, booster strain; LAVmax,
maximum LA volume; LAVmin, minimum LA volume; LAVac, pre-atrial
contraction LA volume; LAEFT, total LA emptying fraction; LAEFP,
passive LA emptying fraction; LAEFB, booster LA emptying fraction; BSA,
body surface area; BMI, body mass index; ICC, intraclass correlation
coefficient; PAT, pericardial adipose tissue.

tissue using a simple volumetric technique on a standard clinical
steady-state free-precession sequence (10).

To the best of our knowledge, few studies on this subject
have assessed EAT volume and cardiac structure and function by
using CMR. Therefore, we aimed to investigate the association
of EAT accumulation with cardiac function and atrioventricular
coupling in a cohort of postmenopausal women by CMR.

Materials and methods

Study population

This study was approved by the Biomedical Research Ethics
Committee of our hospital and conducted in accordance with
the Declaration of Helsinki. Written informed consent was
waived due to the retrospective nature of this study.

In this cross-sectional study, we included a cohort of 283
postmenopausal women who underwent CMR examination
between January 2015 and June 2021. The menopausal status of
the participants was recorded according to self-report. Women
with both natural menopause and surgical menopause were
included. The demographic and clinical characteristics of the
included individuals were recorded according to digital medical
records. Triglyceride-to-high density lipoprotein cholesterol
ratio (TG/HDL) was calculated to indicate insulin resistance
level (11).

Exclusion criteria were as follows: (a) patients with
pericardial effusion; (b) atrial fibrillation; (c) obstructive
coronary artery disease and myocardial infarction, (d)
myocarditis and pericarditis, (e) moderate to severe valvular
disease, (f) primary and secondary cardiomyopathies, and (g)
poor image quality and unavailable to derive CMR parameters.

Cardiac magnetic resonance protocol

All CMR scans were performed using a 3.0T scanner
(Siemens Healthcare, Erlangen, Germany). Balanced steady-
state free-precession sequence was used to obtain cine images.
Three long-axis views (2-chamber, 3-chamber, 4-chamber)

Frontiers in Cardiovascular Medicine 02 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1015983
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-1015983 November 8, 2022 Time: 6:56 # 3

Huang et al. 10.3389/fcvm.2022.1015983

and consecutive short-axis slices covering the entire LV were
obtained with the following parameters: temporal resolution,
33.22 ms; repetition time, 2.77 ms; echo time, 1.31 ms; field of
view, 234 mm× 280 mm and slice thickness, 8 mm.

Imaging analysis

Measurement of left ventricular structure and
function

All CMR parameters were assessed using a commercially
available software (CVI42; Circle Cardiovascular Imaging, Inc.,
Calgary, AB, Canada). LV structural parameters, including
LV end-diastolic volume (LV-EDV), LV end-systolic volume
(LV-ESV), and LV mass (LVM), were attained by manually
tracing the endocardial and epicardial contours of the left
ventricle at the end-diastolic and end-systolic phases on the
short-axis stacks. LV functional parameters included LVEF
and LV myocardial strain. LV myocardial strain indices were
acquired by loading the short-axis stacks and the two-chamber
and four-chamber long-axis images into the feature tracking
module. The software then computes the LV global radial (LV-
GRS), circumferential (LV-GCS), and longitudinal peak strain
(LV-GLS) (12).

Measurement of left atrial structure and
function

Left atrial parameters were obtained as previously described
(13). LA structural parameters included maximum LA volume
(LAVmax), minimum LA volume (LAVmin), and pre-atrial
contraction LA volume (LAVac). LA functional parameters
included phasic volumetric-based LA emptying fractions and
LA strain-based indices. LA endocardial and epicardial borders
were manually delineated in the two- and four-chamber long-
axis images using LV end-diastole as a reference phase. LA
appendage and pulmonary veins were excluded from the LA
volume. Then, the software automatically traced the atrial
border in the subsequent phases. Manual adjustments were
performed to obtain optimal tracking of the LA border.
The software then computes the LA peak longitudinal
reservoir strain (LA-RS), conduit strain (LA-CS), and booster
strain (LA-BS). Total LA emptying fraction (LAEFT), a
measure of reservoir function, was calculated as (LAVmax–
LAVmin)/LAVmax. Passive LA emptying fraction (LAEFP), a
measure of conduit function, was calculated as (LAVmax–
LAVac)/LAVmax. Booster LA emptying fraction (LAEFB), a
measure of atrial contractile pump function, was calculated as
(LAVac–LAVmin)/LAVac. Representative images of LV and LA
longitudinal strain are shown in Figure 1.

Measurement of epicardial adipose tissue
volume

The measurement of EAT volume has been previously
described (10, 14). The areas of EAT were delineated on

consecutive short-axis cine images. Epicardial border and
visceral pericardial border on each slice from the level of the
mitral valve to the apical slice were manually traced (Figure 2).
Then the EAT volume was calculated by summation of the
results of each slice’s area multiplied by the slice thickness based
on the modified Simpson’s rule.

Morphological LA and LV parameters and the EAT volume
were indexed to body surface area (BSA). Reproducibility was
assessed for EAT volume and LA and LV strain parameters.
To determine the intra-observer reproducibility, one observer
(SH) performed all the measurements at first and repeated
in 30 randomly selected CMR scans 1 month later. And
inter-observer reproducibility was evaluated by comparing the
measurements from the same collection of images by another
experienced observer (KS).

Statistical analysis

Statistical analyses were conducted with SPSS (Version
19; IBM, Armonk, NY, USA) and Graphpad Prism (Version
7.0a, GraphPad Software Inc., San Diego, CA, USA). Baseline
characteristics and CMR indices were all summarized across the
quartile of EAT volume. Continuous data are expressed as the
means ± SDs or medians with interquartile ranges. Categorical
data are expressed as numbers (percentages). Continuous
variables were compared among the four groups of EAT volume
using one-way analysis of variance (ANOVA). Dichotomous
variables were compared among groups by using χ test.
Pearson’s or Spearman correlation analyses were performed to
evaluate the bivariable correlations among EAT volume and
other CMR parameters as appropriate. Multivariable linear
regression analyses were conducted using body mass index
(BMI), EAT and clinical factors as independent variables and LA
and LV myocardial longitudinal strain as dependent variables.
Candidate variables with no collinearity and a p-value < 0.1
in the univariate analyses as well as factors based on clinical
grounds were included in the multivariable models. The
intraclass correlation coefficient (ICC) was used to assess the
inter- and intra- observer reproducibility. Two-sided p < 0.05
was considered statistically significant.

Results

Baseline characteristics of the included
participants

In total, 283 postmenopausal women were enrolled in this
study. Baseline demographic and clinical characteristics were
summarized across the quartiles of EAT volume in Table 1.
The ranges of EAT volume of the four groups were Q1:
<37.5 ml/m2, Q2: 37.5∼48.9 ml/m2, Q3: 48.9∼62.0 ml/m2, and
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FIGURE 1

Cardiac magnetic resonance (CMR)-derived left ventricular and atrial longitudinal strain. Panels (A,B) show the pseudocolor maps of LV
longitudinal strain in the four-chamber view at the end-diastolic and end-systolic phases. Panel (C) shows representative plot of LV longitudinal
strain. Panels (D,E) show the pseudocolor maps of LA longitudinal strain in the four-chamber view at the end-diastolic and end-systolic phases.
Panel (F) shows a plot of LA longitudinal strain, along with measures of reservoir, conduit, and booster strain. LA-RS, LA reservoir strain; LA-CS,
LA conduit strain; LA-BS, LA booster strain.

FIGURE 2

Volumetric assessment of the epicardial adipose tissue (EAT) on short-axis slices. Panels (A,B) are representative images of one short-axis slice.
Epicardial adipose tissue is shown in yellow. Paracardial adipose tissue is shown in red. Pericardial adipose tissue is epicardial adipose tissue plus
paracardial adipose tissue. The EAT volume was calculated by summation of the results of each slice’s area multiplied by the slice thickness
based on the modified Simpson’s rule.

Q4: > 62.0 ml/m2, respectively. The average age of the study
cohort was 61.5± 9.1 years. Six women in the study population
had surgical menopause. There were graded increases in BMI
and TG/HDL across the quartiles of EAT. And BMI was
significantly correlated with EAT volume (r = 0.354). EAT

was inversely correlated with the level of HDL cholesterol
(r = −0.214). Age was found to be related to EAT volume
(r= 0.399). Women with higher EAT volumes were significantly
older than those in the lower quartile. Presence of hypertension
was more frequent in participants with a larger EAT volume.
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The presence of diabetes mellitus had a graded increase from
the lowest to the highest quartile of EAT, but the difference was
not statistically significant.

Comparisons of cardiac magnetic
resonance-derived cardiac structure
and function among quartiles of
epicardial adipose tissue volume

Cardiac structural and functional parameters by CMR
according to the quartile distribution of EAT volume are
presented in Table 2 and Figure 3. The mean EAT volumes
of the four groups were Q1 = 29.7 ± 5.9 ml/m2 vs.
Q2 = 42.7 ± 3.3 ml/m2 vs. Q3 = 54.8 ± 4.1 ml/m2 vs.
Q4 = 73.3 ± 9.6 ml/m2. LVM and LV remodeling index were
both increased in the group with the highest EAT volume,
compared to those in the lowest quartile. LV-EDV and LV-ESV
did not show any difference across the four groups. There was
no significant difference in LVEF among the groups. The LV-
GLS and LV-GCS, but not LV-GRS, was significantly reduced in
the highest quartile of EAT.

LAVmin and LAVac were markedly enlarged in participants
with larger EAT volumes. But no significant difference was
found in LAVmax among the groups. Regarding volume-based
LA function, LAEFT and LAEFP were markedly decreased in
the higher EAT group. No significant difference was observed in
LAEFB among the four groups. The strain-based LA function
indices, including LA-RS, LA-CS, and LA-BS, all progressively
decreased from the lowest quartile of EAT volume to the highest.

Associations between epicardial
adipose tissue and cardiac structural
and functional indices

Univariate correlation analyses of EAT and other CMR
indices are presented in Table 2. EAT volume had a weak
correlation with LVM (r = 0.204) and the remodeling index
(r = 0.242). LV-GLS (r = −0.250), LV-GCS (r = −0.174),
and LV-GRS (r = −0.134) were inversely correlated with EAT
volume. Volume-based LA function indices were negatively
related to EAT volume, with only LAEFT (r = −0.346) and
LAEFP (r = −0.442) being statistically significant. LA-RS
(r=−0.424) and LA-CS (r=−0.527), and LA-BS (r=−0.169)
were also correlated with EAT volume.

In the multivariable linear regression analyses, age, systolic
blood pressure, heart rate, hypertension, diabetes, dyslipidemia,
menopausal age, surgical menopause, TG/HDL, BMI, and EAT
volume were included as independent variables. Among them,
BMI (β = −0.261), EAT volume (β = −0.149) and diabetes
(β = −0.286) were found to be independently associated with
LV-GLS. Furthermore, EAT volume was also found to be

independently correlated with LA-RS (β = −0.277), LA-CS
(β=−0.324), and LA-BS (β=−0.210) (Table 3).

Intra- and inter-observer
reproducibility of cardiac magnetic
resonance parameters

The intra-observer and inter-observer reproducibility of
EAT volume, and LA and LV strains were considered excellent
(ICCs ranged from 0.882 to 0.952) (Supplementary Table 1).

Discussion

In this study, we used CMR to explore the associations of
EAT with cardiac functional and structural parameters. First,
we found that LV global longitudinal strain was progressively
reduced with the increasing of EAT volume. Second, the phasic
emptying function and deformation of LA were also found to
be gradually decreased from the lowest quartile of EAT volume
to the highest. Third, EAT was correlated with LV GLS and LA
strains independent of age, systolic blood pressure, heart rate,
hypertension, diabetes, dyslipidemia, menopausal age, surgical
menopause, TG/HDL, and BMI.

Previous studies on EAT mainly focused on EAT thickness
around the right ventricular free wall or pericardial adipose
tissue (epicardial adipose tissue plus paracardial adipose tissue)
measured by echocardiogram or CT. Kim et al. found that
pericardial adipose tissue (PAT) was more strongly associated
with the subclinical LV dysfunction than BMI and waist
circumference (15). However, EAT is embryologically different
from paracardial adipose tissue. And EAT is anatomically more
closely connected to the coronary arteries and myocardium than
paracardial adipose tissue (16). The proinflammatory cytokines
released by EAT can directly impair the myocardium, due
to the absence of a fascial plane between the two structures
(17). A previous echocardiographic study that included 1,004
participants found that only EAT was significantly correlated
with diastolic dysfunction, whereas, PAT was not associated
with the decreased diastolic function (18). Therefore, we
focused on investigating the specific association of EAT, not
PAT, with the cardiac structure and function during the same
CMR examination.

Association of epicardial adipose tissue
with volumetric- and strain-based
phasic left atrial function

Impairment of LA function has been proposed to precede
the development of heart failure in a large longitudinal
population of asymptomatic participants (7). In our study,
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TABLE 1 Baseline characteristics of the included participants.

Variable Q1 (n = 72) Q2 (n = 71) Q3 (n = 70) Q4 (n = 70) P-value

EAT ranges, ml/m2 <37.5 37.5∼48.9 48.9∼62.0 >62.0 –

Age, years 57.3± 8.5 59.5± 7.4 63.0± 9.1 66.4± 9.0 <0.001

Height, cm 1.57± 0.05 1.57± 0.05 1.57± 0.06 1.56± 0.06 0.325

Weight, kg 55.5± 7.8 59.4± 9.6 60.7± 9.9 62.1± 8.1 <0.001

BSA, m2 1.64± 0.12 1.69± 0.15 1.70± 0.15 1.72± 0.12 0.009

BMI, kg/m2 22.4± 2.7 24.0± 3.3 24.7± 3.5 25.6± 3.2 <0.001

SBP, mmHg 127.9± 20.4 132.1± 18.8 137.6± 17.9 134.0± 17.9 0.045

DBP, mmHg 79.3± 14.3 78.0± 11.1 81.7± 14.2 78.7± 11.4 0.483

Heart rate, min−1 79.1± 15.5 77.5± 13.5 78.1± 15.9 77.4± 11.7 0.976

Menopausal age, years 50 (48, 51) 49.5 (46.7, 51.2) 50 (48, 50) 49 (47, 50.5) 0.813

Hypertension, n (%) 18 (25) 31 (43.7) 41 (58.6) 45 (64.3) <0.001

Diabetes, n (%) 22 (30.5) 25 (35.2) 28 (40.0) 31 (44.3) 0.322

Dyslipidemia, n (%) 13 (18.1) 20 (28.2) 21 (30.0) 23 (32.8) 0.214

TG, mmol/L 1.32 (0.98, 1.81) 1.29 (0.80, 1.76) 1.50 (1.12, 1.85) 1.58 (1.17, 1.86) 0.055

TC, mmol/L 4.19 (3.45, 4.83) 4.55 (3.82, 5.17) 4.62 (4.03, 5.44) 4.76 (4.21, 5.46) 0.005

HDL, mmol/L 1.42 (1.26, 1.54) 1.47 (1.27, 1.71) 1.28 (1.12, 1.51) 1.29 (1.03, 1.53) 0.001

LDL, mmol/L 2.63 (1.96, 3.34) 2.71 (2.21, 3.33) 2.69 (1.85, 3.16) 2.35 (1.83, 2.80) 0.060

eGFR, ml/min/1.732 m2 89.4± 15.5 91.2± 16.4 85.6± 16.7 79.1± 16.2 0.002

TG/HDL 0.55 (0.45, 0.97) 0.61 (0.36, 0.97) 0.80 (0.50, 1.15) 0.79 (0.59, 1.28) 0.005

EAT volume, ml/m2 29.7± 5.9 42.7± 3.3 54.8± 4.1 73.3± 9.6 <0.001

LV-EDV, ml/m2 73.8± 10.2 75.1± 14.1 74.5± 14.1 80.5± 23.7 0.756

LV-ESV, ml/m2 29.1± 6.3 30.6± 9.2 29.6± 8.1 35.7± 21.3 0.825

LVEF,% 61.1± 4.9 59.9± 6.6 60.3± 7.3 57.9± 11.0 0.514

The values are the mean ± SD, median (interquartile ranges) and numbers (percentages). EAT, epicardial adipose tissue; BSA, body surface area; BMI, body mass index; SBP, systolic
blood pressure; DBP, diastolic blood pressure; TG, plasma triglycerides; TC, total cholesterol; HDL, high-density lipoprotein; LDL, low-density lipoprotein; eGFR, estimated glomerular
infiltration rate; LV-EDV, left ventricular end-diastolic volume; LV-ESV, LV end-systolic volume; LVEF, left ventricular ejection fraction. P-values of statistical significance are shown in
bold.

TABLE 2 Cardiac structural and functional parameters by cardiac magnetic resonance (CMR) and their correlations with epicardial adipose
tissue (EAT) volume.

Variable Q1 (n = 72) Q2 (n = 71) Q3 (n = 70) Q4 (n = 70) Correlation coefficients

R 95% CI P-value

LVM, g/m2 35.1± 7.2 36.2± 8.4 38.9± 10.5 42.2± 13.7 0.204 0.084–0.318 0.001

Remodeling index# 0.48± 0.09 0.49± 0.11 0.53± 0.11 0.53± 0.10 0.242 0.123–0.353 <0.001

LV-GRS, % 34.3± 8.1 33.3± 9.1 32.0± 9.7 30.5± 10.8 −0.134 −0.257—0.009 0.031

LV-GCS, % −21.0± 2.3 −20.6± 2.6 −20.0± 3.1 −18.9± 4.5 −0.174* −0.307—0.028 0.005

LV-GLS, % −15.5± 3.0 −14.7± 3.0 −13.5± 3.4 −12.9± 4.1 −0.250* −0.379—0.108 <0.001

LAVmax , ml/m2 32.6 (27.9, 41.2) 37.4 (25.5, 42.3) 37.6 (27.8, 46.9) 38.0 (27.5, 48.2) 0.136 0.006–0.261 0.035

LAVac , ml/m2 20.8 (17.5, 26.8) 25.6 (17.2, 31.6) 27.7 (20.0, 33.7) 28.5 (20.3, 43.6) 0.270 0.145–0.387 <0.001

LAVmin , ml/m2 12.2 (9.4, 16.7) 13.6 (7.9, 16.6) 14.9 (10.4, 21.2) 16.6 (11.7, 26.7) 0.224 0.097–0.344 <0.001

LAEFT, % 0.63± 0.07 0.62± 0.10 0.55± 0.14 0.51± 0.17 −0.346 −0.453—0.230 <0.001

LAEFP, % 0.34± 0.10 0.30± 0.09 0.25± 0.10 0.21± 0.11 −0.442 −0.538—0.334 <0.001

LAEFB, % 0.43± 0.09 0.46± 0.11 0.41± 0.15 0.39± 0.16 −0.126 −0.248–0.001 0.051

LA-RS, % 43.6± 13.3 42.7± 14.3 33.9± 13.4 27.2± 13.0 −0.424 −0.522—0.315 <0.001

LA-CS, % 26.2± 9.7 24.3± 9.9 17.8± 8.3 11.6± 7.5 −0.527 −0.614—0.426 <0.001

LA-BS, % 17.4± 5.7 18.7± 7.1 16.2± 8.2 14.5± 7.9 −0.169 −0.289—0.044 0.008

#LV remodeling index was calculated as LVM/ LV-EDV. *LV-GCS and LV-GLS were calculated as absolute value in the correlation analyses. LVM, LV mass; LV-GRS, LV global radial strain;
LV-GCS, LV global circumferential strain; LV-GLS, LV global longitudinal strain; LAVmax , maximum left atrial volume; LAVac , pre-atrial contraction LA volume; LAVmin , minimum LA
volume; LAEFT, total LA emptying fraction; LAEFP, passive LA emptying fraction; LAEFB, booster LA emptying fraction; LA-RS, LA peak longitudinal reservoir strain; LA-CS, LA peak
longitudinal conduit strain; LA-BS, LA peak longitudinal booster strain. P-values of statistical significance are shown in bold.
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FIGURE 3

Comparisons of LVM (A), LV-GLS (B), LA-RS (C), LA-CS (D), LAEFT (E), and LAEFP (F) among quartiles of epicardial adipose tissue (EAT) volume.
LVM, left ventricular mass; LV-GLS, LV global longitudinal strain; LA-RS, left atrial reservoir strain; LA-CS, LA conduit strain; LAEFT, total LA
emptying fraction; LAEFP, passive LA emptying fraction. *p < 0.05; **p < 0.01, ***p < 0.001; ****p < 0.0001.

we found that LAEFT and LAEFP, but not LAEFB, gradually
decreased as the EAT volume accumulated. Evidence about the
booster function of LA is still conflicting (19, 20). Even though
the volumetric booster function was not significantly different
among the groups, the booster strain along with the other two
components of LA strain, demonstrated significant differences
across the quartile of EAT in our study. This is because that
strain-based indices are more sensitive in evaluating atrial
mechanics than volumetric indices (21). As for the reservoir
function, it is an indicator for LA compliance, reflecting the
relaxation of LA during LV systole. The reservoir strain has
been previously demonstrated to be correlated with LV filling

pressure (22) and the incidence of heart failure (7). The LA-
CS of the conduit phase also had a strong association with EAT
volume. Considering that conduit function is mainly influenced
by the LV relaxation, the abnormality of conduit strain could
indicate an early stage of LV diastolic dysfunction.

In a prior study, the researchers demonstrated that LA strain
was correlated with EAT in patients with coexisting obesity and
diabetes (23). However, possibly due to the small sample size
of this study, no significant correlation was observed between
EAT and LA function when the patient group and control group
were evaluated separately. The researchers assumed that this
might indicate that abnormal LA function only occurs when the
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.

EAT volume is over a certain amount. Our study was supportive
of this assumption. The volume- and strain-based LA function
were all significantly reduced in the highest amount of EAT
compared to the low quartile of EAT volume.

Association of epicardial adipose tissue
with left ventricular systolic function

The relationship between EAT and LV diastolic function
has been well-established in several echocardiographic studies
(24). However, evidence about the association between EAT and
LV systolic function remains to be elucidated. Several studies
using speckle tracking strain analysis by echocardiography
demonstrated that EAT is inversely correlated with LV global
longitudinal strain (25, 26). Consistent with these results,
we observed that longitudinal strain was reduced in the
high EAT group. We assumed that the link between EAT
and longitudinal strain could be explained by microvascular
dysfunction and interstitial fibrosis induced by adipokines and
cytokines secreted by EAT (25). These abnormalities mainly
affect the subendocardial layer of the myocardium, leading to
a reduction in longitudinal LV mechanics in the subclinical
stage of disease.

Potential mechanisms underlying the
influence of epicardial adipose tissue
on cardiac structure and function

Several relevant mechanisms have been proposed to
explain the associations between EAT and cardiac structure
and function (27). The first is that EAT could impair LV
diastolic filling by a regional mechanical force. Findings of
impaired diastolic function and enlarged LA volume in the
absence of LV hypertrophy observed in uncomplicated obesity
suggest the mechanical role of local adipose depot around the
ventricles (28).

Furthermore, EAT could also affect LV structure and
function by a paracrine pathway due to the anatomic proximity
of EAT to the myocardium (29). A recent study by Ng
et al. which quantified the intramyocardial fat content and
myocardial interstitial fibrosis by CMR, suggested that the
redundant EAT might impair the contractile function by
mediating an increase in myocardial fat accumulation and
interstitial fibrosis (25).

Third, in our diverse population of postmenopausal women
with a relatively high presence of hypertension, obesity and
diabetes, there was a possible systemic inflammatory effect
induced by these comorbidities that caused the expansion
of EAT volume and abnormalities in the heart (30, 31).
Under the influence of systemic inflammation, EAT can release
various pro-inflammatory cytokines. Thus, the EAT can further
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aggravates these systemic inflammatory influences on the
myocardium and has a deleterious impact on cardiac structure
and function. However, a prior clinical study by Woerden et
al. did not observe significant association between EAT and the
level of C-reactive protein or leucocytes (32). Possibly because
the effect of EAT is too small to be reflected via peripheral
venepuncture. Also, the sample size is relatively small.

As our correlation analyses showed, age and EAT were both
independent factors that inversely correlated with LV-GLS and
LA strains. Several previous studies also found a strong relation
between age and EAT (14, 33). In the study by de Vos et al.
age-adjusted regression analyses showed that EAT was positively
related to weight, BMI, waist circumference, waist-to-hip ratio
and subclinical coronary atherosclerosis (34). However, we were
unable to examine the effect of aging process on EAT expansion
and other cardiac abnormalities in this study.

Limitations

This study has several limitations. First, this was a cross-
sectional study. Therefore, we were unable to demonstrate
a causal relationship between the increased EAT, laboratory
biomarkers, co-morbidities and abnormalities in cardiac
structure and function. Second, data on waist circumference,
waist to hip ratio or abdominal visceral adipose fat are
lacking in the majority of included participants, since this
was a retrospective study. Inclusion of these data would have
made our study more comprehensive. Third, this study only
included postmenopausal women. Whether these results could
also be applied to men or premenopausal women needs to
be elucidated. Finally, due to the lack of long-term follow-
up data, we were unable to evaluate the prognostic role of
EAT in our study population. Further longitudinal studies
are required to examine the potential of EAT in predicting
cardiovascular outcomes.

Conclusion

The accumulation of EAT is independently associated
with LV and LA function in postmenopausal women. These
associations support the role of EAT in mediating deleterious
effects on cardiac structure and function. The assessment of EAT
volume may facilitate clinicians to have added information on
the impairment of cardiac function. Researchers could commit
themselves to developing medicine targeting the epicardial fat
tissue to prevent the cardiac remodeling and dysfunction.
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