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Regular moderate-intensity exercise elicits benefit cardiovascular health

outcomes. However, exhaustive exercise (EE) triggers arrhythmia, heart failure,

and sudden cardiac death. Therefore, a better understanding of unfavorable

heart sequelae of EE is important. Various mechanisms have been postulated

for EE-induced cardiac injury, among which mitochondrial dysfunction is

considered the cardinal machinery for pathogenesis of various diseases.

Mitochondrial quality control (MQC) is critical for clearance of long-lived or

damaged mitochondria, regulation of energy metabolism and cell apoptosis,

maintenance of cardiac homeostasis and alleviation of EE-induced injury. In

this review, we will focus on MQC mechanisms and propose mitochondrial

pathophysiological targets for the management of EE-induced myocardial

injury. A thorough understanding of how MQC system functions in the

maintenance of mitochondrial homeostasis will provide a feasible rationale for

developing potential therapeutic interventions for EE-induced injury.

KEYWORDS

mitochondrial quality control (MQC), exhaustive exercise (EE), myocardial injury,

mitochondrial dysfunction, mitophagy

Introduction

Ample clinical and experimental evidence has shown a beneficial health outcome of

regular moderate-intensity exercise on incidence of obesity, hypertension, cardiovascular

disease (CVD), and certain cancers. The latest WHO guidelines on physical activity

recommend at least 150–300min of moderate-intensity aerobic activity or 75–150

mins of vigorous physical activity per week, sparking interest in exercise. Nonetheless,

increasing the duration and intensity of exercise without restriction may be harmful to

the human body. Exhaustive exercise (EE) refers to durable exercise loads beyond the

bearing ability of the body (including overtraining in both competitive and recreational

sports), which can cause physical fatigue and damage to multiple organs such as skeletal

muscle, heart, liver, and kidneys. It is considered a pathological condition for multiple

organs that imposes a wide variety of health hazards, such as heart abnormalities,

chronic fatigue syndrome (CFS), and muscle degeneration (1–3). Although others have
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attempted to provide standardized definitions of EE intensity,

a consensus has not been reached (4). As examples of

EE, marathons, ultramarathons, and triathlons have gained

increasing popularity worldwide, but physical injuries and even

sudden deaths in these sports have raised some concerns. EE

can cause damage to multiple organs, including skeletal muscle,

heart, liver, and kidneys.

The heart is one of the organs most sensitive to EE.

Young competitive athletes are reported to train for an average

10–20 h per week, in which case the cardiovascular system

performs at a level 5–6 times greater than resting level, imposing

a huge burden on the heart (5). It has been demonstrated

that EE adversely impacts cardiovascular system, resulting in

cardiac function decline, myocardial fibrosis and hypertrophy,

arrhythmia, heart failure and even sudden cardiac death (SCD)

(6, 7). For example, Chang and team proposed that EE may

induce myocardial fibrosis, leading to ventricular hypertrophy,

ischemic cardiomyopathy, arrhythmia and other undesired

events for cardiovascular system (8). Athletes are reported to

be four to eight times more likely to develop atrial fibrillation

than the general population. Approximately, 12% of athletes

develop atrial fibrillation (9). Baldesberger and coworkers found

that professional cyclists possessed significantly higher rates

of arrhythmias, particularly atrial fibrillation (AF) and atrial

flutter (AFI) (10). Another survey showed the highest incidence

of SCD among competitive athletes (ages 12–17), with 1.17

cases per 100,000 athletes annually (11). These data have

cumulatively sparked major concerns regarding EE-induced

myocardial injury.

Accumulating evidence has noted profound adverse

cardiac effects of EE. EE can reduce excitability of cardiac

autonomic cells and the velocity of sinoatrial conduction and

atrioventricular conduction and prolong depolarization and

repolarization of the atrium and ventricle, thus resulting in

myocardial ischemia and arrhythmia. Long-term training

and participation in extreme endurance competitions may

lead to a transient reduction in cardiac ejection fraction

and an increase in myocardial cell damage markers (12).

After sustained exhaustive swimming, rats showed elevated

levels of cardiac biomarkers cTnT (cardiac troponin T) and

creatine kinase (CK) in the plasma, localized cardiomyocyte

damage, functional impairment, and upregulated expression

of malondialdehyde (MDA) in myocardia were observed.

Simultaneously, the expression of matrix metalloproteinases

was dysregulated, which was closely related to myocardial

pathological damage and decreased cardiac function (13).

In addition, EE also leads to myocardial ultrastructural

destruction, abnormal energy metabolism, and mitochondrial

dysfunction (14, 15). In animal experiments, EE rats exhibited

characteristic myocardial changes, including myocardial nuclear

matrix edema, enlargement of the nuclear space, decreased

mitochondrial numbers, glycogen loss, andmuscle fiber necrosis

(16). Huang et al. observed a decrease in the left ventricular

ejection fraction and an increase in the left ventricular systolic

and diastolic volumes in rats after endurance training using

echocardiography. Cardiac hypertrophy and increased cardiac

weight occur simultaneously (17). These injuries are mainly due

to abnormal mitochondrial metabolism, which in turn leads to

an increased production of free radicals. Schoepe and team also

found that myocardial mitochondria are an important site of

EE-induced injury (18).

Multiple studies have depicted a significant role of

mitochondria in EE-induced injuries. Thus, it is fundamental to

study the mechanism of mitochondrial function during EE. In

this study, we explore the relationship between mitochondrial

quality control (MQC) and mitochondrial metabolism and their

interaction with EE- induced myocardial injury will be explored.

We then outline the possible therapeutic strategies and signal

transduction pathways.

Pathophysiology of mitochondria in
EE-induced myocardial injury

The heart is composed of many cell types, including

cardiomyocytes, fibroblasts, endothelial cells and pericytes,

among which cardiomyocytes account for 75% of the total

volume of the heart. The heart is a muscular organ working

continuously for 24 h. Approximately 6 kg of adenosine

triphosphate (ATP) is required to supply an essential

energy basis for 24 h. Mitochondria are vital intracellular

organelles that generate ATP to meet energy metabolic

demands and maintain Ca2+-dependent contractions in

cardiomyocytes. Cardiomyocytes demand high energy because

of their contractility and rhythmic properties; therefore, they

are enriched in mitochondria (35% of cell volume). During

vigorous exercise, cardiomyocyte oxygen consumption increases

by nearly 10 times (19). Mitochondrial dysfunction has been

shown to compromise bioenergetics, metabolic signaling,

apoptosis and cell death (20). Structural and functional

integrity of mitochondria is essential for maintaining cardiac

function (21).

Increasing evidence has depicted a rather important role

of oxidative stress, proinflammatory response and apoptosis in

EE-induced myocardial injury. Oxidative stress is caused by the

overproduction of reactive oxygen species (ROS). Formation of

ROS during exercise involves multiple mechanisms, including

electron leakage from the mitochondrial respiratory chain,

enhanced activities of NADPH oxidase and xanthine oxidase,

increased free iron concentration, inhibition of mitochondrial

uncoupling proteins (UCPs), and destruction of Ca2+

homeostasis. Among them, the mitochondrial respiratory chain

is considered to be the cardinal source of exercise-induced ROS

production, prompting an overt increase in ROS, accompanied

by a loss of ATP synthesis (22). Superoxide dismutase (SOD) is

an important antioxidant enzyme that repels ROS. MDA is the
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end-product of membrane lipid peroxidation, which directly

causes membrane damage. EE increases oxygen consumption

by cardiomyocytes, perturbing the redox balance in cells, and

then leading to the aggregation of ROS in the body. Excessive

ROS production initiates lipid peroxidation, protein oxidation,

and cytoplasmic Ca2+ accumulation. Overtly decreased SOD

levels lead to the generation of MDA, prompting cellular

death and cardiac dysfunction. In addition, calcium overload

activates Ca2+-dependent proteases, resulting in increased

ROS production. Excessive cytoplasmic calcium deposition in

mitochondria damages their structure and function (23). EE

increases the release of inflammatory cytokines such as IL-6,

IL-8, and IL-1β, and then activates the inflammatory response,

which is another mechanism of EE-induced myocardial injury

(24). NF-κB, a major regulator of inflammation, regulates

the expression of various downstream genes. Activation of

NF-κB leads to an increase in inflammatory proteins, such

as TNF-α, IL-1, IL-6, and COX-2, and downregulation of the

anti-inflammatory factor IL-10, resulting in cardiomyocyte

proliferation, hypertrophy, and interstitial fibrosis (25, 26).

Inflammation and oxidative stress are associated with heart

disease. The occurrence of inflammatory response also

leads to an increase in ROS levels in the body. Apoptosis is

another major mechanism involved in EE and subsequent

pathological changes. Oxidative stress triggers activation of

apoptosis signaling, upregulates apoptosis-related regulators,

and eventually induces myocardial injury (27, 28). Additionally,

ROS can also negatively affect nuclear DNA (nuDNA) and

mitochondrial DNA (mtDNA), leading to DNA strand breaks

and point mutations. NuDNA encodes the replicase of mtDNA,

and damage to the gene encoding this replicase affects mtDNA

replication. Furthermore, mtDNA is close to the site of free

radical generation, making it more likely to cause damage. These

changes may reduce mitochondrial biogenesis, downregulate

gene levels, alter Ca2+ and proton flux, and inevitably lead to

organelle degeneration (29). Elevated intracellular Ca2+ levels,

together with other factors, lead to increased oxidative stress

and the opening of mitochondrial permeability transition pores

(MPTP), a process that releases proapoptotic compounds and

subsequently activates caspases, resulting in mitochondrial

swelling, tissue damage, and myocardial apoptosis (30).

As mitochondria are finely regulated by a variety of

regulatory molecules and exert a strong influence on life

activities, there is an urgent need to elucidate their quality

control mechanisms in detail to protect the myocardium from

dysfunctional mitochondria.

MQC in EE-induced myocardial
injury

Under physiological conditions, mitochondria maintain

dynamic changes in morphology and structure through

biogenesis, fusion and fission, mitophagy and mitochondria-

mediated cell death; this process is known as MQC (31).

Moderate exercise maintains mitochondrial function through

the coordinated regulation of mitochondrial biogenesis and

mitochondrial fusion, and fission. Appropriate MQC activates

apoptosis, inflammatory pathways, and selective autophagy,

thereby facilitating the clearance of damaged mitochondria

(32). Nevertheless, EE leads to disturbance of the MQC

axis, resulting in decreased mitochondrial respiratory function,

excessive activation of apoptotic pathways, damage to the

myocardial structure, and cardiac dysfunction. However, the

detailed mechanism of MQC in EE-induced myocardial injury

remains unclear. Therefore, an in-depth understanding of the

mitochondrial response to EE and the regulation of MQC will

help determine the treatment of EE-induced myocardial injury.

Role of mitochondrial biogenesis in
EE-induced myocardial injury

Mitochondrial biogenesis is influenced by multiple factors,

such as oxidative stress, exercise training, myocardial infarction,

cardiac fibrosis, and other environmental stresses (33).

Mitochondrial biogenesis alters mitochondrial content and

regulates synthesis of new mitochondria, which requires the

participation of both mitochondrial and nuclear genomes.

This system is regulated by several processes, including the

generation of mitochondrial outer and inner membranes,

replication of mtDNA, and synthesis of protein input in

the cytoplasm and transport to proper inner mitochondrial

regional compartments (outer mitochondrial membrane,

intermembrane space, inner mitochondrial membrane, and

mitochondrial matrix) (34). The peroxisome proliferator-

activated receptor (PPAR) gamma transcriptional co-activator

PGC-1 family (PGC-1α and PGC-1β) are the most important

initiating factors. PGC-1α upregulates the expression of

nuclear respiratory factors (NRF1 and NRF2) and binds to

them, activating multiple nuclear encoding genes and Tfam,

which regulates mitochondrial transcription. NRF1 and NRF2

participate in the synthesis of mitochondrial respiratory

complex subunits and regulate cellular respiration. Tfam

controls mtDNA replication and transcription and maintains

its integrity (35). Overexpression of PGC-1α is correlated with

increased levels of nuclear-encoded mitochondrial genes, which

enhances the ability of mitochondria to undergo oxidative

phosphorylation and leads to mitochondrial biogenesis, driving

the synthesis of mitochondrial DNA, proteins, and generation

of new mitochondria.

PGC-1α is essential for exercise-induced mitochondrial

biogenesis. Knockdown of PGC-1α may cause stalled

mitochondrial turnover and death in cardiomyocytes, thereby

affecting cardiac function and leading to a reduction in
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FIGURE 1

After exhaustive exercise, the expression of PGC-1α and other

transcription factors (NRF1, NRF2) is downregulated. The TFAM

is then reduced when imported into the mitochondria. TFAM

downregulates the expression of nuclear encoding genes,

resulting in decreased mtDNA synthesis, ATP synthesis, and

mitochondrial content.

exercise-induced metabolic benefits (36). EE leads to a marked

downregulation of PGC-1α and mitochondrial respiratory

chain complexes I and II in the heart, along with a reduction

in mtDNA copy number (37). A drop in mitochondrial

complex I and II activity would suppress mitochondrial

oxidative phosphorylation and increase ROS yield. Mille-

Hamard observed a decrease in PGC-1α mRNA expression

after EE, and the exact mechanism remains unclear (38).

The PGC-1α-NRF1/Nrf2-TFAM signaling pathway, the key

mitochondrial biogenesis regulatory factor, is responsible for

energy production. Studies have found that PGC-1α and NRF

levels in the EE murine model were significantly reduced, and

the hypoxic environment caused by EE also led to a decrease in

Tfam expression. These results demonstrated that EE interferes

with the synthesis of the mitochondrial respiration complex

and decreases the activity of gene regulation by inhibiting the

PGC-1α-NRF1/Nrf2-TFAM signaling pathway (16); This may

lead to mitochondrial energy supply disorders and insufficient

myocardial oxidative capacity and energy production, resulting

in irreversible myocardial damage (39). However, the detailed

mechanism by which mitochondrial biogenesis dysfunction

contributes to EE requires further exploration (Figure 1).

Involvement of mitochondrial dynamics
in EE-induced myocardial injury

Ample evidence has suggested that mitochondria undergo

continuous fusion and fission to maintain mitochondrial

integrity and remove damaged mitochondria (40). The

dynamic balance between fission and fusion contributes to the

maintenance of the morphology and function of intracellular

mitochondrial networks, as well as the dynamic changes in

mitochondria and energy metabolism under various stress

conditions, promoting cell development and cell death (41).

Giant mitochondria were found in an ultrastructural analysis of

left ventricles of physically trained mice, indicating the presence

of multiple fusion events.

Mitochondrial fusion promotes the formation of elongated

or reticular mitochondria essential for regulating cardiomyocyte

homeostasis (42). Mitofusins (Mfn1 and Mfn2) and optic

atrophy protein 1 (OPA1) are the radical effectors of

mitochondrial fusion in mammalian cells. Mfn1/2 can

regulate the fusion of the outer mitochondrial membranes,

whereas Opa1 is involved in the regulation of the inner

mitochondrial membrane and cristae (43). Low expression

of Mfn1/2 can lead to a decrease in mitochondrial fusion

efficiency and fragmentation and interference with the

mitochondrial energy supply to cells. Inhibition of Mfn1/2

can promote apoptosis, whereas overexpression of Mfn1/2

promotes mitochondrial fusion and alleviates mitochondrial

dysfunction. Mitochondrial fission is mediated by coordinated

and synergistic interplay among various mitochondrial fission

proteins (Drp1, Fis1, Mff, and Mid49/51) (44). Translocation

of Drp1 from cytoplasm to the outer mitochondrial membrane

induces mitochondrial fission. DRP1 is recruited from the

cytoplasm to the mitochondria. In addition, the formation

of circular polymers with MID49/51, Fis1, and Mff results in

GTP hydrolysis and mitochondrial microtubule redistribution,

a process that produces fragmented discrete organelles (45).

Furthermore, some more proteins may also be indispensable

for the regulation of mitochondrial fission (46). When the

damaged mitochondria are generated by mitochondrial fission,

the activity of mitophagy is enhanced, so that the damaged

mitochondria are degraded in time (47, 48). However, excessive

fission leads to decreased ATP synthesis, excessive oxidative

stress, and apoptosis.

Emerging data suggest that fission/fusion proteins

are critical for myocardial energy metabolism, and their

dysfunction contributes to various cardiac diseases. EE involves

mechanisms related to acute ischemic stress (49). Oxidative

stress-mediated downregulation of Mfn1/Mfn2 leads to

mitochondrial morphological disorders and fragmentation (50).

Zhou and colleagues indicated that content of the mitochondrial

fission protein Mff is significantly increased after I/R, leading

to the impairment of mitochondrial structure and function by
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FIGURE 2

Mechanisms of mitochondrial dynamics after exhaustive exercise. In general, fission is mediated by Drp1, Drp1 receptors (Mid 49, Mid51, M�)

and Fis1. Fusion is mediated by Mfn1, Mfn2 and Opa1. Fission and fusion machineries regulate mitochondrial by dislodging the damaged

organelles. Exhaustive exercise disbalances mitochondrial fission and fusion, and the mitochondrial network is gradually impaired. The

mitochondria undergo both symmetrical and asymmetrical fission. Symmetrical fission generates two “new” healthy mitochondria, whereas

asymmetrical fission of mitochondria produces healthy and damaged sections. The healthy section fuses with other healthy organelles for

regeneration. The damaged section can be cleared by autophagosomal engulfment, thereby protecting the cell from mitochondrial toxicity.

increasing mitochondrial fission and diminishing mitochondrial

fusion (51). Samant and associates indicated that the nuclear

NAD-dependent histone deacetylase Sirtuin-3 (Sirt3) binds

to OPA1 to foster its activation. Mitochondrial fusion is

reduced in Sirt3-knockout adult cardiac fibroblasts (52).

Moreover, overexpression of Sirt3 inhibits mitochondrial fission

through the AMPK-Drp1 pathway in cardiovascular disease,

thus promoting ROS scavenging and reducing inflammation

and cellular damage (53). EE decreases the number of

myocardial mitochondria and the mass of the myocardium by

downregulating Mfn2 and increasing Drp1, resulting in energy

metabolism imbalance and myocardial damage. In addition, the

expression of Mfn1 and OPA1 was not affected by EE (37, 54).

Another study illustrated that phosphorylation of Drp1, but

not Drp1, affects mitochondrial fission during EE. During

EE, mitochondrial fission leads to a large number of mPTP

openings, and certain substances enter mitochondria, causing

mitochondrial edema. Meanwhile, pro-apoptotic substances

are released into the cytoplasm, causing apoptosis and

mitochondrial dysfunction (55). Summarizing the experiments

of many researchers, Atkins concluded that Mid49/51 is

expressed at the highest levels in the heart, promoting fusion

and fission. This finding further supports the importance of

MiD proteins in the mechanism of myocardial mitochondrial

dynamics (56). Therefore, mitochondrial dynamics may serve as

an important target for the treatment of EE-induced myocardial

injury (Figure 2).

Mitophagy pathways and role in
EE-induced myocardial injury

Mitophagy is the selective removal of damaged or

malfunctioning mitochondria by cells using lysosomes to reduce

unnecessary cell death. In the physiological environment,

mitophagy regulates the number of intracellular mitochondria

and maintains their normal function. Our team showed

that mitophagy is involved in the pathogenesis of various

cardiovascular and metabolic diseases, including aging,

obesity, insulin resistance, diabetes mellitus, atherosclerosis,

and ischemic stroke (40, 57–60). Our results demonstrated

that mitophagy is the most important component of the

MQC system and the primary safeguard for mitochondrial

homeostasis and integrity. Excessive mitophagy results in

mitochondrial dysfunction and cell demise (31). Many

crucial genes (autophagy-related genes, ATGs) and proteins

are involved in autophagy initiation and regulation. The
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FIGURE 3

Mitophagy. Mitophagy is mediated by many of cellular signal mechanisms including PINK1, Parkin, mitophagy receptors (BNIP3L/NIX, FUNDC1),

as well as certain mitophagy adaptors. Adapter proteins (p62, OPTN, NDP58) recognize phosphorylated polyubiquitin chains on mitochondrial

proteins and initiate autophagosome formation by binding to LC3. The exact role of mitophagy in exhaustive exercise remains controversial.

Most studies have depicted suppressed autophagy during exhaustive exercise. However, several research have found excessive autophagy in

exhaustive exercise. Mitophagy impairment may lead to the accumulation of dysfunctional mitochondria, prompting oxidative stress,

mitochondrial dysfunction and cardiac injury.

three most studied pathways are PINK1/Parkin, BNIP3,

and FUNDC1. Research from our laboratory has revealed

that FUNDC1 is indispensable in pathological diseases,

such as heart failure and ischemia-reperfusion injury

(61). P62 is an essential chaperone that mediates parkin-

dependent mitophagy. P62 levels are inversely correlated

with autophagic activity (62). Other proteins, including

UNC-51 autophagy-activating kinase 1 (Ulk1) and LC3, also

have biological functions in regulating autophagy. Ulk1,

present in a complex containing FIP200, Atg13, and ATG101,

initiates autophagosome formation by phosphorylating

beclin-1. MTORC1 inactivates these autophagic regulatory

complexes, thus affecting autophagy (63, 64). LC3 is cleaved

into LC3-I by the autophagy-specific gene Atg4, and LC3-I is

modified and processed by ubiquitin-like bodies, including

Atg7 and Atg3, to generate LC3-II, which is localized to

autophagosomes. This process turns off the autophagosomes

and transports intact autophagosomes to the lysosomes for

degradation. Both BNIP3L/NIX and FUNDC1 interact with

LC3 to recruit autophagosomes and mediate mitophagy

(65). The heart was confirmed to be the most robust

mitochondrial phagocytic organ in mito-Keima-expressing

mice, indicating the essential role of mitophagy in the

occurrence and development of cardiovascular disease (66)

(Figure 3).

Ample evidence has implicated the role of mitophagy in

the pathogenesis of EE-induced myocardial injury. For example,

inhibition of LC3-II turnover results in the accumulation of

LC3-II levels, LC3-II/LC3-I ratio, and p62 levels during EE,

suggesting a block in autophagosome degradation during EE.

The inhibition of autophagosome clearance can induce the

accumulation of misfolded proteins and damaged organelles,

exacerbating myocardial injury (67). Data obtained from

a recent study showed alterations in autophagy levels by

examining autophagy protein expression after EE. Researchers

found that the LC3-II/LC3-I ratio was reduced during EE,

but Beclin1 and p62 levels showed no obvious changes (13).

Another study developed a model of EE-induced myocardial

injury in which LC3-I could not be completely converted into

LC3-II. The LC3-II and LC3-II/LC3-I ratios were found to be

barely elevated, although the levels of p62 were elevated during

EE (68). These data suggest that after EE, autophagy levels

are inhibited, and the degradation of metabolically depleting

proteins or damaged organelles is blocked, thus aggravating

myocardial ischemia-hypoxia injury. However, there have

been a few different results. Previous work confirmed that

accumulation of autophagosomes and LC3-II turnover in EE

group was overtly upregulated compared with other exercise

groups. Excessive autophagy activated by EE may contribute

to the onset of cardiomyocyte damage (69). Furthermore,
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AMPK-mTOR plays a pivotal role in autophagic initiation in

cardiomyocytes (70). One study demonstrated that EE can cause

myocardial injury through activation of the AMPK-mTOR-

ULk1 signaling pathway. Overexpression of the AMPK-mTOR-

ULk1 signaling pathway results in excessive mitochondrial

autophagy and the autophagy-selective cell death “autosis”

(71). Thus, the mechanism of autophagy during EE should be

further investigated. Future studies should focus on the role of

autophagy in EE-inducedmyocardial injury to ascertain possible

targets for intervention.

Mitochondria-mediated cell death in
EE-induced myocardial injury

Apoptosis is an active cell death process regulated by a

variety of genes that occurs under certain physiological or

pathological conditions. Mitochondria play an irreplaceable

and important role in apoptosis as a central link in the

apoptotic pathway (72). Cytochrome C (Cyt C) is an

apoptosis-regulated protein normally located outside the inner

mitochondrial membrane. The stimulation of apoptotic signals

causes Cyt C to be released into the cellular matrix, where it

combines with other substances to form apoptotic bodies and

trigger apoptosis. Cleaved caspase-3 and PARP are important

markers of myocardial apoptosis. The release of Cyt C

triggers a cascade of caspases, thereby inducing apoptosis.

The B-cell lymphoma-2 (Bcl-2) family includes both anti-

apoptotic Bcl-2 and pro-apoptotic Bax proteins associated with

apoptosis. Bcl-2 family members are mainly located in the

mitochondria and regulate the permeability and integrity of the

outer mitochondrial membrane; however, the family members

promoting apoptosis are mainly located in the cytoplasm.

The Bax/Bcl-2 ratio determines the permeability of various

mitochondrial membrane channels, thus affecting cell survival

and death. After the cell receives the apoptosis signal, the pro-

apoptotic factors Bax and Bak are ectopic in the mitochondrial

outer membrane, and various proteins in the mitochondria are

released, including the second mitochondrial-derived caspase

activator (Smac), nuclease G, apoptosis inducible factor (AIF),

and HtrA2. These are relocated to the nucleus, resulting in

large-scale DNA fragmentation, chromatin condensation, and

the activation of mitochondrial caspase-independent apoptotic

pathways (73).

EE induced cardiomyocyte loss and increased left ventricular

apoptosis, as manifested by increased levels of the Bax/Bcl-2

ratio, Cyt C, cleaved caspases-3, and PARP in the LV tissue

of the rat model (74). EE resulted in a significant increase

in the Bax/Bcl-2 ratio and the number of TUNEL-positive

cardiomyocyte nuclei, enhancing apoptotic signaling in the

myocardium, and thereby resulting in DNA fragmentation (10).

Several studies have confirmed that EE significantly reduces

the Bcl-2/Bax ratio and increases the levels of caspase-3 and

caspase-9 and the number of apoptotic myocardial cells. These

studies indicate that cardiomyocyte apoptosis is significantly

increased by the action of mitochondria, which is an important

mechanism of EE-induced myocardial injury (26, 75, 76).

Oxidative stress and inflammatory responses can promote

apoptosis. EE promotes the production of excessive ROS in

the myocardial mitochondria. ROS induce the recruitment of

apoptosis-related speck-like proteins and activation of caspase-

1. This process disposes of IL-1β precursors and secretes mature

IL-1β, which further amplifies the inflammatory response,

ultimately leading to abnormal mitochondrial structure and

programmed cell death (77). Apoptosis is a complex molecular

regulatory mechanism. A recent study has revealed that the

Nrf2/HO-1 signaling cascade inhibits oxidative stress and

apoptosis. Increased levels of Nrf2, an important transcription

factor regulating cellular redox homeostasis, act on HO-1

and further interact with other transcription factors to inhibit

downstream proteins including Bax. EE downregulates Nrf2

andHO-1 proteins, upregulatesmitochondrial apoptosis-related

proteins, and induces apoptosis (26). Moreover, regulation of

apoptosis via the PI3K-Akt pathway is complicated. Studies

have confirmed that the activation of this pathway is related to

cardiovascular diseases. Akt is an upstream signaling protein

in the BCL-2 family. The PI3K-Akt signaling pathway can

inhibit the opening of MPTP and the release of apoptotic factors

from mitochondria to regulate cardiomyocyte apoptosis (78).

Previous studies have found that myocardial fibers in EE mice

exhibit tissue disorders, rupture, degeneration, and necrosis.

The possible mechanism is that the activity of the PI3K/Akt

pathway is inhibited, the level of anti-apoptotic proteins is

downregulated, and the level of pro-apoptotic proteins is

upregulated, thereby reducing the opening level of MPTP

(1). These findings suggest that EE can weaken the defense

capacity of myocardial cells and accelerate apoptosis, resulting

in myocardial injury.

Targeting MQC for management of
EE-induced myocardial injury

Prevention of mitochondrial injury by
exercise preconditioning

Considerable research attention directed toward the possible

applicability of exercise preconditioning (EP) for the treatment

of EE-induced myocardial injury. EP refers to exercise

intervention with appropriate intensity and repetitions, which

can enhance myocardial tolerance to ischemia-hypoxia and

induce myocardial protection (79, 80). EP can alleviate the

degree of EE damage to the systolic and diastolic functions

of rats, enhance myocardial antioxidant capacity, and improve

myocardial function (1).
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EP may prevent mitochondrial damage after EE through

several potential mediators, such as heat shock proteins (HSP),

Ca2+-handling proteins, and endogenous antioxidants (81).

However, there are othermechanisms throughwhich EP induces

cardioprotection. Recently, investigators have shown that EP

can upregulate the level of PGC-1α-Nrf1/Nrf2-TFAM, a key

pathway of mitochondrial biogenesis, improve mitochondrial

respiratory function, and enhance energy metabolism in

cardiomyocytes. EP upregulated the expression of MFN2

and downregulated the expression of DRP1, reducing the

fragmentation of myocardial mitochondria to a certain extent

(82). Li found that several autophagy formation proteins

(LC3-II/LC3-I ratio, Atg7, and Atg5) were elevated after EP,

demonstrating that EP can maintain mitochondrial homeostasis

and cell survival by promoting autophagosome formation and

clearance, thereby preventing EE-induced myocardial injury

(13). Some studies have confirmed that EP inhibits the decreased

expression of Bcl-2 caused by EE through the activation

of the PI3K-Akt pathway. Moreover, it contributed to the

downregulation of the expression of Bad, Bax, and caspase-3 (1).

In general, EP can inducemyocardial protection after EE, reduce

myocardial apoptosis, and improve the morphological structure

of cardiomyocytes. Further research is needed to investigate the

molecular mechanisms underlying EP.

Prevention of mitochondrial injury
following EE using pharmaceutical
supplements

Individuals who exercise aggressively may benefit from

supplementation with mitochondrial nutrients before exercise

to minimize mitochondrial damage from EE. Moreover,

mitochondrial nutrients or drugs can promote mitochondrial

damage repair in individuals with mitochondrial damage

following excessive exercise (83). Although there are currently

no FDA-approved drugs for the treatment of EE-induced

myocardial injury, several mitochondrion-targeted drugs

are being explored, including CoQ10 and certain natural

Chinese medicine ingredients with antioxidant effects, such

as resveratrol, tetramethylpyrazine, and trimetazidine. These

regulatory agents exhibit their underlying mitochondrial

targeting mechanisms to modulate mitochondrial biogenesis,

dynamics, mitophagy, and mitochondria-mediated cell death.

Okudan observed a decrease in EE-induced markers of

oxidative stress in rat hearts following CoQ10 supplementation,

suggesting that CoQ10 may increase antioxidant enzyme

activity and reduce inflammatory markers, thereby protecting

myocardial mitochondria from lipid peroxidative damage (84).

Studies have found that resveratrol can induce mitochondrial

biogenesis, inhibit excessive mitochondrial fission, improve

fusion, and play a part in maintaining cardiac function and

improving exercise capacity (85, 86). Furthermore, resveratrol

induces mitophagy through the inhibition of mTORC1

(87). Research conducted by liu also indicated that 3-MA

significantly decreased EE-induced elevation in LC3-II/I ratio

and beclin-1, and alleviated EE-induced myocardial injury

(69). Tetramethylpyrazine and trimetazidine preconditioning

can facilitate Bcl-2 expression and decrease the expression

of caspase-3 and caspase-9 to suppress excessive apoptosis

in myocardial cells (76, 88). Regulating these molecules

and reducing oxidative stress with mitochondria-targeting

nutrients may be an effective strategy to treat EE-induced

myocardial injury.

Future perspectives

EE commonly occurs in professional athletes undergoing

regular high-intensity training and is often overlooked.

Accumulating evidence has shown that EE-induced myocardial

injury may be an important risk factor for cardiovascular

diseases, with multifaceted mechanisms of action, particularly

mitochondrial dysfunction. MQC is a unique process that

maintains mitochondrial integrity and homeostasis. However,

the regulation of MQC, specific molecular targets involved, and

their interaction are not understood. Therefore, further studies

targeting mitochondria and examining MQC in exhausted

animal models are needed to reveal new options to manipulate

mitochondrial function and quality control and ameliorate

oxidative and cellular damage caused by EE.

Several mitochondrion-targeted drugs, including those

mentioned above, are under scrutiny to better understand the

pathological basis for EE-induced myocardial injury. These

drugs may be effective strategies for improving physical

performance and injury recovery after EE. This is an important

issue that should be addressed in future research.

In addition, different intensities of EP have different

protective effects against EE-induced myocardial injury. It is

also of great significance to explore the optimal intensity of

EP training plans, formulate scientific and personalized exercise

prescriptions, reasonably improve exercise intensity, and fully

monitor exercise plans to preventmyocardial injury.Meanwhile,

it is important to explore the pathogenesis, prevention, and

treatment of EE-induced myocardial injury in combination with

exercise type.
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Glossary

ROS, Reactive oxygen species; MQC, mitochondrial

quality control; mtDNA, Mitochondrial DNA; cTnT, cardiac

troponin T; SOD, Superoxide dismutase; nuDNA, nuclear

DNA; mPTP, Mitochondrial permeability transition pore;

IL-1α, Interleukin-1 alpha; MMP, mitochondrial membrane

potential; NF-kB, nuclear factor kappa-B; PPAR, peroxisome

proliferator-activated receptor; Drp1, Dynamin-related protein

1; PGC-1α, Peroxisome proliferator-activated receptor γ

co-activator 1α; Tfam, Transcription Factor A Mitochondrial;

Mff, Mitochondrial fssion factor; Mfn1, Mitofusin 1; Mfn2,

Mitofusin 2; Fis1, Fission protein-1; MiD49, Mitochondrial

dynamics proteins 49; ER, Endoplasmic reticulum; MiD51,

Mitochondrial dynamics proteins 51; Opa1, Optic atrophy

protein-1; IMM, Inner mitochondrial membrane; OMM, outer

mitochondrial membrane; I/R, Ischemia/reperfusion; PINK1,

Phosphatase and tensin homolog-induced kinase 1; Sirt3,

Sirtuin 3; BNIP3, BCL2 and adenovirus E1B 19-kDa-interacting

protein 3; FUNDC1, FUN14 domain containing 1; MAPK,

Mitogen-activated protein kinase; VDAC1, Voltage-dependent

anion-selective channel 1; LC3, Light chain-3 protein; mTORC1,

Mechanistic target of rapamycin complex 1; AMPK, 5′-AMP-

activated kinase; ULK1/2, Unc-51-like autophagy-activating

kinase 1/2; PI3K/Akt pathway, Phosphatidylinositol-4,5-

bisphosphate 3-kinase (PI3K)/protein kinase B (Akt) pathway;

Cyt c, cytochrome c; Bcl-2, B-cell lymphoma-2; (SQSTM1, p62),

Sequestosome 1; 3-MA, 3-Methyladenine; CoQ10, coenzyme

Q10; FIP200, FAK family kinase-interacting protein of 200

kDa; HtrA2, hish temperature requirement A2; EP, Exercise

preconditioning; Smac, second mitochondrial derived caspase

activator.
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