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Myocardial infarction (MI) is one of the leading causes of deaths globally.

The early diagnosis of MI lowers the rate of subsequent complications and

maximizes the benefits of cardiovascular interventions. Many e�orts have

been made to explore new therapeutic targets for MI, and the therapeutic

potential of non-coding RNAs (ncRNAs) is one good example. NcRNAs are

a group of RNAs with many di�erent subgroups, but they are not translated

into proteins. MicroRNAs (miRNAs) are the most studied type of ncRNAs, and

have been found to regulate several pathological processes in MI, including

cardiomyocyte inflammation, apoptosis, angiogenesis, and fibrosis. These

processes can also be modulated by circular RNAs and long ncRNAs via

di�erent mechanisms. However, the regulatory role of ncRNAs and their

underlying mechanisms in MI are underexplored. Exosomes play a crucial role

in communication between cells, and can a�ect both homeostasis and disease

conditions. Exosomal ncRNAs have been shown to a�ect many biological

functions. Tissue-specific changes in exosomal ncRNAs contribute to aging,

tissue dysfunction, and human diseases. Here we provide a comprehensive

review of recent findings on epigenetic changes in cardiovascular diseases

as well as the role of ncRNAs and exosomal ncRNAs in MI, focusing on their

function, diagnostic and prognostic significance.
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Introduction

Cardiovascular disease (CVD) is a leading cause of mortality

around the world, accounting for 18.6 million deaths in 2019,

with coronary heart disease (CHD) being the most common

type of CVDs. About 697,000 persons in the United States died

from heart disease in 2020 that is one in every five deaths (1, 2).

Myocardial infarction (MI), a common manifestation of CHD,

is caused by acute or chronic deprivation of nutrients, oxygen,

and other important elements necessary for the myocardium

survival. MI triggers a chain of severe biochemical andmetabolic

perturbations in the cardiomyocytes. This imbalance primarily

results from acute or chronic ischemia. Cell death in the

ischemia area is the initial key event of MI, however a chain

of events leads to other heart diseases. Furthermore, MI is

associated with several structural and functional consequences

leading to permanent heart damage or death (3). This is because

cardiomyocytes are terminally differentiated cells and thus have

a poor regenerative capacity (4). The infarct size is considered to

be the best predictor of future cardiac dysfunction and mortality

following acute MI (3).

In biology, epigenetics is a field of study focused on the

chemical modification of specific genes or gene-associated

proteins that do not involve alterations in the DNA sequence.

Growing evidence indicated that epigenetic mechanisms,

including DNA methylation, histone modification, and non-

coding RNA, are closely related to cardiovascular disease

development and regression. Epigenetics mainly regulates

cardiovascular disease-related genes function and expression

level through DNAmethylation, histone modification, and non-

coding RNA regulation, thus affecting cardiovascular disease

progression. Epigenetic markers are important molecular

markers of cardiovascular disease because they occur early

in the disease and involve key cardiovascular pathologically

related pathways. Most importantly, it can be used as

cardiovascular disease biomarkers for cardiovascular disease

diagnosis, treatment response prediction and evaluation. As we

all know, the pathogenesis of cardiovascular disease remains

intricate and complex. Clinically, some cases are still difficult to

cure, and the prevalence rate increases with age. Interestingly,

because of the reversibility of epigenetic modifications, genes

and proteins that control these changes have become new targets

for cardiovascular disease treatment. Recently, non-coding

RNAs (ncRNAs) and their regulatory functions have aroused

great interest (5). There is increasing evidence that ncRNAs,

such as microRNAs (miRNAs), circular RNAs (circRNAs),

and long non-coding RNAs (lncRNAs) all have regulatory

functions and diagnostic value for many types of CVD (6).

Regulation of numerous ncRNAs modifies pathophysiological

processes in cardiac development, cardiovascular remodeling,

and cardiovascular diseases, such as ischemic heart disease,

hypertrophy, atherosclerosis, and cardiac fibrosis. MicroRNAs

are short-ncRNA molecules ∼21–23 nucleotides in length, and

are expressed by almost every cell (7). A mature miRNA usually

binds to its mRNA 3′ untranslated region by complementary

base-pairing, leading to inhibition of translation or mRNA

degradation (8–10). From 2008 onwards, scientists around the

world reported that circulating miRNAs have good potential as

markers for the diagnosis of a variety of diseases (11–13). In

this context, emerging evidence has confirmed the diagnostic

value of miRNAs in MI (14). Moreover, circRNAs and lncRNAs

have also been proposed as biomarkers for MI. Recently, a

plethora of papers implicated the key role of exosomal ncRNAs

in mediating intercellular and inter-organ communication and

CADs development (15, 16).

Herein, we provide a comprehensive review of recent

findings on the interplay between ncRNAs and epigenetic

machinery in cardiovascular diseases. Furthermore, this paper

aims to review and enhance the understanding of the

mechanisms and roles of ncRNAs and exosomal ncRNAs in MI,

and to provide a basis for clinical diagnosis and new therapeutic

strategies for this disease.

Epigenetic regulation in myocardial
infarction

Epigenetic regulatory processes include DNA methylation

(DNAm), histonemodifications, microRNAs, and lncRNAs (17).

The expression of the epigenome differs between various cell

types, and modulates single cell gene expression by organizing

the nuclear architecture in chromosomes, suppressing or

promoting the access of transcription factors to the DNA,

and regulating gene expression (18). Epigenetic alterations are

involved in the cause of many human diseases, including

severe CVD, owing to the role of differential gene regulation

in cellular differentiation and biological functions (1, 19,

20). There is much evidence in support of the assertion

that epigenetic alterations play a crucial role in a variety of

CVDs, such as hypertension, cardiac hypertrophy, heart failure

(HF), myocardial I/R damage (21–25). Thus, epigenetics can

be considered as a valuable target for the management of

myocardial I/R damage.

Histone modification and histone
deacetylases in MI

An important mechanism for epigenetic regulation is

histone modification and post-transcriptional modification, and

the most frequent histone modifications include acetylation,

phosphorylation, ubiquitination, and methylation (26).

Researchers reported that histone methylation primarily takes

place on arginine and lysine residues, and is mediated by histone

demethylase and histone methyltransferase (HMTs) enzymes

(27). Histone acetylation by histone acetyltransferases (HATs)
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is the introduction of acetyl groups into histones, leading to

nucleosome relaxation and activation of transcription. The

reverse progress is the elimination of acetyl groups from

histones by histone deacetylase enzymes (HDACs), which

causes the accumulation of nucleosomes and contributes to

inhibition of gene transcription. Hence, HATs and HDACs have

been likened to writers and erasers (28–30).

The main site of histone methylation in studies focusing

on myocardial ischemia/reperfusion (I/R) injury is histone 3

lysine 9 (H3K9). The first confirmed H3K9 methyltransferase

was Suv39h1. Since then, several other methyltransferases have

been discovered, such as G9a and its related proteins Ctrl4 and

Suv39h2. In contrast, PHF8 (PHD Finger Protein 8), JHDM2

(Jmjc domain-containing histone demethylase 2) and JHDM3

enzymes can demethylate H3K9 (27). Yang et al. showed that

ischemic or oxidative stress induces Suv39H expression in

parallel with the class III protein deacetylase sirtuin 1 (SIRT1)

repression, whereas deletion/inhibition of SUV39H ameliorates

MI-related damage (31).

According to report by Sung et al., histone methyltransferase

G9a plays a significant role in acute myocardial infarction-

induced heart failure (32). Flow cytometry analysis clarified

the protective impact of G9a inhibitor (i.e., UNC0638) on

H9C2 cardiomyocyte cells against H2O2-indcued apoptosis and

oxidative stress. In addition, the combination of G9a inhibitor

and erythropoietin (EPO) therapy effectively protected heart

against damage from acute myocardial through regulating of

several factors. This combined treatment promoted angiogenesis

by upregulating the expressions of SDF-1α, VEFG and CXCR4,

three angiogenesis indicator. Besides, combination of G9a

inhibitor and EPO decreased expressions of apoptotic cleaved

caspase 3 and cleaved PARP, fibrotic biomarkers (Samd3,

TGF-ß and fibronectin), and DNA-damage marker, and

suppressed protein expressions of inflammatory biomarkers

[matrix metalloproteinase (MMP)-2 and MMP-9] and anti-

oxidative-stress indicators (Sirt1 and Sirt3). The authors also

discovered that combining G9a inhibitor and EPO treatment

improved autophagy and cell-stress signaling (32).

HDACs are a large family of enzymes consisting of 18

enzymes in humans. They regulate chromatin remodeling and

consequent gene transcription mostly by controlling histone

acetylation status. Based on sequence homology and cellular

localizations, HDACs are divided into four classes: class I

(HDAC1, 2, 3, and 8); class II (HDAC4, 5, 6, 7, 9, and 10); class

III (SIRT1- 7); and the class IV protein (HDAC11) (33).

Among the HDACs, class IIa (HDAC4, 5, 7 and 9) are

thought to be cardiac protective because overexpression of

HDAC4, HDAC5, or HDAC9 in cardiac myocytes suppresses

expression of a pro-hypertrophy transcription factor, Mef2

(myocyte enhancer factor-2), and reduces stress-induced cardiac

hypertrophy (34). Conversely, silencing HDAC5 or HDAC9

leads to an exacerbation of the hypertrophic response to pressure

overload (35).

HDAC4 belongs to class II, plays an important role in a

number of physiological and pathological processes of the heart.

Under normal conditions, HDAC4 activity is very low, while

it is activated under pathological conditions, including cardiac

injury. In animal models, overexpression of HDAC4 increased

myocardial infarct size, on the other hand, inhibition of HDAC4

stimulates regeneration and restoration of cardiac function

and reduces myocardial infarction in ischemic HF (36, 37).

Zhang et al. created myocyte-specific active HDAC4 transgenic

mice to investigate the functional role of activated HDAC4

in regulating myocardial I/R injury. They found that active

HDAC4 in the heart is critical to promote myocardial I/R injury.

Moreover, delivery of HDAC inhibitor can diminish HDAC4-

induced I/R injury (36). Additionally, activated HDAC4-elicited

cardiac injury was related the decreased SOD-1 and increased

apoptosis and autophagy (36). Recently, Li et al. concluded that

HDAC4 silencing can upregulate miR-206 expression, reducing

cardiomyocyte apoptosis and inhibiting oxidative stress, and

protecting myocardial I/R injury through the mitogen-activated

protein kinase kinase kinase 1 (MEKK1)/JNK pathway (38).

In contrast to class IIa HDACs, class I HDACs have

shown pro-hypertrophy effects via a variety of mechanisms,

such as reducing autophagy through activation of mTOR

signaling or suppressing the expression of Inpp5f (inositol

polyphosphate-5-phosphatase f) and later inhibiting GSK3β

(glycogen synthase kinase 3β) signaling, or inhibiting of

DUSP5 (dual-specificity phosphatase 5) that negatively regulates

ERK1/2-induced cardiac hypertrophy (39).

It was shown that HDAC1 is present in cardiomyocyte

mitochondria, and stimulates myocardial damage in the initial

phase of reperfusion (40). According to recent researches,

overexpression of HDAC2 and HDAC3 induces severe cardiac

hypertrophy and hyperplasia, respectively (41, 42). Furthermore,

class I HDAC inhibitors diminishes cardiac hypertrophy (43).

A number of studies have shown a cardioprotective effect of

class III HDACs (e.g., sirtuins) against myocardial I/R damage

(44). Overall, it seems that class IIa and class III of HDACs have

protective roles not only in heart injury but also in vessel injury,

whereas class I HDACs protect against vessel damage but have

harmful effects on the myocardium.

Enhancer of zeste homolog 2 (EZH2), an enzymatic subunit

of polycomb repressive complex 2 (PRC2), is evolutionarily

conserved in many species with comparable structural motifs

and domains (45). It is responsible for catalyzing histone

H3K27me3 to silence its target gene expression and being

involved in various biological functions from cell cycle and cell

proliferation to cell differentiation etc. (46, 47). EZH2 represents

a major target of ncRNAs inside nucleus (48). Studies showed

that in Ezh2-deficient adult hearts, fetal genes are upregulated,

causing cardiac hypertrophy (49, 50). In ischemic heart disease

(IHD), elevated EZH2 epigenetically represses cardiac sodium

channel NaV1.5, which is one of the underlying mechanisms

of arrhythmias in IHD patients (51). Recently, Jiao et al. done
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a study to investigate the therapeutic effects of mesenchymal

stem cell-secreted exosomes (MSC-EXO) on myocardial fibrosis

after MI (52). They found EZH2 alleviates the cardioprotective

effects of MSC-EXO in MI rats through inhibiting HMGA2

(Highmobility group AT-Hook 2) expression and disrupting the

PI3K/AKT pathway (52).

DNA methylation and MI

There are several ways to control gene expression, and

one example is DNA methylation (31). DNA methylation is

the well-studied epigenetic modification of the genome (53). It

is essential for cellular reprogramming, normal development,

tissue differentiation, and is contribute significantly in many

biological processes as well as to the molecular pathology

of different disease states (54). DNA methylation occurs

when the methyl groups are covalently attached to the

5′ of cytosine in cytosine-guanine (CpG) dinucleotides,

found mainly in CpG-rich regions known as CpG islands

(CGIs) present in more than half of the promoters of

mammalian genes (55). DNA methylation itself modifies

transcription binding sites, preventing transcriptional activation

and binding of transcription factors (56). Researchers are

discovering the mammalian proteins and mediators involved

in DNA methylation and demethylation, including DNA

methyltransferases (DNMTs), ten-eleven translocation cytosine

dioxygenases (TETs), methyl-CpG binding proteins (MeCPs),

non-coding RNAs, and transcription factors (57). DNMT1 is an

enzyme that tends to maintain nascent DNAmethylation marks

during mitosis at cytosines that are methylated on the parental

strand, termed maintenance methylation. This phenomenon

ensures the persistence of programmed DNA methylation

patterns across cell generations.De novoDNAmethyltransferase

enzymes DNMT3A and DNMT3B are involved in generating

new DNA methylation signatures and are essential for

regulating DNAmethylation patterns for embryonic or neonatal

development (58, 59). DNMT3L as a cofactor is require

for de novo methyltransferase activity in embryonic stem

cells and a positive regulator of DNA methylation at gene

bodies of housekeeping genes (60). Proteins, including TET

methylcytosine deoxygenase, AID (activation-induced cytidine

deaminase), and TDG (thymine DNA glycosylase), are involved

in active and passive demethylation, gene activation, embryonic

development, and maintenance of adult tissue homeostasis

(61–63). TET enzymes catalyze the sequential oxidation of 5-

methylcytosine (5 mC) to generate intermediates involved in

the conversion of 5 mC to unmodified cytosines and removal

of the epigenetic mark, potentially providing the first steps in a

pathway for active DNA demethylation (64).

Abnormalities in DNA methylation and hypomethylation

across the genome, as well as CpG island hypermethylation

have been observed in CVDs (32, 33). Recent advances in

epigenetic sequencing have allowed examination of associations

between genomic coding, exposure to carcinogens, and disease

phenotype. The DNAm epigenetic modification could provide a

possible explanation for these relationships (34). It is possible to

influence transcription by adding methyl groups to certain DNA

nucleotide bases via the pre-transcriptional modification known

as DNA methylation (35). DNA genetic sequences are essential

to the natural evolution and survival of mammalian species

governed by specific patterns of gene expression. Epigenetic

modifications are dynamic and reversible at the same time,

which is important for the regulation of genetic pathways (36).

DNA methylation is a dynamic process that reflects the balance

between the activity of DNMTs and TETs. The association

between mutated genes DNMT3A and TET2 and development

of inflammation, atherosclerosis, and heart failure has been

reported (65–67). Numerous studies have focused on DNAm

pattern alterations and measuring differentially methylated

regions in both normal and abnormal development (37).

A number of studies have investigated DNA methylation

profiles in CHD and MI, suggesting their significance as a

diagnostic marker (68, 69). One study showed notable enhanced

DNA methylation levels in CHD patients (70). Additionally,

in a pilot study by Ma et al. for providing useful DNA

methylation profiles to serve as biomarkers for detecting early-

phase atherosclerosis (AS), a total of 300 persons were recruited

(150 AS patients and 150 healthy subjects) for peripheral blood

DNA methylation analyses at 12 gene promoter loci using

nested methylation-specific polymerase chain reaction (71).

Based on the test set, promoter methylation of acetyl Acetyl-

CoA acetyltransferase 1 (ACAT1) was decreased whereas ATP

binding cassette subfamily A member 1 (ABCA1) and tissue

inhibitor of metalloproteinase-1 (TIMP1) were significantly

increased in AS compared the matched controls. Thus, they

suggested that methylation of the three-gene panel (TIMP1,

ABCA1, and ACAT1) could serve as a valuable, high sensitivity,

and reliable biomarker for the early detection of AS (71).

Perinatal nicotine exposure in mice was shown to increase

myocardial I/R damage, which was found to be mediated

by DNA hypermethylation and increased DNMT3 expression.

Conversely, the administration of the DNA methylation

inhibitor 5-aza-2′-deoxycytidine (5-Aza) was able to ameliorate

myocardial injury. In conclusion, the authors found out that

nicotine-induced myocardial I/R damage was mediated by DNA

methylation in perinatal mice (72).

Non-coding RNAs and myocardial
infraction

More than 90% of the human genome is composed of genes

that do not encode protein. Nevertheless, these genes show

considerable transcriptional activity, and code for a wide variety

of ncRNAs with biological regulatory functions (73).

Frontiers inCardiovascularMedicine 04 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1014961
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Fadaei et al. 10.3389/fcvm.2022.1014961

As discussed above, ncRNAs include three main classes:

miRNAs, lncRNAs, and circRNAs. lncRNAs contain more

nucleotides compared to miRNAs (>200 nucleotides vs. 21–

23 nucleotides), which is the primary difference between

them. MiRNAs were shown to modulate gene expression by

inhibiting messenger RNA (mRNA) translation and causing

mRNA degradation (6, 74, 75). It has been reported that

miRNAs can affect myocardial angiogenesis and cardiomyocyte

survival and proliferation by regulation of target gene expression

(Figures 1A–C).

CircRNAs are mostly found in eukaryotic cells. Unlike

normal linear RNA molecules, the 3-cap and 5-tail of circRNAs

are covalently joined to form a closed loop. CircRNAs are

characterized by plentiful amounts, tissue specificity, and

evolutionary conservation. CircRNAs can act as a competitive

endogenous RNA (ceRNA) and a sponge that binds to

complementary miRNA sequences to moderate gene expression

(77, 78).

MicroRNAs and myocardial
infarction

MiR-431 has been shown to stimulate the regeneration and

differentiation of axons and skeletal muscles by targeting Smad4

(79). Emerging evidence has shown that miR-431 plays an

important role in several diseases, including but not limited to

hepatocellular carcinoma (80) and colorectal cancer (81). The

possible underlying mechanism was suggested to be hypoxia-

induced apoptosis (82). Nevertheless, the involvement of miR-

431 in cardiac hypoxia/reoxygenation (H/R) is still unclear. It

is known that autophagy and cell apoptosis are two important

processes involved in H/R and MI (83). Autophagy-related 3

(ATG3) is an E2 enzyme essential for the lipidation of LC3

during autophagy (84). There is evidence that ATG3 is associated

with autophagy in several diseases, including breast cancer (85),

hepatocellular carcinoma (86), and chondrocyte disturbance

(87), however, the role of miR-431 in myocardial damage is not

yet understood. Zhou et al. tried to clarify the mechanism of how

miR-431 affected apoptosis and autophagy of cardiomyocytes

in H/R. They found that H/R was associated with decreased

cell viability, increased apoptosis, and lower miR-431 expression

in human cardiomyocytes. Inhibition of miR-431 decreased

cell viability and promoted cell apoptosis. Additionally, it was

shown that miR-431 inhibited ATG3 expression by targeting

the 3’-untranslated region of ATG3 mRNA. Exogenous ATG3

overexpression was able to reverse the effects of miR-431

up-regulation on cell survival and apoptosis in H/R-treated

human cardiomyocytes. H/R treatment stimulated autophagy in

human cardiomyocytes, which was significantly decreased after

transfection with a miR-431-mimic. Their findings indicated

that miR-431up-regulation could regulate ATG3 expression, and

ameliorate H/R-stimulated myocardial injury (88).

Treatment with imatinib mesylate and doxorubicin

increased miR-205 expression in the plasma and heart of

mice (89). Moreover, miR-205 downregulation significantly

decreasedmyocardial apoptosis in rats with chronic heart failure

(90). Cheng et al. sought to understand how Remifentanil (a

short-acting synthetic opioid analgesic drug) exerted its

protective effects on myocardial I/R damage. The authors

found that remifentanil was able to enhance cell survival and

reduce apoptosis of H/R-treated cardiomyocytes. Increased

miR-205 expression and reduced PINK1 (PTEN induced

putative kinase 1) expression was observed following H/R

treatment. Preconditioning with remifentanil decreased miR-

205 and increased PINK1 expression. Additionally, miR-205

up-regulation decreased the expression of PINK1 and reversed

the remifentanil-stimulated increase in cell viability and

reduction of apoptosis in H/R-treated cardiomyocytes. The

investigators observed that the use of a miR-205 antagomir

was associated with a better remifentanil-induced reduction of

lactate dehydrogenase (LDH) activity and lower infarct size in

rats with I/R injury. Ultimately, miR-205 may be the reason for

the protective effect of remifentanil on myocardial I/R damage,

making it a possible target for the management of MI (91).

It was reported that miR-147 could inhibit apoptosis in

L6 myoblasts subjected to cyclic mechanical stretching (92).

MiR-147 downregulation was associated with inhibition of

proliferation in gastric cancer cells (93). Nonetheless, the

role of miR-147 in MI remains largely unknown. Wu et al.

designed an in vivo study to evaluate the function of miR-

147 in MI, and the mechanism of action (94). Quantitative

reverse transcription-polymerase chain reaction (qRT-PCR)

was used to measure the expression of Bax mRNA, miR-

147, and Bcl-2 mRNA. Inflammatory cytokines including

interleukin (IL)-6, IL-β, TNF-α, as well as lactate dehydrogenase

(LDH) were measured by enzyme-linked immunosorbent assay

(ELISA). Additionally, the MTT [3-(4, 5-dimethylthiazol-2-yl)-

2, 5-diphenyl tetrazolium bromide] assay was employed to

measure cell viability. Cell apoptosis was measured by terminal

dexynucleotidyl transferase (TdT)-mediated dUTP nick end

labeling (TUNEL). Additionally, in vivo cardiac function was

evaluated by echocardiography. Western blotting was employed

to measure the expression of homeodomain interacting protein

kinase 2 (HIPK2). Results indicated the lower levels of miR-

147 in the rat MI model and also in H9c2 cells treated with

H2O2. Moreover, H2O2 treatment was associated with higher

levels of inflammatory cytokines and caused apoptosis in H9c2

cells. These effects were abrogated by miR-147 up-regulation.

MiR-147 up-regulation reversed the increased Bax expression

and reduced the Bcl-2 expression in H9c2 cells induced by

H2O2. Furthermore, miR-147 up-regulation was associated with

better cardiac function and lower serum LDH values in MI

rats. TargetScan analysis demonstrated that HIPK2 could bind

to miR-147. Additionally, miR-147 up-regulation was able to

inhibit HIPK2 expression (94). The findings of this study
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FIGURE 1

Role of microRNAs in MI. Some miRNAs are known to be implicated in cardiac muscle angiogenesis (A), cardiac cell survival, and proliferation

(B,C). Angiogenesis is pivotal for the delivery of oxygen and essential nutrients to heart muscle. Angiogenesis can be activated or repressed by a

number of microRNAs. For instance, miR-15, miR-24, miR-26, and miR-92a all repress angiogenesis through inhibition of endothelial-cell

functions. In contrast, miR-210 prompts angiogenesis via inhibiting several antiangiogenic factors (A). A number of miRNAs have been identified

to be involved in the apoptosis and survival of cardiac cells. Apoptosis inhibition or an increase in survival signals promotes cardiac regeneration.

The miR-15 family (miR-320, miR-34, and miR-140) can serve as pro-apoptotic factors, while miR-24 and miR-214 can act as anti-apoptotic

factors (B). The proliferation of cardiac cells is limited; however, cardiac regeneration can increase following stimulation of proliferation. It has

been shown that miR-19, miR-199a and miR-590, can promote proliferation of cardiac cells, while both miR-15 and miR-133 inhibit cardiac cell

proliferation (C). This figure adapted from Boon and Dimmeler (76).

provide the postulate that lower levels of miR-147 can be

expected in patients with MI, while up-regulation could inhibit

myocardial apoptosis and inflammation, and improve cardiac

function through regulating HIPK2 (94).

MiR-130 can worsen myocardial injury following MI

by targeting peroxisome proliferator-activated receptor

gamma (PPAR-γ). In H9c2 cells, miR-130 by targeting

PPAR-γ aggravates acute MI-induced injury. In vivo

experiments confirmed that miR-130 downregulation

promotes PPAR-γ-mediated cardioprotective effects by

suppressing NFκB-mediated inflammation and TGF-β1-

mediated myocardial fibrosis (85). Pan et al. designed a study

to evaluate the diagnostic value of miR-130 in patients with

MI. The plasma expression of miR-130 in patients suffering

from MI was measured by qRT-PCR. The plasma value of

cardiac troponin I (cTnI) and creatine kinase-MB (CK-MB) was

examined by ELISA. The authors evaluated the diagnostic value

of miR-130 using a receiver operating characteristic (ROC)

curve. The plasma values of miR-130, CK-MB, and cTnI in

the MI group were significantly higher relative to the control

group. The peak of miR-130 expression occurred 6 h after MI

onset and the peak was earlier compared to CK-MB and cTnI.

A positive correlation was found between miR-130 (6 h after MI

onset) and the values of CK-MB and cTnI (12 h after MI onset).
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The optimal cut-off point was estimated as 1.58 ng/mL with a

sensitivity of 82.5% and specificity of 77.5%. The area under

the curve (AUC) was measured to be 0.922. These findings

suggest that miR-130 could be utilized as a biomarker for MI

diagnosis (95).

According to evidence, in patients with HF, the cardiac

microRNA-132-3p level is increased in cardiac tissue in

response to cardiomyocyte stress (96). It mechanistically drives

cardiac remodeling processes leading to heart failure through

downregulating the expression of the anti-hypertrophic, pro-

autophagic transcription factor Forkhead box O3 (FOXO3)

and also inhibiting the expression of genes involved in

intracellular calcium handling and contractility (97). As a

result, miR-132 appears to be a potentially promising molecular

pathophysiological target in the treatment of HF. In this regard,

a randomized, placebo-controlled, double-blind, phase 1b dose-

escalation study (NCT04045405) was conducted to evaluate the

safety, pharmacokinetics, and exploratory pharmacodynamic

effects of CDR132L; a synthetic antisense oligonucleotide (ASO)

inhibitor, in heart failure patients (98). Based on the results,

CDR132L is safe and tolerable, has confirmed linear plasma

pharmacokinetics and shows no signs of accumulation, and

improves cardiac function (98). Currently, in a randomized,

parallel, 3-arm, placebo-controlled phase II clinical trial

(NCT05350969) the safety and efficacy of CDR132L in patients

with reduced left ventricular ejection fraction (≤45%) after MI

is also under investigation (33).

It has been found that miR-204 could affect several

physiological and pathological processes, including apoptosis,

cell proliferation, and inflammation. Additionally, its capability

to affect signaling pathways and their downstream effectors has

been demonstrated (99, 100). Therefore, there is a possibility that

miR-204 may participate in the process of MI by modulating

different pathological responses.

Wang et al. evaluated the effect of miR-204 in rats with

MI by targeting the silent information regulator 1 (Sirt1)/p53

signaling pathway. They divided 36 rats into three equal groups,

including the sham-operated group, the MI model group, and

the miR-204 mimic MI group. The rats in the sham-operation

group merely underwent thoracotomy, without any MI injury.

MI injuries were created in the MI model group and the miR-

204 mimic group and treated with normal saline or miR-204

mimic, respectively. Histological staining revealed a normal

morphology in the sham-operated group and severe myocardial

tissue damage in the model group. The damage was less in the

miR-204 mimic group relative to the MI model group. The

authors found a higher Caspase-3 expression in cardiac tissue of

the model group andmiR-204mimic group relative to the sham-

operated group. The miR-204 level was significantly higher in

the model group compared to the miR-204 mimic group. It

was shown that Sirt1 (Sirtuin 1) could act as the target gene

of miR-204. Higher expression of Sirt1 and p53 was detected

in the model group and the miR-204 mimic group compared

to the sham-operation group. However, their expression level

was notably lower in the miR-204 mimic group compared to

the model group. Regarding miR-204 expression, both the miR-

204 mimic group and the model group had lower expression;

nonetheless, its expression was considerably higher in miR-204

mimic group relative to themodel group. A higher apoptosis rate

was detected in both the model group and the miR-204 mimic

group compared to the sham-operation group. But apoptosis

was lower in the miR-204 mimic group compared to the model

group. They concluded that miR-204 was able to decrease

the apoptosis rate in MI via targeting the Sirt1/p53 signaling

pathway (101) (Figure 1, Table 1).

Long non-coding RNAs and
myocardial infarction

LncRNAs have important regulatory roles in cardiac cell

growth, cell survival, and fibrosis in MI. They exert their effects

on heart disease through affecting epigenetic genemodifications,

transcriptional, and post-translational regulation via direct

binding to proteins, miRNAs, and other lncRNAs (138).

Although the number of discovered lncRNAs has increased

over the years, there is still not much information about the

mechanisms of action and the functions performed by these

biomolecules. One of the reasons for this delay is that many

lncRNAs show unique temporal and spatial expression patterns

(139). Furthermore, unlike microRNAs and mRNAs, most

lncRNAs have poor sequence conservation among different

species, whichmakes it difficult to obtain functional information

and mechanisms of action of the vast majority of lncRNAs and,

consequently, translate findings from animal models to humans

(139, 140). Besides, the link between basic research and clinical

trials in animal models. Therefore, the non-conservation of the

nucleotide sequence of lncRNAs among different species is a big

and influential challenge, because it makes it difficult to transfer

the findings obtained in preclinical studies to humans (141).

Hence, clinical trials are limited to working with only those

lncRNAs that have human counterparts.

In addition to the issues listed above, the secondary and

tertiary structures of lncRNAs must be explored, as they may

have structural homologs in other species (142, 143). Finally,

drug delivery to the target lncRNA of interest remains a difficulty

(144). Even though there are still many challenges to utilizing

lncRNAs as a therapeutic approach in CVDs, lncRNAs are

promising candidates for the clinic, and due to their specific

expression pattern associated with various pathologies, they are

recognized as a tool with great application power in personalized

medicine (140). In the following, we will discuss some studies

about the role of lncRNAs in heart disease and their mechanisms

of action.

In an in vitro/in vivo study, Su et al. reported that hypoxia

increased the expression of the lncRNA taurine upregulated gene
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TABLE 1 Reports of changes in miRNA expression in laboratory models and patients with MI.

MicroRNAs Expression Target Mechanism Model (in vitro,

in vivo, human)

Tissue, blood,

cell

References

miR-204 Down LC3-II Regulated autophagy In vivo Tissue (102)

miR-122 Down – – Human, in vivo Tissue, blood (103)

miR-519e-5p Down – – Human, in vitro Blood, H9c2, Raw

264.7, and HUVEC

cells

(104)

miR-150 Down Egr2, p2x7r Repressed apoptosis and inflammation In vivo, in vitro Tissue, and HL-1,

H9c2, MCEC,

VSMC, and NRVC

lines

(105)

miR-132-5p Down – – Human Blood (106)

miR-1291, miR-217,

miR-455-3p,

miR-566

Down – – Human Blood (107)

miR-147 Down HIPK2 Inhibited inflammation and apoptosis,

improved cardiac function

In vitro, in vivo Tissue, H9c2 cells (94)

miR-1, miR-92a,

miR-99a, miR-223

Down – – In vitro, human Tissue, blood (108)

miR-873 Down RIPK1, RIPK3 Regulated programmed necrosis In vitro Cardiomyocytes (109)

miR-206 Down PTP1B Reduced myocardial infarct size and

cardiomyocytes apoptosis

In vivo, in vitro Tissue (110)

miR-378 Down caspase-3 Enhanced cell viability, reduced lactate

dehydrogenase release, inhibited apoptosis

and necrosis

In vivo, in vitro Tissue (111)

miR-1915 Down – – Human Blood (112)

miR-126-3p,

miR-26a-5p,

miR-191-5p

Down – – Human Blood (113)

miR-125b,

miR-320b

Down – – Human Blood (114)

miR-500,

miR-532-3p

Down – – In vivo Tissue (115)

miR-423-5p,

miR-30d

Up – – Human Blood (116)

miR-375 Up PDK-1 Inhibited proliferation and tube formation,

and enhanced apoptosis

In vitro, in vivo Tissue, BMPACs (117)

miR-208a Up cAMP-PKA Influenced the cAMP-PKA signaling pathway In vitro, in vivo Tissue, blood (118)

miR-22-5p,

miR-150-3p

Up – – Human Blood (106)

miR-126-3p Up – – Human Blood (119)

miR-19b-3p,

miR-134-5p,

miR-186-5p

Up – – Human Blood (120)

miR-17-5p,

miR-126-5p,

miR-145-3p

Up – – Human Blood (121)

miR-122-5p Up – – Human Blood (122)

(Continued)
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TABLE 1 (Continued)

MicroRNAs Expression Target Mechanism Model (in vitro,

in vivo, human)

Tissue, blood,

cell

References

miR-130 Up – – Human Blood (95)

miR-21 Up Smad7 Promoted cardiac fibrosis In vitro, in vivo Tissue, Primary

cardiac fibroblasts

(123)

miR-16 Up β2-AR Reduced cell viability, increased apoptosis In vitro, in vivo Tissue, NRVCs (124)

miR-125b-5p,

miR-30d-5p

Up - - Human Blood (125)

miR-124 Up - - Human Blood (126)

miR-144-3p Up PTEN Promoted cell proliferation, migration, and

collagen production

In vitro, in vivo HCFs (127)

miR-337, miR-34b Up – – In vivo, in vitro Tissue (128)

miR-424-5p Up – – Human Blood (129)

miR-205 Up PINK1 – In vivo, in vitro Tissue, primary

cardiomyocytes

(91)

miR-486, miR-150 Up – – Human Blood (130)

miR-320a,

miR-660-5p

Up – – Human Blood (131)

miR-197,

miRNA-223

Up – – Human Blood (132)

miR-140 Up – – Human Blood (133)

miR-181a Up – – Human Blood (134)

miR-181c Up – – Human Blood (112)

miR-25-3p,

miR-221-3p

Up – – Human Blood (135)

miR-210 Up HIF1α Decreased cardiac function In vivo, human Tissue (136)

miR-486-3p Up – – Human Blood (137)

miR-3559-5p,

miR-499, miR-21

Up – – In vivo Tissue (115)

1 (TUG1), then TUG1 sponged miRNA-132-3p and activated

HDAC3, which in turn induced several targets protective gene,

stimulated intracellular ROS accumulation, and exacerbated

acute MI injury (145).

It was discovered that the lncRNA X inactive specific

transcript (XIST) was involved in the inactivation of

chromosome X in female cells during embryonic development

(146), and it was also overexpressed in several malignancies,

such as lung and gastric cancer (147, 148). High levels of

XIST were observed in a rat model of acute MI, and its

knockdown was shown to suppress cardiomyocyte apoptosis via

downregulating miR-449 (149).

Zhou et al. examined the function and underlying

mechanism of lncRNA XIST in hypoxia-stimulated injury in

H9c2 cells. Cell viability, invasion, migration, and apoptosis

were assessed utilizing MTT, transwell, and flow cytometry

assays, respectively. Gene expression was measured using

Western blotting or qRT-PCR. XIST up-regulation was found in

H9c2 cells after hypoxia-stimulated injury, and its knockdown

ameliorated the cell damage. XIST overexpression enhanced

the expression of B-cell lymphoma 2-associated X (Bax) by

binding to miR-150-5p. Thus, it was concluded that XIST was

able to protect cardiomyocytes from hypoxia-stimulated damage

by modulating the miR-150-5p/Bax axis, suggesting that XIST

could a target for MI treatment (150).

The lncRNA called “smooth muscle and endothelial

cell-enriched migration/differentiation-associated lncRNA”

(SENCR) is located on chromosome 11, and is expressed in

human vascular cells (151). There is much evidence in support of

the role of SENCR in inhibiting the proliferation and migration

of human aortic-vascular smooth muscle cells. SENCR could

reduce the formation and progression of atherosclerotic

lesions by modulating the miR-4731-5p/FOXO3a signaling

pathway (152).

Chen et al. designed a study to evaluate the role and

underlying mechanism of SENCR on H/R-stimulated apoptosis

in cardiomyocytes. qRT-PCR was employed to quantify the

expression of SENCR in the serum of the case group (MI
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patients) and the control group (non-MI patients with chest

pain). Cell viability, cell apoptosis, and inflammatory responses

were assessed by MTT, flow cytometry, and ELISA, assays.

The luciferase reporter assay was employed to identify the

mechanism of SENCR. Downregulation of SENCR was detected

inMI patients compared to the control group, and its expression

was negatively correlated with cTnI and CK-MB levels in

MI patients. H/R-stimulated apoptosis and inflammation were

attenuated by SENCR up-regulation. SENCR up-regulation was

associated with the downregulation ofmiR-1 expression. SENCR

up-regulation also decreased apoptosis, mitigated inflammatory

responses, and increased cell survival in cardiomyocytes. SENCR

was shown to be able to reverse H/R myocardial damage

via downregulating miR-1. A significant correlation between

SENCR expression and the clinicopathological characteristics of

MI patients was found (153).

The lncRNA plasmacytoma variant translocation 1 (PVT1),

which is located on chromosome 8q24, is a potential

oncogene in several malignancies (154). Furthermore, an

in vivo study showed that PVT1 was remarkably overexpressed

in the hypertrophic mouse heart, and its inhibition was

associated with a smaller cardiomyocyte size in Angiotensin II-

treated cardiomyocytes, suggesting a crucial role of PVT1 in

cardiomyocyte hypertrophy (155). However, its role in other

cardiac diseases is not yet clear.

Ouyang et al. established a study to assess the involvement of

lncRNA PVT1 in H/R-treated AC16 cardiomyocytes (156). They

found out that treatment decreased cell survival and enhanced

apoptosis, and its suppression ameliorated the H/R damage

and besides, decreased excessive autophagy. Additionally, the

authors demonstrated that it may act as a ceRNA to sponge miR-

186 in AC16 cells, and rescue research revealed that prohibition

of miR-186 was able to suppress the effects of PVT1 suppression

in H/R-treated AC16 cells. Thus, PVT1 can be suggested as a

valuable target for myocardial I/R injury treatment (156).

Testis-specific transcript Y-linked 15 (TTTY15) is a

transcription-mediated chimeric lncRNA with key regulatory

functions in some CVDs (157, 158). Bioinformatics and

experimental analysis revealed that TTTY15 could promote

myocardial cell injury by regulating the miR-98-5p/C-reactive

protein (159).

Chen et al. aimed at investigating the role of lncRNA

TTTY15 in myocardial I/R damage and its putative interaction

mechanisms with miR-374a-5p. In vivo and in vitro experiments

revealed enhanced TTTY15 expression in myocardial I/R

damage. Besides, TTTY15 inhibited autophagy as well as

myocardial I/R damage via modulating the expression of miR-

374a-5p. TTTY15 modulated miR-374a-5p expression, thereby

regulating FOXO1 expression and autophagy in myocardial

I/R damage. Furthermore, TTTY15 inhibition ameliorated

in vivo myocardial I/R injury. According to their findings, they

concluded that TTTY15 can be taken into account as a precious

target for myocardial I/R injury treatment (160).

RNA Component of Mitochondrial RNA Processing

Endoribonuclease (RMRP), a recently explored lncRNA

consisting 267 nucleotides, has been demonstrated to exhibit

carcinogenic effects in a variety of malignancies, including

gastric cancer (161), glioma (162), and lung cancer (163).

Steinbusch et al. pointed out that RMRP has a pivotal role in

chondrocyte hypertrophy and it can contribute to cartilage-hair

hypoplasia (164), suggesting the mandatory function of this

lncRNA in several diseases. Of note, dysregulation of RMRP has

been observed in patients suffering from ischemic heart failure

(165). However, there is a scarcity of data regarding whether

RMRP is dysregulated in MI and myocardial I/R damage.

Kong et al. sought to clarify the roles of RMRP and

its mechanism in myocardial I/R damage (166). To induce

myocardial damage, the H9c2 cardiomyocytes were cultured

under hypoxia. Moreover, a rat myocardial I/R damage model

was established by subjection to 60min ischemia and 24 h

reperfusion. The authors declared that RMRP up-regulation

was associated with worsen hypoxia-induced damage in

cardiomyocytes. A negative correlation between RMRP and

miR-206 was also found and RMRP up-regulation aggravated

hypoxia damage via downregulation of miR-206. Additionally,

it was shown that miR-206 exerted its effects on hypoxia damage

by targeting autophagy related 3 (ATG3). Also, RMRP up-

regulation was associated with activation of PI3K/AKT/mTOR

signaling pathway in hypoxia-treated H9c2 cells via regulation

of miR-206/ATG3. In summary, it can be concluded that RMRP

overexpression has the potential to aggravate myocardial injury

through the downregulation of miR-206 and consequently

overexpression of ATG3. In the setting of myocardial I/R

damage, PI3K/Akt/mTOR pathway activation serves as a central

downstream mediator of the RMPR/miR-206/ATG3 axis (166).

Clarifying the mechanisms and pathways behind exercise-

stimulated adaption will offer new therapeutic targets that

can be utilized as treatments for CVDs (140). The preventive

and therapeutic effects of exercise on CVDs have been well-

established, hence, it can be considered another strategy

aimed at regulating the expression of lncRNAs (140).

Evidence demonstrated that aerobic exercise can decrease

cardiomyocytes’ apoptosis and heart fibrosis areas following

MI via modulating the expressions of myocardial infarction

associated transcript (MIAT), H19, and lncRNA GAS5. In

addition, exercise can prohibit the expression of MIAT, known

pro-fibrotic lncRNA in the MI settings, which exerts its impacts

by sequestering miRNA-24 and provoking the TGF-beta

signaling pathway (140).

In neonatal and adult mice, suppression of CAREL

(cardiac regeneration-related long non-coding ribonucleic acid)

enhanced heart function and was associated with higher cell

proliferation and regeneration (167). CRRL (cardiomyocyte

regeneration-related lncRNA), like CAREL, is a negative

regulator of cardiomyocyte proliferation and cardiac repair.

CRRL achieves these effects by binding to miR-199a-3p,

inhibiting its activity and boosting levels of its target Hopx (168).
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lncRNA ZNFX1 antisense 1 (ZFAS1) is made from a

snoRNA host gene. It is one of the lncRNAs involved in cardiac

hypertrophy, as its knockdown rescued contractile dysfunction

(169, 170). Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase

2a (SERCA2a) is a key protein in the Ca2+ cycle of HF so its

dysregulation is a hallmark of HF (171). LncRNA ZFAS1 as a

SERCA2a inhibitor binds to SERCA2A protein and disrupts its

activity, leading to changed Ca2+ transient and intracellular

Ca2+ load in the heart and contractile dysfunction in an animal

model of MI (170) (Table 2).

Circular RNAs and myocardial
infarction

Luo et al. examined circRNA expression throughout the

stages of MI progression in an animal model of MI, and

in cardiomyocytes with H/R injury in vitro (191). They

found high expression of circRNA PVT1 (circPVT1) in both

MI tissues and H/R-treated cardiomyocytes. The effect of

circPVT1 on cardiac function and cardiomyocyte viability was

investigated using loss-of-function assays. Echocardiography

was employed to assess cardiac function seven days after

MI. Lower circPVT1 expression substantially reduced the

infarct size by 60% and avoided the MI-induced decrease

in fractional shortening (FS) and ejection fraction (EF).

Laboratory findings demonstrated that silencing of circPVT1

was associated with higher cell survival and proliferation, and

decreased apoptosis. A significant association between circPVT1

expression and both miR-200a and miR-125b was found. The

authors suggested that circPVT1 might sponge miR-200a and

miR-125b by acting as a ceRNA (191). Overexpression of miR-

125b and miR-200a partly abolished the effects of circPVT1

on cardiomyocyte function. Moreover, the authors reported

that the circPVT1/miR-125b/miR-200a axis was able to regulate

the SIRT7, p53/TRAF6, PDCD4, and Keap1/Nrf2, signaling

pathways. In summary, their findings suggested that circPVT1

exerted a cardioprotective effect against MI and H/R damage by

inhibiting apoptosis mediated by miR-200a andmiR-125b (191).

CircROBO2 is a recently discovered circRNA, but its

role in MI is not fully understood. Chen et al. investigated

the pathophysiology of circROBO2 in MI (192). Accordingly,

Western blotting and qRT-PCR were employed to assess

the expression levels of circROBO2, TRADD, and miR-1184

in MI and sham-operated mouse models at protein and

mRNA levels, respectively. Luciferase reporter gene analysis and

RNA immunoprecipitation (RIP) were used to investigate the

association between miR-1184, circROBO2, and TRADD. Flow

cytometry was used to verify the involvement of circROBO2,

miR-1184, and TRADD in myocardial cell apoptosis. To

investigate the effects of circROBO2 on myocardial damage,

researchers used ultrasound echocardiography, serum LDH,

serum CK-MB, MI area and measured myocardiocyte apoptosis

(192). Compared to the control group, miR-1184 expression

levels were significantly lower in the MI group; however,

circROBO2 and TRADD expression levels were substantially

higher. After overexpression of TRADD, circROBO2 behaved

like a sponge for miR-1184. Furthermore, miR-1184 up-

regulation increased the protective effect of circROBO2

knockdown by inhibiting TRADD expression. The authors

concluded that circROBO2 knockdown lowered cardiomyocyte

apoptosis by boosting miR-1184 expression, and reducing

TRADD expression in the myocardium after MI (192).

Dysregulation of CircHIPK3 has been detected in several

diseases including but not limited to diabetes, malignancies,

preeclampsia, and retinal vascular dysfunction (193). It was

shown that circHIPK3 suppressed proliferation and induced

apoptosis of cardiomyocytes with ischemic-reperfusion injury

via binding to miR-124-3p (194). Upon hypoxic injury,

cardiomyocyte-derived exosomal circHIPK3 plays a crucial role

in maintaining cardiac microvascular endothelial cell function

by targeting theMIR29A/IGF-1 pathway and viamodulating the

miR-29a/IGF-1 axis (16).

Wu et al. examined the underlying ceRNA network

involving circHIPK3 in MI (195). A hypoxic model was

used to establish MI in vivo, then, the expression levels and

association between miR-93-5p, circHIPK3, and Rac1 were

evaluated. Gain and loss-of-function experiments were used to

assess the ceRNA mechanism (195). CircHIPK3 suppression

was associated with decreased myocardial apoptosis, a lower

infarct size, myocardial collagen deposition, and improved

cardiac function. CircHIPK3 spongedmiR-93-5p, while miR-93-

5p targeted Rac1. Up-regulation of MiR-93-5p was associated

with attenuation of MI-induced cardiomyocyte damage and

abrogated the detrimental effect of circHIPK3. CircHIPK3 acted

as a sponge for miR-93-5p, thereby enhancing the activation

of the Rac1/PI3K/AKT signaling pathway. In conclusion,

circHIPK3 suppression was associated with overexpression

of miR-93-5p and inhibition of the Rac1/PI3K/Akt signaling

pathway, leading to amelioration of MI-induced cardiac

dysfunction (195).

The novel circRNA, circMAT2B was shown to play a major

role in moderating glucose metabolism in hypoxic conditions

(196). Moreover, elevated levels of circMAT2B were found in

hepatocellular carcinoma patients, suggesting it could be a target

for hepatocellular carcinoma treatment. Nevertheless, its role in

MI is still unclear.

Zhu et al. investigated how circMAT2B affects MI. An

oxygen-glucose deprivation (OGD)-induced H9c2 cell model

was used to simulate MI. H9c2 cells were transfected with

ex-circMAT2B plasmid for overexpression, si-circMAT2B for a

knockdown, a miR-133 inhibitor, and appropriate controls. The

expression levels of miR-133 and circMAT2B were evaluated

using qRT-PCR. Apoptosis, reactive oxygen species (ROS)

production, cell viability, and secretion of inflammatory

cytokines were evaluated using flow cytometry, ROS assay
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TABLE 2 Reports of changes in lncRNA expression in laboratory models and patients with MI.

LncRNA Expression Target Mechanism Model (In vitro,

in vivo, human)

Tissue,

blood, cell

References

SARRAH Down NRF2, GPC6,

PDE3A,

ITPR2,

PARP8, SSBP2

Decrease apoptosis In vitro, in vivo Tissue (172)

SENCR Down miR-1 Alleviated apoptosis and inflammatory

response

Human, in vitro Blood (153)

CARL Down miR-539 Suppressed mitochondrial fission and

apoptosis

In vivo, in vitro Tissue (173)

NONMMUT036355,

NONMMUT003691,

NONMMUT034297,

NONMMUT073076,

KnowTID_00004703

Down – – In vivo Tissue (174)

CAIF Down p53 Suppressed autophagy In vivo, in vitro Tissue (175)

Dancr Down miR-6324 Inhibited apoptosis, enhanced autophagy In vitro H9c2 cell line (176)

UCA1 Down miR-128 Alleviated autophagy In vivo, in vitro Tissue (177)

UCA1 Down miR-128 Alleviated autophagy In vivo, in vitro Tissue (177)

UCA1 Down miR-128 Alleviated autophagy In vivo, in vitro Tissue (177)

FAF Down FGF9 Inhibited apoptosis In vivo, in vitro Tissue,

cardiomyocytes

(178)

N1LR Down TGF-β1,

Col1a1,

Col3a1,

α-SMA

Alleviated apoptosis, inflammation reaction

and fibrosis

In vitro, in vivo Tissue, H9c2 cell

line

(179)

NR_047662.2,

uc002ddj.1

Down – – Human Blood (180)

MIRT1, MIRT2 Up – – In vivo Tissue (181)

NONMMUT013316,

NONMMUT030245,

NONMMUT065582,

KnowTID_00006395

Up – – In vivo Tissue (174)

NONMMUT022554 Up PI3K-Akt – In vivo Tissue (174)

NONMMUT023529,

NONMMUT022555,

NONMMUT72211,

KnowTID_00006493

Up – – In vivo Tissue (174)

TUG1 Up miR-142-3p Increased apoptosis and autophagy In vivo, in vitro Tissue (182)

PVT1 Up miR-186 Increased apoptosis and autophagy In vitro AC16 cells (156)

NEAT1 Up miR-378a-3p Promoted cell proliferation and migration,

regulated expression of autophagic factors

In vivo, in vitro, human Tissue, blood (183)

TTTY15 Up miR-374a-5p Suppressed autophagy In vivo, in vitro Tissue, H9c2 and

HL-1 cells

(160)

HRIM Up – Suppressed autophagy In vivo, in vitro Tissue, H9c2 cell

line

(184)

AK088388 Up miR-30a Promoted autophagy In vitro HL-1 cell line (185)

FOXD3-AS1 Up NF-κB Enhanced apoptosis and autophagy In vitro H9c2 cell line (186)

(Continued)

Frontiers inCardiovascularMedicine 12 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1014961
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Fadaei et al. 10.3389/fcvm.2022.1014961

TABLE 2 (Continued)

LncRNA Expression Target Mechanism Model (In vitro,

in vivo, human)

Tissue,

blood, cell

References

AK139328 Up miR-204-3p Promoted autophagy In vivo, in vitro Tissue,

cardiomyocyte

(187)

MHRT Up – Decreased apoptosis In vitro, human Blood,

cardiomyocytes

(188)

NRF Up miR-873 Increased necrosis In vitro, in vivo Tissue,

cardiomyocytes

(109)

THRIL Up miR-99a Decreased cell viability, migration and

invasion, increased apoptosis

In vitro H9c2 cell line (189)

XIST Up miR-150-5p Inhibited apoptosis In vitro H9c2 cell line (150)

TTTY15 Up miR-455-5p Decreased cell migration and invasion,

increased apoptosis

In vitro HCMs (158)

NONMMUT032513,

NONMMUT074571

Up ZEB1 – In vivo Tissue (190)

ENST00000581794.1,

ENST00000509938.1

Up – – Human Blood (180)

kit, CCK-8 assay, and ELISA, respectively. Furthermore,

Western blotting was employed to identify apoptosis and

related pathways. It was found that OGD treatment significantly

increased circMAT2B expression. Additionally, circMAT2B

knockdown dramatically reduced the OGD-stimulated

increase in apoptosis, ROS production, and the expression

of inflammatory cytokines. SI-circMAT2B increased miR-133

expression. CircMAT2B suppression abrogated OGD-induced

H9c2 cell damage and relieved the OGD-stimulated inhibition

of the Raf/MEK/ERK and PI3K/AKT signaling pathways via

upregulation of miR-133. Collectively, circMAT2B suppression

could inhibit inflammation in OGD-induced cardiomyocyte

damage in H9c2 cells by upregulating miR-133 (197).

The circRNA Postn (circPostn) is thought to affect cancer

development via modulating cell apoptosis and proliferation

(198). One in vivo study showed that circPostn is up-regulated

in MI (199). Nonetheless, its role in MI-induced myocardial

damage and regeneration is not yet clear.

Cheng et al. investigated the effects of circPostn on

myocardial damage and remodeling following MI. They found

higher plasma levels of circPostn in patients suffering from

MI, as well as mice and human cardiomyocytes treated with

H/R. CircPostn knockdown considerably reduced MI-induced

myocardial damage and infarct size. CircPostn knockdown

also increased the left ventricular FS and EF, as well as

decreased the left ventricular anterior wall thickness in diastole

(LVAWd) and the left ventricular posterior wall thickness in

diastole (LVPWd). The expression of collagen 1α1 and collagen

3α1 was increased in MI in vivo but was reduced when

circPostn was depleted. Collagen and smooth muscle actin

protein expression was increased in MI in vivo and decreased

by circPostn knockdown. Moreover, suppression of circPostn

decreased the expression of the atrial natriuretic peptide as well

as brain natriuretic peptide. Also, the circPostn depletion was

able to decrease cardiomyocyte apoptosis in vivo. CircPostn

acted mechanically as a miR-96-5p sponge and miR-96-5p

targeted BNIP3 in human cardiomyocytes, where circPostn

increased BNIP3 level through miR-96-5p targeting. circPostn

enhanced H/R-stimulated cardiomyocyte damage via affecting

the miR-96-5p/BNIP3 axis. Therefore, the authors infer that

circPostn results inMI-stimulated myocardial damage and heart

remodeling via moderating the miR-96-5p/BNIP3 axis. The

results illustrate a unique understanding of the mechanism

behind the regulatory effects of circPostn on MI-stimulated

heart dysfunction. miR-96-5p, circPostn, and BNIP3 can be

considered as possible therapeutic for the management of MI-

stimulated heart damage (200) (Table 3).

Exosomal non-coding RNAs and
myocardial infarction

Exosomes are bilayer-surrounded membrane vesicles

measuring from 30 to 100 nm in diameter and are secreted

by most cell types. Exosomes can act as carriers to transport

biomolecules including, DNA, proteins, RNA, and lipids

(225, 226).

Exosomes can display cell molecules characteristic of their

source cells on their surface and when they bind to recipient

cells, they release their contents into the cytosol of the recipient

cells through receptor-ligand interactions, endocytosis, and

fusion with the cell membrane, thereby modifying the recipient
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TABLE 3 Reports of changes in circRNA expression in laboratory models and patients with MI.

Circular RNA Expression Target Mechanism Model (In vitro,

in vivo, human)

Tissue, blood,

cell

Reference

Circ-MACF1 Down miR-500b-5p Inhibited apoptosis, improved myocardial

function

In vivo, in vitro Tissue,

cardiomyocytes

(201)

Circ-SNRK Down miR-103-3p Increased proliferation, reduced apoptosis In vivo, in vitro Tissue,

cardiomyocytes

(202)

Circ-Amotl1 Down PDK1, AKT1 Reduced apoptosis and promoted cardiac

repair

In vivo, in vitro, human Tissue (203)

Circ-0000064 Down – Attenuated autophagy In vivo Tissue (204)

Circ-ACR Down Pink1 Repressed autophagy, decreased myocardial

infarct sizes

In vitro, in vivo Tissue,

cardiomyocytes

(100)

Circ-CDYL Down miR-4793-5p Promoted cell proliferation, improved heart

function

In vivo, in vitro Tissue (205)

Circ-Fndc3b Down FUS Reduced apoptosis, enhanced

neovascularization

In vivo, in vitro, human Tissues,

cardiomyocytes

(199)

Circ-RCAN2 Down – – In vivo, in vitro Tissue (206)

Circ-MICRA Down – – Human Blood (207)

Circ-LAS1L Down miR-125b Reduced cell proliferation and migration,

induced apoptosis

In vitro, human Blood, cardiac

fibroblasts

(208)

Circ-NFIB Down miR-433 Decreased cell proliferation, reduced cardiac

fibrosis

In vivo, in vitro Tissue, cardiac

fibroblasts

(209)

Circ-PAN3 Down miR-421 Inhibited autophagy, reduced apoptosis In vivo, in vitro Tissue, HCMs (210)

Circ-UBXN7 Down miR-622 Decreased apoptosis and inflammation In vitro, in vivo, Tissue, H9c2 cells (211)

Circ-C12orf29 Down – – In vitro, in vivo Tissue (206)

Circ-JARID2 Up miR-9-5p Inhibited cell viability, promoted apoptosis

and inflammatory response

In vitro H9c2 cells (212)

Circ_0124644 Up miR-590-3p Promoted cardiomyocytes injury via

regulating SOX4

In vitro, human Blood, AC16 cells (213)

Circ-ROBO2 Up miR-1184 Induced apoptosis In vivo, in vitro Tissue (192)

Circ-HIPK3 Up miR-93-5p Inhibited cardiomyocyte proliferation and

induced apoptosis

In vivo, in vitro Tissue, HL-1 cells (195)

Circ-Ttc3 Up miR-15b Decreased ATP depletion and apoptosis In vivo, in vitro Tissue,

cardiomyocytes

(214)

Circ-Arhgap12 Up miR-135a-5p Enhanced apoptosis and oxidative stress In vivo Tissue (215)

Circ-ZNF292 Up BNIP3 Increased cell viability, decreased apoptosis

and autophagy

In vitro H9c2 cells (216)

Circ-MAT2B Up miR-133 Induced inflammation In vitro H9c2 cells (197)

Circ-Helz Up miR-133a-3p Induced inflammation and pyroptosis,

increased myocardial infarct size, decreased

cardiac function

In vivo, In vitro Tissues,

cardiomyocytes

(217)

Circ-SLC8A1 Up miR-133a - In vivo, in vitro, human Tissue, cardiocytes (218)

Circ-FASTKD1 Up miR-106a Reduced the viability, migration, and

angiogenesis

In vitro, in vivo HUVECs,

HCMECs

(219)

Circ-PAN3 Up miR-221 Increased cell proliferation and migration,

induced cardiac fibrosis

In vivo, in vitro Tissue, cardiac

fibroblasts

(220)

Circ-000203 Up miR-26b-5p Increased expressions of pro-fibrotic genes In vitro, in vivo Tissue (221)

Circ-Ube3a Up miR-138-5p Promoted cell proliferation and migration,

aggravated myocardial fibrosis

In vivo, in vitro M0M-SEVs,

M2M-SEVs

(222)

(Continued)
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TABLE 3 (Continued)

Circular RNA Expression Target Mechanism Model (In vitro,

In vivo, human)

Tissue, blood,

cell

Reference

Circ-001654,

circ-091761,

circ-405624,

circ-406698

Up miR-491-3p,

miR-646,

miR-603,

miR-922

– Human Blood (223)

Circ-0023461 Up miR-370-3p Decreased cell viability, proliferation and

migration, increased apoptosis, oxidative

stress, and inflammation

In vitro, human Blood, AC16 cell

line

(224)

cell functions (227). A relatively large number of proteins,

miRNAs, and lncRNAs can be detected inside exosomes.

Emerging evidence suggests that exosomes can act as regulators

of cell differentiation, proliferation, and apoptosis in CVDs

(228–230). By acting as ceRNA, they can bind to specific

miRNAs and act as miRNA sponges in cells. Consequently,

they can reduce the activity of miRNAs and thus regulate the

expression of their target genes (231).

Exosomal ncRNAs act as regulators of myocardial structure

and function in CADs, thus providing new insight into the

mechanisms and therapeutic targets for the diagnosis and

treatment of these diseases (232). Sirt1 is involved in immune

responses and is known as a regulator of inflammation in CVDs

(233, 234). It plays a critical role in the regulation of cardiac

cell development and CVDs (235, 236). In MI patients, Sirt1

is downregulated, whereas its upregulation could alleviate MI-

induced myocardial damage (237). Sirt1 activation could inhibit

NLRP3 inflammasome activation and subsequent caspase-1

cleavage and IL-1β secretion, suggesting the protective effect of

Sirt1 on vascular endothelial cells (238).

Mao et al. investigated the effects and the underlying

mechanism of lncRNA KLF3-AS1 contained in exosomes

derived from human mesenchymal stem cells (hMSCs), on the

pyroptosis of cardiomyocytes and the treatment of MI (239).

Exosomes were transfected with KLF3-AS1 and tested in vitro

and in vivo. The effects of exosomal KLF3-AS1 on cell viability,

MI area, pyroptosis, and apoptosis were assessed. The dual-

luciferase reporter assay was used to determine correlations

between KLF3-AS1, miR-138-5p, and Sirt1. Transfection of

miR-138-5p and sh-Sirt1 into normal cardiomyocytes was

performed to see whether an increase in miR-138-5p or sh-

Sirt1 could affect the cardioprotective activity of KLF3-AS1.

The delivery of KLF3-AS1 in exosomes resulted in reduced

infarct size, less apoptosis, and pyroptosis, and reduced MI

progression. KLF3-AS1 can bind to miR-138-5p to modulate the

expression of Sirt1. It was found that inhibition of miR-138-5p

was associated with decreased pyroptosis and ameliorated the

effects of MI. The authors concluded that lncRNA KLF3-AS1

in exosomes released from hMSCs could bind to miR-138-5p to

moderate Sirt1 expression to suppress pyroptosis and slow MI

progression (239).

Recently, Chen et al. conducted an in vitro study to evaluate

the role of exosome-mediated lncRNAs ZEB1-AS1 (Zinc finger

e-box-binding homeobox 1 antisense 1) and its underlying

mechanisms in atherosclerosis (240). Exosomes were extracted

from oxidized low-density lipoprotein (ox-LDL)-treated human

umbilical vein endothelial cells (HUVECs). They demonstrated

that exo-lncRNA ZEB1-AS1 derived from ox-LDL-induced

HUVECs amplified cell injuries by miR-590-5p/ ETS1 (E26

oncogene homolog 1) axis through the TGF-β/Smad pathway,

suggesting that stopping ZEB1-AS1might be an efficient strategy

to treat atherosclerosis (240).

It has been shown that serum MMP-9 could be used to

differentiate between MI and unstable angina (UA) with a

sensitivity and specificity of 80%. MMP-9 levels also predicted

unfavorable outcomes in ST-elevationMI (STEMI) patients with

a sensitivity of 72.4% and a specificity of 83% (241). Because MI

patients show an imbalance between MMPs and their inhibitors

(TIMPs), an increase in MMP leading to the degradation of the

fibrous cap can be a major cause of plaque instability (242, 243).

Increased MMP-9 levels stimulate plaque rupture and result

in acute MI. Moreover, high levels of inflammatory cytokines

following acute MI promote the additional production and

release of MMP-9 (244).

Exosomal miR-221/222 secreted by human aortic smooth

muscle cells (HAOSMCs) was found to inhibit HUVECs

autophagy in by partially modulating the PTEN/Akt signaling

pathway when HUVECs and HAOSMCs were co-cultured

(245). According to research on the influence of exosomes on

cardiac fibroblasts, hypoxia upregulates the lncRNA AK139128

expression in cardiomyocytes and exosomes, and exo-lncRNA

AK139128 derived from hypoxic cardiomyocytes endorses

apoptosis, prevents cell proliferation, and modulates fibroblast

activity (246). One study showed that the increased expression

of miR-125b of mesenchymal stem cells-secreted exosomes

enhances myocardial cell survival in rats after I/R by

regulating Sirt7, decreasing myocardial cell apoptosis and

inflammatory response, and increasing heart function (247).
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TABLE 4 Reports of changes in exosomal ncRNAs in laboratory models and patients with MI.

Exosomal cargo Expression Target Source Mechanism Model (In vitro,

in vivo, human)

Reference

miR-1,915-3p, miR-6,741-5p,

miR-6,850-5p, miR-7,108-5p,

miR-6,803-5p

Down – Serum-derived – Human (259)

miR-6,798-3p, miR-4,486,

miR-7,975, miR-4,634,

miR-3,195, miR-1,227-5p

Down – Serum-derived – Human (259)

miR-3,656 Down CSK Serum-derived – Human (259)

miR-4,507 Down PEBP1 Serum-derived – Human (259)

lncRNA SOCS2-AS1 Down Plasma – Human (260)

miR-183 Up PPP2CB, PPP2CA,

PRKCA, PPP2R5C,

PPP2R2A

Plasma-derived Involved in cell communication, protein kinase activity regulation and

adrenergic signaling in cardiomyocytes

Human (261)

lncRNA-MALAT1 Up miR-92a Cardiac myocyte-derived Improved angiogenesis, decreased infarct size In vivo, in vitro (262)

lncRNA-H19 Up miR-675 Mesenchymal stem cells-derived Promoted angiogenesis In vivo, in vitro (263)

lncRNA-KLF3-AS1 Up miR-138-5p Mesenchymal stem cells-derived Decreased cell apoptosis and pyroptosis, and attenuated MI

progression

In vivo, in vitro (239)

lncRNA-UCA1 Up miR-873-5p Mesenchymal stem cells-derived Decreased apoptosis In vitro, in vivo, human (264)

lncRNA-NEAT1 Up miR-204 Serum – Human (258)

lncRNAs

ENST00000556899.1,

ENST00000575985.1

Up – Plasma – Human (265)

circ-0001273 Up – Umbilical cord mesenchymal stem

cells-derived

Inhibited apoptosis, promoted MI repair In vivo, in vitro (266)

lncRNA RNCR3 Up miR-185-5p Endothelial cell, and vascular smooth

muscle cell-derived

Decreased inflammatory factor releases, induced proliferation and

migration, reduced apoptosis

In vitro, in vivo (267)

lncRNAMALAT1 Up miR-92a Cardiac myocyte-derived Enhanced neovascularization In vivo, in vitro (262)

lncRNA-NEAT1 Up miR-142-3p Mesenchymal stem cell-derived Inhibited apoptosis In vitro (268)

miR-125b-5p Up – Mesenchymal stem cell-derived Inhibited apoptosis In vivo, in vitro (250)

miR-106a-3p Up VSMCs Ox-LDL Promoted cell proliferation, repressed apoptosis In vitro (269)

miR-221-3p Up PTEN Senescent Mesenchymal Stem

Cells-derived

Improved angiogenesis, migration and proliferation, suppressed

apoptosis

In vitro, in vivo (270)

BMSC-Exo Up miR-486-5p Bone-marrow stromal cells-derived Induced proliferation, reduced apoptosis In vitro, in vivo (271)

lncRNA AK139128 Up Fibroblasts Cardiomyocytes-derived Promoted apoptosis, inhibited proliferation, migration, and invasion

in Cardiac Fibroblasts

In vitro, in vivo (246)

miR-221/222 Up PTEN Human aortic smooth muscle cell-derived Inhibited autophagy in human umbilical vein endothelial cells In vitro (245)

lncRNA HIF1a-AS1 Up – Plasma – Human (272)

lncRNA UCA1 Up miR-873 Mesenchymal stem cells-derived Decreased apoptosis In vivo, human (264)
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Another investigation found that miR-425 and miR-744

levels in plasma exosome samples from heart failure patients

were considerably lower (248). Overexpression of miR-425

or miR-744 in cultured cardiac fibroblasts suppresses TGF1

expression and dramatically decreases angiotensin-induced

collagen production and fibrogenesis (248, 249).

Numerous studies have shown that secreted exosomes

from myocardial cells contain some microRNA such as miR-

125b, miR-126, miR-25-3p, miR-144, and miR-146a which are

overexpressed and exert an anti-atherosclerotic role by stopping

myocardial apoptosis and facilitating ischemic cardiac repair

(250–254). In addition, exosomal miRNAs, miR-25-3p and miR-

146a also inhibit the inflammatory response, while exosomal

miR-301 prevents myocardial autophagy (254–256). Besides,

according to Wang et al., enhanced expression of EXO-MSC-

derived miR-21 plays a cardioprotective role by inhibiting

apoptosis, promoting angiogenesis, and increasing cell survival

through the PTEN/Akt pathway (257).

Chen et al. investigated the association between acute MI

and plasma exosomes containing lncRNA NEAT1 (258). They

categorized the participants into three groups: the control group,

the unstable angina group, and the acute STEMI, overexpression

of NEAT1 and MMP-9 was found and they were positively

correlated with each other. Furthermore, lower levels of miR-204

were found in STEMI patients and no significant correlation was

found between expression levels of NEAT1 or MMP-9 and miR-

204. The authors concluded that miR-204, exosomal NEAT1,

and MMP-9 could all be considered diagnostic markers for

STEMI (258) (Table 4).

Conclusion and future perspectives

We comprehensively review the mechanisms of epigenetics

such as DNA methylation, histone modification, and non-

coding RNA in various cardiovascular diseases. Moreover, basic

and clinical studies on epigenetic therapy for these diseases

are summarized.

Existing treatments for CADs have not been equally effective

in all patients, suggesting that interindividual variability is an

aspect that plays a significant role in personalized treatment.

Genetic testing and genomic mapping combined with emerging

transcriptional technologies such as microarrays and RNA-Seq,

as well as methylation or acetylation patterns and bioinformatics

tools can help determine the genetic and epigenetic structures

that define an individual’s risk profile and identify novel

therapeutic epigenetic targets. In this context, the development

of small molecule drugs as epigenetic or miRNA modulators

(e.g., HDAC inhibitors) has opened up new approaches for

the treatment of cardiovascular diseases. Evidence has revealed

that ncRNAs can act either as pro-MI or anti-MI molecules by

modulating signaling pathways relevant to myocardial cell death

or cardiomyocyte regeneration. Up to now, many advances have

identified ncRNA-mediated signaling pathways involved in MI,

which have contributed to improvement in our understanding

of cardiovascular pathogenesis. Abnormal plasma levels of

many ncRNAs have been observed in patients with MI, which

suggests their potential in the diagnosis and treatment of MI.

Importantly, some ncRNA-based therapeutic approaches have

shown promising results in animalmodels ofMI, which provides

some hope that this approach could be used for the clinical

management of MI soon.

The role of exosomal ncRNAs in the progression and

development of CADs, such as atherosclerosis, acute coronary

syndrome, HF, myocardial I/R injury, and pulmonary

hypertension has been the focus of many recent studies.

Tissue-specific changes of exosomal ncRNAs could play a role in

the initiation and progression of these complications. In terms

of biomarkers, exosomal ncRNAs could be superior compared

to non-exosomal ncRNAs. Many ncRNAs are harbored inside

exosomes, which protects them from degradation and enhances

their stability. Moreover, exosomal ncRNAs exist in considerable

amounts in different body fluids that can be non-invasively

sampled. Hence, exosome ncRNAs are expected to become a

new tool for the diagnosis and treatment of CADs.

Considering the epigenetic roles of some RNAs and their

capacities to control gene expression, the establishment of novel

approaches for modulating the expression of some ncRNAs

supported by the development of epigenetic-related drugs with

higher specificity, fewer side effects, and lower drug resistance

for various types of CADs will be the goal of future development.

It is hoped that in the near future, the discovery and continuous

research and development of epigenetic regulatory drugs for

CADs will have a wider application perspective and will

be more beneficial for patients with cardiovascular diseases.

To this end, more large-scale basic and clinical trials are

still needed to better understand the epigenetic molecular

mechanism regulating CADs and to find more strategies to

avoid and treat cardiovascular diseases, so as to better guide

clinical treatments.
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