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Background: Cardiovascular diseases have become the number one disease

a�ecting human health in today’s society. In the diagnosis of cardiac diseases,

magnetic resonance image (MRI) technology is the most widely used one.

However, in clinical diagnosis, the analysis of MRI relies onmanual work, which

is laborious and time-consuming, and also easily influenced by the subjective

experience of doctors.

Methods: In this article, we propose an artificial intelligence-aided diagnosis

system for cardiac MRI with image segmentation as the main component to

assist in the diagnosis of cardiovascular diseases. We first performed adequate

pre-processing of MRI. The pre-processing steps include the detection of

regions of interest of cardiac MRI data, as well as data normalization and data

enhancement, and thenwe input the images after data pre-processing into the

deep learning networkmodule of ESA-Unet for the identification of the aorta in

order to obtain preliminary segmentation results, and finally, the boundaries of

the segmentation results are further optimized using conditional randomfields.

For ROI detection, we first use standard deviation filters for filtering to find

regions in the heart cycle image sequence where pixel intensity varies strongly

with time and then useCanny edge detection andHough transform techniques

to find the region of interest containing the heart. The ESA-Unet proposed in

this article, moreover, is jointly designed with a self-attentive mechanism and

multi-scale jump connection based on convolutional networks.

Results: The experimental dataset used in this article is from the Department

of CT/MRI at the Second A�liated Hospital of Fujian Medical University.

Experiments compare other convolution-based methods, such as UNet, FCN,

FPN, and PSPNet, and the results show that our model achieves the best

results on Acc, Pr, ReCall, DSC, and IoU metrics. After comparative analysis,

the experimental results show that the ESA-UNet network segmentation

model designed in this article has higher accuracy, intuitiveness, and

more application value than traditional image segmentation algorithms.
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Conclusion: With the continuous application of nuclear magnetic

resonance technology in clinical diagnosis, the method in this article is

expected to become a tool that can e�ectively improve the e�ciency of

doctors’ diagnoses.

KEYWORDS

cardiovascular disease, artificial intelligence, image segmentation, ESA-UNet,

conditional random field

Introduction

Cardiovascular disease has become the number one killer

that affects human health in today’s society (1). According

to domestic statistics, the number of deaths caused by

cardiovascular disease has accounted for more than 40% of

the total number of deaths from the disease, ranking at the

forefront in the composition of deaths, higher than other

diseases such as tumors. Research on cardiac diagnosis has

always been a research hotspot. With the development of digital

imaging technology and the continuous improvement of image

segmentation technology (2, 3), medical imaging has become

more andmore widely used in clinical diagnosis and has become

the primary basis for doctors’ diagnosis and treatment. Among

them, magnetic resonance imaging (MRI) is the most widely

used one in the diagnosis of heart disease. Cardiac MRI can

provide clearer information on cardiac structure, myocardial

motion, and histological features.

Although MRI technology plays an important role in the

diagnosis of heart disease, medical imaging itself is complex

and requires extremely high accuracy of results. At present, the

analysis of medical images is mainly completed by experienced

doctors. Since automatic segmentation and diagnosis cannot

meet clinical needs, they can only be used as auxiliary

supplements. However, the workload required for manual

analysis by radiologists is large and time-consuming and is

affected by the subjective experience, environment, and working

status of different radiologists, and the results vary from person

to person. The sketched results are not 100% reproducible. In

recent years, with the rapid development of artificial intelligence

and deep learning, the use of computer-aided diagnosis and

treatment can significantly improve the efficiency of diagnosis.

Classification and semantic segmentation are commonly used,

in which semantic segmentation can not only diagnose the type

of disease but also point out the location of the disease, which is

an effective auxiliary means for intelligent diagnosis. Computer

technology can be harnessed to locate and segment the region

of interest (ROI) in the medical image, identify the pixel points

in the ROI area, and obtain the characteristic parameters of

the ROI, to provide reliable reference information for the

subsequent analysis of the disease and evaluation of treatment,

and assist doctors to carry out diagnosis and treatment. Medical

image segmentation is a key step in medical image processing

and is crucial for the next step of diagnosis and treatment (4).

At present, there are many segmentation methods widely

used at home and abroad. The traditional segmentationmethods

include edge-based image segmentation, region-based image

segmentation, and image segmentation combined with specific

theories, etc. (5–8). Zhang et al. (9) proposed a medical image

clustering and segmentation algorithm, which uses a dictionary

as the clustering center of clustering segmentation, and

determines the cluster attribution through sparse representation

to achieve medical image segmentation.

In recent years, deep learning algorithms have shown

powerful capabilities in image processing, especially the

convolutional network model for medical image segmentation

is better than traditional segmentation algorithms. M.R. Avendi

et al. (10) used a convolutional neural network to locate the

left ventricular region of the heart from cardiac MRI, and then

used a stack auto-encoding algorithmmodel to outline the initial

shape of the left ventricle. Long et al. (11) proposed a fully

convolutional neural network segmentation method, which uses

transposed convolution to restore the feature map to the original

image size to achieve pixel-level segmentation, and then realize

the entire image segmentation. Nasresfahani et al. (12) extracted

the ROI region in the image processing stage and used a fully

convolutional neural network to segment the left ventricle.

Although convolutional networks have achieved promising

results in MRI segmentation tasks, they lack efficiency in

capturing global contextual information due to the inherent

limitations of convolutions. This results in large differences

in texture, shape, and size of segmented hearts from patient

to patient. For two pixels that are far apart, many layers of

convolution are often needed to achieve, but too deep can easily

affect the training effect.

For this reason, the self-attentionmechanism based on CNN

features is proposed to solve this problem (13, 14). The attention

mechanism was first proposed by Vaswani et al. (15) to solve

the problem of machine translation. The attention mechanism

can adjust the learned weights to make important features more

weighted. Wang et al. (16) introduced the attention mechanism

into computer vision for the first time and adjusted the weights
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of feature maps by calculating the correlation between pixels.

Subsequently, attention mechanisms have been widely used

in the field of medical images. Li et al. (17) designed an

attention-based nested UNet model to segment liver tumor

images. The network proposes an attention gate module, which

can aggregate the encoder and upsampled information while

adjusting the weights. Fan et al. (18) proposed a network Inf-Net

for segmenting CT images of COVID-19. The network utilizes

a set of implicit reverse attention modules and explicit edge

attention guidance to establish the relationship between regions

and boundaries. Liu et al. (19) designed a CANet network

based on an attention conditional random field to segment

gliomas, where attention can regulate the amount of information

flowing between different features. Dou et al. (20) designed a

segmentation network with deep attention module convolution

kernels to segment fetal cortical plates.

The attention mechanism can obtain long-range feature

information and adjust the weight of feature points by

aggregating the correlation information of global feature points.

Although the attention mechanism has significantly improved

the recognition accuracy of the model, attention mechanism has

the problems of high time complexity, slow training speed, and

many weight parameters. To ensure rich semantic information,

the semantic segmentation network usually uses large-sized

feature maps, which causes the time complexity of the model

to be too high. To solve the problem of time complexity

brought by the attention mechanism, tensor decomposition can

well reduce the time complexity of the attention mechanism.

Tensor decomposition is widely used in computer vision

acceleration. According to tensor decomposition theory (21),

high-rank tensors can be decomposed into linear combinations

of low-rank tensors. Lebedev et al. (22) proposed a method

for accelerating convolutional layers in large convolutional

networks based on CP tensor decomposition. The method

first decomposes a high-rank tensor of four-dimensional

convolution kernels into multiple rank tensors and then uses

a rank-one convolution kernel to speed up network training.

Wu et al. (23) decomposed the weight matrix of the fully

connected layer into a Kronecker product of multiple sub-

tensors to approximate the fully connected layer while reducing

the parameters in the neural network. Sun et al. (24) designed

a tensor decomposition method for network optimization. This

method realizes the compression of the model by using the

characteristic that the weight tensors between each layer of the

network contain the same or independent components, and

decomposes the sequence of the coupling tensors on the shared

network structure.

Chen et al. (25) proposed RecoNet, a three-dimensional

contextual feature representation semantic segmentation model.

The model achieves the approximation of a high-rank tensor

by the linear combination of low-rank sub-tensor features,

which significantly reduces the computational complexity of

the model compared to the original feature map. The above

methods usually replace a high-rank tensor with multiple low-

rank tensors. Tensor decomposition can decompose the original

tensor with high computational complexity into a set of low-

rank sub-tensors. By calculating the low-rank sub-tensor, the

parameter quantity of the network model can be reduced and

the network can be accelerated at the same time. Although the

tensor decomposition method can improve the compression

rate of the model, the recognition efficiency of the model will

decrease when the model compression rate is high. To alleviate

the problem of low recognition efficiency caused by tensor

decomposition, this article uses a shared structure in the network

to improve the performance of the model.

Based on the above analysis, this article proposes a deep

learning-based cardiac MRI segmentation scheme. We first

performed pre-processing of the unsegmented MRI, including

the region of interest detection (ROI), data normalization, and

data enhancement of the cardiac MRI data. ROI detection

is based on Canny edge detection, and ROI detection is

performed by using the Hough transform for the detection

of circles to narrow down the segmentation region. We then

artificially augment the experimental dataset using multiple

data augmentation means. For the semantic segmentation

network, we introduce a self-attention module in the traditional

convolutional network structure. We propose ESA-UNet, a U-

shaped semantic segmentation network, which is embedded

with a low-rank tensor self-attention structure. ESA-UNet uses

an encoding-decoding structure to realize the fusion of feature

information of different scales. To obtain richer semantic

information and reduce the complexity of the self-attention

model, this article designs a low-rank tensor self-attention

reconstructionmodule, decomposes high-rank tensors into low-

rank tensors, and uses low-rank tensors to construct the Self-

attention feature maps, and then aggregate multiple low-rank

self-attention maps to generate high-rank self-attention feature

maps. For the network segmentation results, we performed a

further optimization of tumor boundaries using conditional

random fields. We conduct a full experimental analysis of

the ACDC dataset, and the results show that our proposed

segmentation method outperforms other methods. This method

will play an extremely important role in the diagnosis, treatment,

and prognosis of heart disease.

Method

Datasets

In this article, the Department of CT/MRI at the Second

Affiliated Hospital of Fujian Medical University collects cardiac

MRIs from 150 different patients. The dataset includes 100

training samples and 50 testing samples. Each training sample

contains expert manual segmentation and annotation results of

the right atrium, left atrium, and aorta at end-diastole (ED) and
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end-systole (ES). The MRI data for each patient consisted of 28

to 40 frames of a series of short-axis image slices of the entire

cardiac cycle from the bottom to the top of the left ventricle. The

spatial resolution of each slice averages 235–263 voxels.

Pre-processing

To ensure the segmentation effect of the segmentation

network, we first perform sufficient pre-processing on the MRI.

The pre-processing steps include region of interest detection

(ROI), data normalization, and data enhancement for cardiac

MRI data.

Region of interest detection is divided into two steps:

filtering and edge detection. The filtering operation uses a

standard deviation filter to find regions of the cardiac cycle

image sequence where the pixel intensity varies strongly over

time. Edge detection uses Canny edge detection (26) and the

Hough transform technique (27) to find the region of interest

containing the heart.

The Canny edge detection consists of the following

four steps.

Remove noise in the image via a gaussian
smoothing filter

In the process of image edge detection, the edge and noise

of the image are difficult to distinguish, and the edge detection

algorithm alone cannot eliminate the influence of noise on

the edge detection process and results, so the original image

needs to be preprocessed. Common filtering methods in image

pre-processing include mean filtering, median filtering, and

Gaussian filtering. Compared with mean filtering and median

filtering, Gaussian filtering can well preserve the grayscale

distribution in the image when smoothing the image.

Calculate image gradient strength and
orientation

The basic idea of Canny’s algorithm is to find the position

of the strongest gray intensity change in an image, that is, the

gradient direction. The gradient of each pixel in the smoothed

image is calculated by the Sobel operator. First, the following

convolution arrays Sx and Sy are used to obtain the gradients

Gx and Gy of the original image A along the horizontal (x) and

vertical (y) directions, respectively:

Gx = Sx∗A =







−1 0 +1

−2 0 +2

−1 0 +1






∗A (1)

Gy = Sy∗A =







−1 −2 −1

0 0 0

+1 +2 +1






∗A

(2)

Then use the following equation to find the gradient

magnitude of each pixel:

G =

√

G2
x + G2

y (3)

A large gradient metric value G will be obtained in places

with drastic changes (at the boundary), but these boundaries are

usually very thick, and it is difficult to demarcate the real position

of the boundary. To demarcate the boundary, the direction

information of the gradient is also required:

θ = arctan

(

Gx

Gy

)

(4)

A non-maximum suppression technique is
applied to eliminate edge false detections

Each pixel’s gradient direction was set to one of the following

values: (0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦). We

judge whether it is an edge by comparing the gradient strength of

the pixel and the two pixels in the positive and negative gradient

directions. If the gradient strength of the pixel is the largest, it

will be retained, and it will be regarded as an edge. This way we

will get one of the brightest thin lines at the border, and the edges

of the image will be noticeably thinner.

A double threshold is applied to decide
possible edges

The technique of double threshold is applied in the Canny

algorithm, that is, an upper threshold T1 and a lower threshold

T2 are set. If the gradient value of the pixel point exceeds T1, it is

called a strong edge, and the one in between is called a weak edge,

otherwise, it is not an edge. The larger the T1, the more severe

the gradient change in strong edge pixels. Canny recommends

setting T1:T2 to 2:1.

Segmentation network model

The ESA-Unet proposed in this article is shown in Figure 1.

The network mainly consists of three parts: encoder, decoder,

and low-rank self-attention reconstruction module. ESA-UNet

jointly designs a self-attention mechanism and multi-scale skip

connections based on a convolutional network, which effectively

makes up for the problem that convolution is difficult to

model long sequences. This ensures that the global context in

cardiac MRI is not completely ignored, effectively enhancing

the functionality and robustness of the traditional U-shaped

architecture. ES-UNet network consists of three parts: decoder,

encoder, and self-attention module.
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FIGURE 1

ESA-UNet network structure diagram.

Encoder

The encoder is a structure used to extract image features. The

encoder uses a five-layer residual connected downsampling layer

to obtain multi-scale feature information of five different levels

of the image. The low-level features aremainly used to obtain the

detailed features and position information of the image, and the

high-level features are abstract semantic features information.

Each downsampling layer consists of two consecutive 3 × 3

convolutional layers, a RELU activation function, and a 2 ×

2 max-pooling layer. And the downsampling is connected in

a residual structure. The residual structure can obtain richer

semantic information by extending the depth of the network.

Decoder

The main function of the decoder is to gather feature

information at different levels. The decoder first uses a cascaded

upsampling layer to restore the image resolution to the original

size of H × W, and finally uses a 1 × 1 convolutional layer.

Decrease the number of channels to get the final segmentation

map. Each of these upsampling layers consists of a 2 × 2 Up-

Conv, a 3 × 3 convolutional layer, and a RELU layer. We still

maintain the U-shaped structure of UNet and concatenate the

features extracted in the encoder with the upsampled feature

map to fuse the feature information of different levels. This can

effectively avoid the loss of low-level information, such as organ

shape and boundary.

Low-rank tensor self-attention module

The attention module is used to obtain richer contextual

information. Although the convolutional structure can expand

the receptive field and extract rich information by stacking more

layers, the deeper convolutional layer structure is not good for

global information to obtain. The attention module can adjust

the global information, and each point in the image will calculate

the correlation with other points. The correlation information

obtained through the attention feature map adjusts the pixel

weights in the picture, the weights belonging to the same other

points will be aggregated, and the pixel point information of
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different categories will be suppressed to highlight the important

parts of the picture. The attention mechanism can obtain

rich semantic information, but the amount of computation

will be relatively large. The low-rank tensor self-attention

reconstructionmodule LRSAR Block proposed in this article can

well solve the computationally complex problem.

The low-rank tensor self-attention module includes three

parts: low-rank tensor generation sub-module, low-rank self-

attention sub-module, and high-rank tensor reconstruction sub-

module.

Low-rank tensor generation sub-module

The low-rank tensor generation sub-module can perform

high-rank tensor decomposition along the width, height, and

channel dimensions. According to the CP tensor decomposition

theory, a high-rank tensor can be decomposed into a linear

combination of multiple-rank tensors. A rank tensor can be

composed of the outer product of three one-dimensional

vectors. According to the definition of a rank tensor, the

author decomposes the high-rank tensor along the width, height,

and channel dimensions to generate multiple one-dimensional

FIGURE 2

Low-rank self-attention sub-module.

FIGURE 3

ROI detection results based on (A) the original image and (B) the detected target area.
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vectors. These one-dimensional vectors are input into the low-

rank tensor self-attention sub-module to generate a rank tensor.

The high-rank tensor extracted by the coding layer is input

into three low-rank tensor generation modules to extract the

low-rank tensor feature information. The high-rank tensor is

input to the low-rank tensor generation module multiple times

to generate multiple different low-rank tensor features. That is,

the high-rank tensor feature X is input to the low-rank tensor

generation sub-module s times, which will generate s different

low-rank tensor features. The low-rank tensor decomposed

along the same dimension has the same network structure, but

different parameter information.

The feature map X will be input to the low-rank tensor

generation sub-module multiple times along the three

dimensions of height, width, and channel to generate different

feature vectors (Q1,K1,V1), (Q2,K2,V2) ... (Qi,Ki,Vi),

(Qs,Ks,Vs).Qi,Ki and Vi represent the one-dimensional

vectors generated by decomposition along with the height,

width, and channel dimensions, respectively, and represents

the number of one-dimensional vectors generated along a

certain dimension. Equations (6–8) Represent Qi,Ki and Vi,

respectively. These low-rank feature vectors are passed through

the low-rank self-attention module to generate different low-

rank self-attention sub-feature mapsY1,Y2, . . . ,Yi, . . . ,Ys.

Each low-rank tensor generation sub-module consists of

global average pooling (GAP), fully connected layer (FC), and

sigmoid activation function, and generates a one-dimensional

feature vector for self-attention feature maps. The principle

of global average pooling is to first slice the high-rank tensor

along a certain dimension and perform global average pooling

for each slice matrix. Through global average pooling, each

element in each vector aggregates the corresponding slice

matrix information. The fully connected layer can realize the

aggregation of all element information by any element in

the vector. The sigmoid activation function can enhance the

nonlinear fitting ability of the network, and map the feature

information to the range of 0–1, highlighting the important

feature information in the feature vector. The low-rank tensor

generation module in the literature (28) uses the convolution

structure, and this article replaces the convolution with the FC

layer. Each feature point in the FC layer will be aggregated with

other feature information, while the single-layer convolutional

structure can only aggregate local feature information. The

FC layer parameter information of different low-rank tensor

features is different. Although the FC layer will increase the

number of parameters, the feature dimension of the last layer

of the encoding layer is relatively low, and the number of

parameters will not increase much.

Qi =
(

q1, q2, · · · , qm, · · · , qH
)

, i = 1, 2, · · · , s;m = 1, 2, · · · ,H (5)

Ki =
(

k1, k2, · · · , kn, · · · , kW
)

, i = 1, 2, · · · , s; n = 1, 2, · · · ,W (6)

Vi =
(

v1, v2, · · · , vl, · · · , vC
)

, i = 1, 2, · · · , s; l = 1, 2, · · · ,C (7)

Low-rank self-attention sub-module

As shown in Figure 2, the feature map X ∈ RH×W×C is

first input into the low-rank tensor generation sub-module to

generate multiple different low-rank tensors Qi,Ki and Vi. The

height feature Qi is multiplied by the width feature Ki to obtain

the spatial similarity matrix Ai ∈ RH×W×1, which is activated

by the Softmax layer. The specific calculation process is shown

in equation (9). Equation (10) is a more detailed explanation of

the feature similarity matrix Ai, amn represents each point on

the spatial similarity matrix, qm and kn, respectively, represent

the width feature information, and height feature information.

The obtained spatial attention feature mapAi has no correlation

information between channels, and feature Vi aggregates the

information between channels. The attention feature map Ai

is multiplied by the channel attention information Vi to

FIGURE 4

ROI detection and segmentation results based on (A) the original two-chamber image; and (B) the right atrium image after ROI detection.
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obtain three-dimensional attention information. The calculation

process is shown in Equation (11). The input feature map X

is added to the attention feature to obtain long-range semantic

information features and the feature map Yi is obtained.

Ai = softmax (Qi × Ki) (8)

amn =
exp

(

qmkn
)

∑W
m=1 exp

(

qmkn
)

(9)

Yi = X+ Conv1 × 1 (Ai × Vi) (10)

The self-attention module non-local block calculates the

correlation between any two points in the image when

calculating the similarity of pixels. For the feature map X, the

time complexity of the self-attention module isO(H×W×H×

W), while the LRSAR block only needs to calculate the outer

product of two vectors, and the time complexity is O(H × W),

lower degree. Compared with the self-attention module, the

LRSAR-Net proposed in this article has lower time complexity

and faster speed.

High-rank tensor reconstruction sub-module

According to tensor decomposition theory, high-order

tensors can be decomposed into linear combinations of multiple

rank-one tensors. The feature map X passes through the

low-rank self-attention module to generate multiple rank-one

attention feature maps Yi, and Yi only contains low-level

semantic information. The rank-one attention feature map Yi

is generated by different parameters low-rank tensor generation

modules, so the feature information contained in different rank-

one attention feature maps is different. The authors introduce

a learnable weight parameter λi before each rank-one attention

feature map Yi, which is adjusted with training. Each low-rank

self-attention feature map is multiplied by the corresponding

weight parameter λi, and then combined into a high-rank

self-attention tensor Y . The tensor reconstruction method is

shown in Equation(12). The high-rank attention feature map Y

contains rich semantic information, realizes the aggregation of

global feature information, and reduces the computational cost

of self-attention feature maps. In this experiment, to balance the

TABLE 1 Results of di�erent method models on the cardiac MRI.

Model Pr Re F1 IOU DSC

FCN-16s 0.902 0.862 0.880 0.804 0.839

FCN-8s 0.921 0.853 0.881 0.820 0.856

PSPNet 0.836 0.868 0.852 0.752 0.850

MSFCN 0.861 0.916 0.886 0.821 0.854

MSRN 0.873 0.925 0.898 0.833 0.867

FPN 0.904 0.904 0.909 0.832 0.868

UNet 0.902 0.904 0.903 0.857 0.872

Our(ESA-Unet) 0.919 0.939 0.928 0.888 0.903

Our(ESA-Unet+ preprocessing) 0.925 0.936 0.930 0.898 0.906

Our(ESA-Unet+ preprocessing+ CRF) 0.944 0.929 0.935 0.899 0.915

FIGURE 5

Performance based on (A) model methods on di�erent indicators; and (B) three methods combination proposed.
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complexity of the model and the amount of computation, s is set

to 4.

Y =
∑

n
i λiYi (11)

Conditional random fields optimize
segmentation boundaries

After network segmentation, we use a conditional random

field (CRF) to further optimize the segmentation boundary.

For the probability map U after the output of the neural

network, we can use the following equation to describe the

predicted value of each pixel. X = {x1, x2, . . . , xn} represents

each pixel feature point on the probability map, Y =
{

y1, y2, y3, . . . , yn
}

represents each point according to its texture,

gray value, and other attributes and surrounding The label for

the probability prediction of the point.

P
(

y|x
)

=
1

Z (x)
exp

(

∑

iǫU

∑

j∈U(xi)
Ti,j

(

yj, yi, xi, i
)

+
∑

iǫUSi
(

yi, xi
)

)

(12)

Among them, U (xi) represents the points around xi, ,Ti,j is

the function of the feature transfer between the i-th point and

the surrounding points, Si is the state feature function about the

FIGURE 6

Comparison of the e�ects of di�erent segmentation models using various cardiac MRI slices based on (A) Original and unprocessed images;

(B) ESA-UNet; (C) UNET; and (D) FCN.
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i-th point, and Z (x) is the normalization function:

Z (x) =
∑

yǫYP
(

y|x
)

(13)

Evaluation metrics for segmentation
results

The evaluation indicators for segmentation results in

semantic segmentation problems include accuracy (Acc),

precision (Pre), recall (Re), F1 score (F1), intersection of union

(IoU), and dice similarity coefficient (DSC) (29, 30). Calculating

these evaluation metrics requires the use of four commonly used

metrics for prediction results, namely the true positive (TP),

false positive (FP), true negative (TN), and false negative (FN).

The true negative mainly refers to the situation that the model

predicts that the pixels belong to the background area and are

consistent with the actual gold standard. False negatives mainly

refer to the situation that the model predicts that the pixels

belong to the background area, but are opposite to the actual

gold standard.

Acc =
TP+ TN

TP+ TN+ FP+ FN

Pre =
TP

TP+ FP
(14)

Re =
TP

TP+ FN

F1 =
2∗Pre∗Re

Pre+ Re

IOU =
I1 ∩ I2

I1 ∪ I2

DSC =
2∗ |I1 ∩ I2|

|I1| + |I2|

Results and discussion

ROI detection results

After reading the original cardiac MRI data, after the pre-

processing step including ROI detection, the results are shown

in Figure 3, where Figure 3A is the input of the original cardiac

MRI data and Figure 3B is the aorta as the center after ROI

detection A gray mask of the ROI containing the aorta is drawn.

After image data standardization and data enhancement

processing, according to the ROI area center and area radius

obtained by ROI detection, the image data are cropped into

a 128 × 128 block with the ROI center, i.e., the aorta as the

center, as the input of the deep learning segmentation network.

Compared with the raw cardiac MRI slice data with an average

spatial resolution of 235–263 voxels per slice as input directly,

the GPU memory size occupied by the same model training is

reduced from more than 10 GB to less than 6GB. The results

of ROI detection and segmentation are shown in Figure 4. In

Figure 4A is the input image and Figure 4B is the 128 × 128

image after ROI.

Image segmentation results

We have fully experimented with our method with a variety

of excellent convolution-based methods (31–36). From the data

in Table 1, we can see that our model performs well in all

indicators. On the important indicators Iou and DSC, our model

achieves 0.899 and 0.915, respectively. It can also be seen from

Figure 5 that pre-processing can improve the IoU indicator to

0.898. Conditional random fields can improve the IoU indicator

to 0.915. As can be seen from the data, both pre-processing and

conditional random fields can facilitate segmentation.

FIGURE 7

Performance based on (A) di�erent models on randomly selected samples; and (B) our segmentation model on 200 randomly selected samples.
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Figure 6 compares the segmentation effects of different

segmentation models on cardiac MRI. Figure 7 shows the

performance of different models on different metrics on some

specific datasets. As can be seen from the segmentation effect

in Figure 6, the segmentation effect of ESA-UNet is better than

that of other pure convolutions, and the segmentation results

are more robust. Especially when segmenting small target areas

such as the red part, other models perform very unstable, but

our model can still segment accurately. Figure 7 shows the

performance comparison between different models on some

characteristic data samples. We can find that our method is

more robust in terms of various indicators, and it is not easy

to produce samples with poor segmentation results. However,

the segmentation results of other methods are more volatile and

prone to poorly segmented samples (37, 38).

Conclusion

In this article, we propose a set of solutions for assisting

cardiac MRI diagnosis based on semantic segmentation

technology. We first preprocessed the input MRI data, we first

filtered using a standard deviation filter to find regions of

the cardiac cycle image sequence where pixel intensity varied

strongly with time and then used Canny edge detection and

Hough transform techniques to find regions containing the

heart area of interest. Then, the image is input into the ESA-

Unet model network, and the preliminary segmentation results

are obtained through the encoder, self-attention module, and

decoder; finally, we use the conditional randomfield to reprocess

the segmented image to optimize its segmentation boundary.

The results show that our method has a good segmentation

effect, which facilitates the diagnosis of clinical cardiovascular

diseases and improves the efficiency and accuracy of diagnosis.

In future, we will continue to improve the experiment in

combination with clinical practice and try to introduce implicit

feature information such as texture to optimize the error of

complex segmentation boundaries and further improve the

segmentation accuracy.
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