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Decompensation episodes in chronic heart failure patients frequently result

in unplanned outpatient or emergency room visits or even hospitalizations.

Early detection of these episodes in their pre-symptomatic phase would likely

enable the clinicians to manage this patient cohort with the appropriate

modification of medical therapy which would in turn prevent the development

of more severe heart failure decompensation thus avoiding the need for

heart failure-related hospitalizations. Currently, heart failure worsening is

recognized by the clinicians through characteristic changes of heart failure-

related symptoms and signs, including the changes in heart sounds. The latter

has proven to be largely unreliable as its interpretation is highly subjective

and dependent on the clinicians’ skills and preferences. Previous studies

have indicated that the algorithms of artificial intelligence are promising in

distinguishing the heart sounds of heart failure patients from those of healthy

individuals. In this manuscript, we focus on the analysis of heart sounds of

chronic heart failure patients in their decompensated and recompensated

phase. The data was recorded on 37 patients using two types of electronic

stethoscopes. Using a combination of machine learning approaches, we

obtained up to 72% classification accuracy between the two phases, which is

better than the accuracy of the interpretation by cardiologists, which reached

50%. Our results demonstrate that machine learning algorithms are promising

in improving early detection of heart failure decompensation episodes.
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Introduction

Chronic heart failure (CHF) is a complex chronic condition,
characterized by the inability of the heart muscle to provide
sufficient perfusion to meet the metabolic demands of the
body; alternatively the failing heart stabilizes the circulation by
operating at the higher filling pressures, which generate the
majority of the symptoms and signs, characteristic of CHF.
Globally, CHF has reached epidemic proportions, affecting
roughly 2% of the world’s overall population, with the incidence
increasing at 2% annually. The prevalence of CHF reaches
around 10% in the overall population aged over 65 years
and additionally carries a significant burden in terms of
healthcare costs and personnel expenditure. Importantly, the
prognosis of CHF patients remains dismal with 50% mortality at
5 years, which is largely related to heart failure decompensation
episodes that require in-hospital management (1). Available
literature suggests that identifying the CHF decompensation
episodes in their pre-symptomatic phase (when the patient
does not yet subjectively feel worse) may enable clinicians
to make appropriate and timely changes to patient’s medical
therapy thus preventing overt CHF decompensation to occur
or to occur in much milder forms that do not require
hospitalization (2). This may significantly improve patients’
outcomes (2). As microelectromechanical systems technology
is invasive, of limited availability and, at least for now,
prohibitively expensive, it has not yet exerted a wider impact
on the management of heart failure. Importantly, studies using
easily obtainable (but non-specific) clinical parameters (body
weight, blood pressure, heart rate, etc.) displayed only limited
success in accurately predicting CHF decompensation episodes.
There is thus a significant unmet need in the heart failure
community for effective, cost-efficient and robust protocols
for early detection of CHF decompensation episodes. First
automatic detections of CHF and other cardiovascular diseases
were performed with electrocardiogram data (3, 4), heart rate
variability data, photoplethysmogram, and clinical data such
as respiratory rate, weight, pulse rate, age, and blood pressure
(5). Recently, automated methods for analysing heart sounds
and detecting cardiovascular disease from heart sounds have
been increasingly developed as more and more datasets of
heart sound recordings have become publicly available (6–
8).

Heart sound classification algorithms found in the literature
include classical ML models, statistical models, and artificial
neural networks (NN) (9). There are a few papers that
specifically address CHF. In the work of Gjoreski et al. (10),
a stack of ML classifiers was used to classify normal sounds
and heart failure. In the preliminary study, Gjoreski et al. (11)
used a simple decision tree classifier to classify compensated and
decompensated stages of CHF, using only the portion of our
dataset recorded under the first experimental setup. Gao et al.
(12) compared the fully convolutional NN, gated recurrent unit,
long short-term memory, and support-vector machine (SVM)

models to classify normal heart and two subtypes of CHF. Liu
et al. (13) compared NN and SVM in classifying normal heart
and subtype of heart failure. In the work of Zheng et al. (14),
the SVM, NN, and a statistical hidden Markov model were
compared in classifying normal and CHF sounds. In our first
study, we tested ML algorithms for detecting decompensation
in CHF using general audio features generated with a dedicated
audio feature tool. Features were extracted from segments with
a fixed length of 2 s from a subset of our current data set (15).

As previous studies (10, 11, 16) have demonstrated
promising results in distinguishing between the heart sounds
of healthy people from those of CHF patients, we now focus
on a more specific task. In this manuscript, we explore how
ML algorithms can be employed to identify decompensation
episodes based on the heart sounds of CHF patients. The
study was performed on the recordings of 37 patients in both
decompensated and recompensated phases, using two types
of electronic stethoscopes. We discuss the performances of
several ML algorithms in view of feasibility of this approach
for telemedicine application. We compare the classification
accuracies of the ML models with that of cardiologists, who
are domain experts.

Materials and methods

Data

Our dataset consists of phonocardiograms (PCG) of 37 CHF
patients (average age of 51.3 ± 13.3 years). The dataset was
obtained by two different setups. The first part (21 subjects)
was obtained with a 3MTM Littmann Electronic Stethoscope
Model 3200 (17) digital stethoscope and consists of PCGs 30 s
in length. The second part (16 subjects) was obtained with the
Eko DUO ECG + Digital Stethoscope (18) and consists of PCGs
15 s in length. Both devices use built-in filters to reduce ambient
noise and record single channel audio signals at a sampling rate
of 4 kHz. According to the principal component analysis, the

TABLE 1 Pathophysiology of heart sounds (9).

Heart
sound

Frequency
range

Characteristics Duration/Location

S1 10–200 Hz Dull and prolonged 0.12–0.15 s

S2 20–250 Hz Sharp and short 0.08–0.12 s

S3 25–70 Hz Soft and thudding
quality

0.04 s, early diastole

S4 15–70 Hz Weak and rumbling Slightly before S1

Gallop 15–50 Hz Galloping rhythm 0.08–0.2 s, diastole

Murmurs Up to 600 Hz Whooshing, rumbling Systole, diastole

Opening
snaps

100–800 Hz Snapping sound Diastole

Rubs 100–800 Hz Scratching sound Systole, early/Late diastole

Clicks 100–800 Hz Short and loud Early systole
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FIGURE 1

Clear PCG segment (A), PCG segment with missing S2 sound (B), and a noisy PCG segment (C).

TABLE 2 List of features extracted from the phonocardiograms segments.

Feature type (N) Per segment state Domain Description

BPM (1) RR Time Inverse of segment duration in beats per minute

Dur_state (4) S1, Sys, S2, Dia Time Duration in milliseconds

Dur_Ratio_ratio (8) Time Duration ratios

MeanEnv_Ratio_ratio (8) Statistical Mean envelope ratios

RMS_state (4) S1, Sys, S2, Dia Statistical Root-mean-square of a signal

RMS_Ratio_ratio (8) Statistical Root-mean-square ratios

ZC_state (4) S1, Sys, S2, Dia Statistical Zero crossings

SE_state (4) S1, Sys, S2, Dia Statistical Sample entropy

Skewness_state (4) S1, Sys, S2, Dia Statistical Skewness

Kurtosis_state (4) S1, Sys, S2, Dia Statistical Kurtosis

PSD_region_band (24) Sys, Dia Frequency Power spectral density for different frequency bands

mfcc1-13_state (52) S1, Sys, S2, Dia Frequency 13 Mel-frequency cepstral coefficients

SpecCentroid_state (4) S1, Sys, S2, Dia Frequency Spectral centroid

SpecBandwidth_state (4) S1, Sys, S2, Dia Frequency 2nd order spectral bandwidth

SpecContrast2-5_state (16) S1, Sys, S2, Dia Frequency Spectral contrast for different frequency bands

SpecFlatness_state (4) S1, Sys, S2, Dia Frequency Spectral flatness

SpecRolloff_state (4) S1, Sys, S2, Dia Frequency Frequency below which 85% of the total spectral energy lies

PolyFeatures_state (4) S1, Sys, S2, Dia Frequency Coefficients of degree-1 polynomial fit to the spectrogram

dwt1-4_state (16) S1, Sys, S2, Dia Wavelet Level 4 discrete wavelet transform coefficients

difference between the recordings from the two devices after
preprocessing were small, thus it was reasonable to consider
both as the same, device-independent dataset. The subjects were
recorded in both the decompensated and the recompensated
phase. The decompensated episode was recorded when the
patient was admitted to the hospital for worsening heart failure
episode, while the recompensated one was recorded upon
discharge from the hospital when the patient was optimally
recompensated and was deemed optivolemic. The PCGs were
collected by medical professionals at University Medical Centre
Ljubljana from left parasternal 3rd intercostal space body
position. Overall, our dataset consists of 75 PCGs, 37 and 38
for compensated and decompensated phases, respectively, and
adds up to 29 min and 15 s in length. The study protocol was
reviewed and approved by the Republic of Slovenia National
Medical Ethics Committee (decision number 0120-276/2016-5).

A phonocardiogram consists of regular S1 and S2 sounds,
which are caused by the closing and opening of the heart valves,
and several additional sounds that may be present. These include
the S3 and S4 sounds, gallops, murmurs, opening snaps, rubs,
and clicks. While the S3 sound may also be present in normal
hearts of young children and athletes, other abnormal sounds
are never present in a normal heart. The pathophysiology of the
heart sounds can be found in Table 1.

Methods

The outcome of interest used to evaluate the ML models
was a binary variable indicating whether a PCG represents
a decompensated or a recompensated CHF phase. The
steps of the methodology pipeline included preprocessing of

Frontiers in Cardiovascular Medicine 03 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1009821
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-1009821 November 9, 2022 Time: 15:28 # 4
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TABLE 3 Patient clinical characteristics.

Parameter Study population (N = 37)

Age, y 56.6± 12

Gender (male), % 88

Heart failure etiology (ischemic), % 27

Cause of decompensation

Volume overload, % 78

Infection, % 15

Arrhythmia, % 7

LVEF, % 26.7± 7.7

NT-proBNP, pg/ml 4,593 (953, 5,102)

Medical therapy

ARNI/ACEI/ARB, % 96

Beta blockers, % 100

MRA, % 96

SGLT2i, % 70

Diuretic, % 96

Ca-antagonist, % 9

Digoxin, % 15

LVEF, left ventricular ejection fraction; ARNI, angiotensin receptor antagonist neprylisin
inhibitor; ACEI, angiotensin convertase enzyme inhibitor; ARB, angiotensin receptor
blocker; MRA, mineralocorticoid receptor blocker; SGLT2i, sodium glucose transporter
2 inhibitor; Ca, calcium.

the PCGs, feature extraction, and training and evaluation
of the ML models.

Patient selection
We performed a prospective nonrandomized cohort study

that included 37 consecutive patients hospitalized for worsening
heart failure at the Advanced Heart Failure Center, Dept.
of Cardiology, UMC Ljubljana. Inclusion criteria were as
follows: chronic heart failure of ischemic or non-ischemic
etiology, hospitalization for worsening heart failure <24 h,
age >18 years; We did not consider patients with severe
valvular disease, artificial valves, patients with acute myocardial
infarction and/or de-novo acute heart failure, patients in
cardiogenic shock, on vasoactive and/or inotropic support, on
mechanical ventilation or on short- or long-term mechanical
circulatory support for this analysis or patients that were
hospitalized for worsening heart failure >24 h for this
analysis. Clinical, biochemical and medical therapy data were
collected for all the patients at the time of the initial
heart sound sampling.

All patients included in this analysis were recompensated
using levosimendan, followed by the intravenous diuretic
therapy. In all study participants, heart sounds were recorded
before the infusion of levosimendan (decompensated phase) and
upon reaching the optivolemic phase (recompensated phase).

Preprocessing
The first part of the preprocessing step was filtering.

Although heart sounds have frequencies of up to 800 Hz (see

Table 1), the most dominant frequencies are in the frequency
range of 20–400 Hz (19). The mean spectral roll-off frequency
(frequency below which 85% of the total spectral energy lies)
of our dataset is 49.9 ± 9.7 and 304.2 ± 99.4 Hz for the
PCGs recorded by the first and the second experimental setting,
respectively. To reduce the effects of different recording settings
and to reduce noise, the PCGs were filtered with a bandpass
Butterworth filter of order 4 and a frequency range from 25 to
400 Hz.

As the PCGs obtained by the two experimental settings were
also recorded at different amplitudes, the next preprocessing
step was heart sound signal normalization. We used the root
mean square (RMS) normalization with the target amplitude
of -20 dBFS. As opposed to the peak normalization, which
normalizes the signal based on the highest peak, the RMS
normalization normalizes the signal based on the average power
level by calculating the average value of all peaks.

The Springer’s modification (20) of Schmidt’s method (21)
was used to split the heart sound into separate cardiac cycles
and to find the four main states of each segment (RR): S1,
systole, S2, and diastole. This algorithm uses a hidden semi-
Markov model and Viterbi decoding and provides a state-
of-the-art method for segmenting heart sounds. Segmentation
allows us to extract the features of the possible abnormal
sounds from the corresponding heart sound states. In manually
reviewing the segmented PCGs, we found that seven (9%)
of the recordings either consisted of a significant number
of segments that were not correctly determined, or the
recording itself was so unclear that it was impossible to
tell whether the segments were correct or not. The two
most common reasons for the segmentation error were that
one of the main sounds (S1 or S2) was not detected by
the PCG recorder, resulting in a segment that was too

TABLE 4 Results of classification of a representative subset of our
dataset by the medical experts.

PCG Class Expert 1 Expert 2 Expert 3 Accuracy

1 1 0 1 0 0.33

2 0 1 1 1 0

3 1 1 0 0 0.33

4 1 1 1 1 1

5 0 0 0 0 1

6 0 0 0 1 0.67

7 0 1 1 1 0

8 1 1 0 0 0.33

9 1 0 1 0 0.33

10 0 0 0 1 0.67

11 0 0 0 0 1

12 1 0 1 0 0.33

Overall accuracy 0.58 0.67 0.25 0.5

Classes 0 and 1 are recompensated and decompensated CHF phases, respectively.
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TABLE 5 Results of the models’ performance.

Classifier Accuracy Precision Recall F1 ROC AUC

LR 0.72 (0.15; 0.61–0.83) 0.73 (0.17; 0.61–0.86) 0.73 (0.22; 0.56–0.90) 0.71 (0.16; 0.59–0.84) 0.74 (0.18; 0.61–0.88)

LGBM 0.70 (0.16; 0.58–0.82) 0.68 (0.29; 0.47–0.90) 0.63 (0.29; 0.41–0.85) 0.63 (0.27; 0.43–0.84) 0.71 (0.16; 0.59–0.83)

SVC 0.68 (0.16; 0.56–0.79) 0.75 (0.23; 0.58–0.92) 0.60 (0.31; 0.37–0.84) 0.62 (0.22; 0.45–0.78) 0.71 (0.15; 0.59–0.83)

RF 0.68 (0.18; 0.54–0.81) 0.63 (0.28; 0.42–0.84) 0.68 (0.35; 0.42–0.94) 0.63 (0.28; 0.41–0.84) 0.66 (0.23; 0.48–0.83)

DT 0.62 (0.15; 0.51–0.73) 0.60 (0.25; 0.41–0.79) 0.66 (0.29; 0.44–0.87) 0.60 (0.23; 0.42–0.78) 0.66 (0.16; 0.53–0.78)

GB 0.61 (0.16; 0.48–0.73) 0.61 (0.25; 0.42–0.80) 0.63 (0.27; 0.43–0.83) 0.59 (0.23; 0.42–0.77) 0.65 (0.17; 0.52–0.77)

XGB 0.61 (0.19; 0.46–0.75) 0.59 (0.27; 0.39–0.80) 0.60 (0.31; 0.37–0.84) 0.58 (0.26; 0.38–0.77) 0.67 (0.18; 0.53–0.81)

KN 0.58 (0.16; 0.47–0.70) 0.60 (0.19; 0.45–0.75) 0.58 (0.23; 0.40–0.75) 0.57 (0.18; 0.43–0.71) 0.61 (0.17; 0.48–0.74)

SGD 0.58 (0.07; 0.52–0.63) 0.45 (0.23; 0.28–0.62) 0.71 (0.41; 0.40–1.02) 0.54 (0.29; 0.32–0.76) 0.63 (0.13; 0.53–0.73)

GNB 0.54 (0.14; 0.44–0.65) 0.52 (0.21; 0.37–0.68) 0.55 (0.27; 0.35–0.75) 0.52 (0.21; 0.36–0.68) 0.57 (0.23; 0.39–0.74)

The scores are given as mean (SD; 95% CI).
The results are calculated from 10-fold cross-validation.
The highest version of the individual metric is marked as bold.

long (longer than one RR interval), or that the high-
amplitude noise was detected as one of the two main sounds,
resulting in a segment that was too short (shorter than
one RR interval).

As some of the features are calculated based on the
characteristics of the S1 and S2 sounds, the segments where
either of the sounds was not present (based on the signal
envelope) or the signal-to-noise ratio was too high were
excluded in the analysis. On average, 3.3 2.6% segments per
PCG recording were removed. Figure 1 shows an example of
a clear segment, an example of a segment that was removed
because S2 is missing, and an example of a segment that was
removed because it is too noisy.

The normalization was performed using Python 3.7
(Python Programming Language, RRID:SCR_008394)
and the library Pydub 0.25.1 (22), while the filtering and

FIGURE 2

Bar plot of the model accuracies. Black horizontal lines
represent 95% CI.

segmentation was performed using Matlab R2021a (MATLAB,
RRID:SCR_001622) (23).

Feature extraction
A total of 177 features were extracted from each segment.

These included features in the time domain, frequency domain,
statistical features, and features generated by a 4-level wavelet
decomposition. The complete list of features can be found in
Table 2.

Features were extracted from the entire PCG signal data
and from each of the four “_states.” In some cases, the features
were calculated as a ratio of the features of the states. The
“_ratio” features include S1/RR, Sys/RR, S2/RR, Dia/RR, S1/S2,
Sys/Dia, Sys/S1, and Dia/S2. To extract the frequency domain
features, the segments were transformed from the time domain
to the frequency domain using a fast Fourier transform with
a Hanning window of 64 milliseconds in length and a stride
of 16 milliseconds. For the power spectral density frequency
features, we selected frequency “_bands” of 25–40, 40–60, 60–80,
80–100, 100–120, 120–140, 140–160, 160–180, 180–200, 200–
250, 250–300, and 300–400 Hz. The selected frequency bands
are similar to those selected by the authors of Potes et al. (24).
Although Mel-frequency cepstrum coefficients (25) (MFCCs)
were developed to mimic human perception and are widely used
in speech recognition, they have been shown to work for heart
sound analysis as well (24, 26–28). We extracted the first 13
coefficients from each of the four states. The “2–5" bands of the
spectral contrast features include: 25–50, 50–100, 100–200, and
200–400 Hz. Daubechies 4 wavelet was used as a basis for the
discrete wavelet transform features.

To smooth out the outliers, we generated another set of
2 × 177 features representing the mean and standard deviation
of the features taken as a sliding window with window size
six across the segments of each PCG. To ensure that each
segment was equally represented, windowing was performed
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FIGURE 3

Confusion matrix of the LR model. Classes 0 and 1 are
recompensated and decompensated CHF phases, respectively.

FIGURE 4

Receiver operating characteristic curves of the most accurate
four models. The colored areas represent the 95% CI.

cyclically. The resulting 354 features were then used for the
models’ evaluation.

The features were extracted and calculated using Python
3.7 and libraries Librosa 0.9.1 (29), Scipy 1.5.2 (SciPy,
RRID:SCR_008058) (30) and Numpy 1.18.5 (NumPy,
RRID:SCR_008633) (31).

Experimental pipeline
We implemented 10 ML models. The decision tree classifier

(DT) is a model that uses a tree diagram for decision making,
where each branch is partitioned based on a threshold for
a feature. The gradient boosting classifier (GB), the extreme
gradient boosting classifier (XGB), the light gradient boosting
machine classifier (LGBM), and the random forest classifier (RF)
are ensemble methods that combine the predictions of multiple
DTs. The C-support vector classifier (SVC) finds a hyper-
plane in the feature space that spatially separates the classes.

TABLE 6 P-values of McNemar’s tests between the ML models.

LR LGBM SVC RF DT GB XGB KN SGD GNB

LR / 0.91 0.88 0.81 0.79 0.74 0.76 0.72 0.83 0.78

LGBM 0.91 / 0.85 0.9 0.91 0.9 0.9 0.78 0.84 0.75

SVC 0.88 0.85 / 0.88 0.86 0.88 0.88 0.86 0.82 0.78

RF 0.81 0.9 0.88 / 1 0.85 0.9 0.86 0.85 0.86

DT 0.79 0.91 0.86 1 / 1 1 0.95 0.92 0.91

GB 0.74 0.90 0.88 0.85 1 / 0.95 0.90 0.86 0.85

XGB 0.76 0.9 0.88 0.9 1 0.95 / 0.85 0.85 0.85

KN 0.72 0.78 0.86 0.86 0.95 0.9 0.85 / 0.85 0.89

SGD 0.83 0.84 0.82 0.85 0.92 0.86 0.85 0.85 / 0.91

GNB 0.78 0.75 0.78 0.86 0.91 0.85 0.85 0.89 0.91 /

The K-neighbors classifier (KN) looks for closest neighbors
in the features space to determine the class. The Gaussian
naive Bayes (GNB) utilizes Bayes’ theorem and makes the
assumption that the features are independent and described
by a Gaussian distribution. The logistic regression (LR) uses
logistic function to map a linear combination of the features to a
value between 0 and 1. The stochastic gradient descent classifier
(SGD) takes iterative steps to minimize the cost function. All of
the implemented models are probabilistic, meaning they assign
probabilities for each class. The selected decision threshold for
all models was 0.5. Each PCGs final decision was selected as
the majority vote of the segments’ predictions. The models
were implemented using Python 3.7 and Scikit 0.24.2 (scikit-
learn, RRID:SCR_002577) (32) and lightgbm 3.3.1 (LightGBM,
RRID:SCR_021697) (33) libraries.

Models were evaluated with a subject-wise 10-fold cross
validation using stratified folds with respect to the two different
setups for data acquisition. We found that the models, trained
only on the PCGs that were correctly segmented, perform
significantly better. Thus, for each training set, we removed
subjects that correspond to one of the seven PCGs we manually
determined are segmented incorrectly.

To keep the models explainable and as transparent as
possible and to avoid overfitting, we performed feature selection,
retaining only a subset of the features used as model input.
Although the selected features can depend on the model (e.g.,
decision tree based models can calculate the importance of the
features according to their ability to increase the pureness of the
levels), we selected our features independently of the models.
This means that all of the models used the same selected features.
Features were selected by calculating the mutual information
(34) between each feature and the outcome variable. The mutual
information between two variables is zero if the two variables
are independent, and higher values indicate greater dependence.
Each training fold was divided into five stratified subfolds,
and 40 features that had the highest mutual information with
the outcome variable on average across the five subfolds were
used for training.

Frontiers in Cardiovascular Medicine 06 frontiersin.org

https://doi.org/10.3389/fcvm.2022.1009821
https://scicrunch.org/resolver/RRID:SCR_008058
https://scicrunch.org/resolver/RRID:SCR_008633
https://scicrunch.org/resolver/RRID:SCR_002577
https://scicrunch.org/resolver/RRID:SCR_021697
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-1009821 November 9, 2022 Time: 15:28 # 7
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Results

Patient clinical characteristics are outlined in Table 3.
Our final dataset included 898 decompensated and 908
recompensated (1,806 in total) PCG segments with 354 features.
We used accuracy, precision, recall, F1-score, and area under
receiver operating curve (ROC AUC) as the evaluation metrics,
with accuracy as the main metric of performance evaluation.
Formulas for calculation of accuracy, precision, recall, and F1-
score are given in Equations (1–4). TP, FP, TN, and FN denote
true positive, false positive, true negative, and false negative,
respectively.

accuracy =
TP + TN

TP + TN + FP + FN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + TN
(3)

F1 = 2 ·
precision · recall
precision+ recall

(4)

Classification by the experts

The baseline of our method was determined by three
cardiologists experts who were each asked to independently
listen to a representative subset of 12 PCG recordings and
classify them as decompensated or recompensated. Importantly,
no other clinical data on the CHF patients were available
to the clinicians at that time. This subset included three
decompensated and three recompensated recordings from each
of the two data acquisition setups. The results are given in
Table 4.

The experts’ classification accuracies were 58, 67, and
25%, averaging at 50%, which coincides with the dataset
class distribution, meaning the cardiac auscultation alone
contributes little to the experts’ recognition of CHF
decompensation episode.

Evaluation the models’ performance

The results of the models’ performance evaluation are shown
in Table 5. The results are given along with standard deviation
(SD) and t-distribution 95% confidence interval (CI).

The bar plot of the models’ accuracies is shown in Figure 2.
All of the 10 implemented models outperform the baseline,
while six of them outperform the baseline with the 95% CI.
The best performing model is LR, which achieved accuracy
(SD; 95% CI) of 0.72 (0.15; 0.61–0.83). Additionally, the LR
model also achieved highest performance in recall with the

score of 0.73 (0.22; 0.56–0.90), F1-score of 0.71 (0.16; 0.59–
0.84), and ROC AUC with the score of 0.74 (0.18; 0.61–0.88).
The confusion matrix of the LR is shown in Figure 3. The best
performing model according to the precision metric was SVC,
which achieved a score of 0.75 (0.28; 0.58–0.92). The models
with accuracies comparable to that of the LR model are LGBM,
which achieved the score of 0.70 (0.16; 0.59–0.82), SVC, which
achieved the score of 0.68 (0.16; 0.56–0.79), and RF, which
achieved the score of 0.68 (0.18; 0.51–0.73). The ROC curves of
the four most accurate models are shown in Figure 4.

To test whether the difference in the models’ predictive
accuracy was statistically significant, we calculated the p-values
from McNemar’s test (35). This test is used on contingency tables
of the two models’ predictions. The results are given in Table 6.
We see that all of the models provided similar predictions, since
the p-values are all close to 1.

The list of the top 40 features is found in Table 7, with the
most important features being time domain features (10/40),
power spectral density features for different frequency bands
(17/40), and MFCCs (9/40). The most important heart sound
seems to be diastole, as 21/40 of the most important features
were extracted from diastole.

TABLE 7 Top 40 best predictor features according to their mutual
information with the outcome.

Rank Feature MI Rank Feature MI

1 m_BPM 0.16 21 m_Dur_Ratio_S1RR 0.1

2 m_Dur_Ratio_DiaRR 0.15 22 m_PSD_Dia_140_160Hz 0.1

3 m_Dur_Dia 0.14 23 sd_PSD_Sys_250_300Hz 0.1

4 sd_PSD_Dia_200_250Hz 0.14 24 sd_PSD_Sys_200_250Hz 0.1

5 sd_BPM 0.14 25 m_mfcc6_Dia 0.1

6 m_Dur_Ratio_SysS1 0.13 26 m_ZC_Dia 0.1

7 m_mfcc4_Dia 0.13 27 sd_PSD_Sys_140_160Hz 0.1

8 m_Dur_Ratio_SysDia 0.13 28 m_PSD_Dia_300_400Hz 0.1

9 sd_PSD_Dia_250_300Hz 0.13 29 m_PSD_Sys_300_400Hz 0.1

10 m_mfcc2_Sys 0.12 30 m_SpecContrast5_Dia 0.09

11 sd_PSD_Dia_180_200Hz 0.12 31 m_mfcc1_Sys 0.09

12 sd_PSD_Dia_160_180Hz 0.12 32 m_SpecCentroid_Dia 0.09

13 sd_PSD_Sys_120_140Hz 0.12 33 m_SpecBandwidth_Dia 0.09

14 m_mfcc2_Dia 0.12 34 m_mfcc6_S1 0.09

15 sd_Dur_Ratio_SysS1 0.11 35 sd_PSD_Sys_300_400Hz 0.09

16 m_mfcc1_Dia 0.11 36 m_PSD_Dia_250_300Hz 0.09

17 sd_PSD_Dia_140_160Hz 0.11 37 m_mfcc4_Sys 0.09

18 sd_PSD_Sys_180_200Hz 0.11 38 m_Dur_Ratio_SysRR 0.09

19 m_PSD_Dia_160_180Hz 0.11 39 m_Dur_Sys 0.09

20 m_mfcc6_Sys 0.11 40 sd_PSD_Dia_100_120Hz 0.08

The prefixes “m_” and “sd_” correspond to the mean and standard deviation of the
features taken as a sliding window with window size six across the segments of each PCG.
BPM, beats per minute; Dur, duration; PSD, power spectral density; mfcc, Mel-frequency
cepstral coefficients; ZC, zero crossings; SpecContrast, spectral contrast; SpecCentroid,
spectral centroid; SpecBandwidth, spectral bandwidth.
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PhysioNet dataset experiments

To test the robustness of our pipeline, we tested it against
dataset A of the PhysioNet (PhysioNet, RRID:SCR_007345)
(36) public database of heart sound recordings. The dataset
A contains PCGs from 117 normal and 292 abnormal hearts
recorded from children and adults. Both healthy subjects and
patients contributed between one and six PCGs. The recordings
lasted between 9 and 36 s. The models were compared in a 10-
fold cross validation with folds stratified with respect to the class.
The model with the best accuracy was SVC, which achieved a
score of 0.80 (0.06; 0.76–0.85), better than that of the majority,
which was 0.71. The other best performing models were LGBM,
GB, and XGB, with the accuracy scores of 0.80 (0.07; 0.74–0.85),
0.78 (0.08; 0.72–0.84), and 0.78 (0.06; 0.73–0.83), respectively.
The results obtained with this method are very similar to those
obtained with our previous approach in (11). It should be
noted that the results may be somewhat positively biased as the
subjects are not labeled and the recordings of the same subjects
may be included in both the training and test sets.

Discussion

In this study, we used 10 ML models to classify
decompensation episodes in CHF using a dataset of heart
sound recordings from 37 CHF patients. We used 40 domain
predictor features, extracted from the four states of heart
sounds. All models outperformed the classification performed
independently by three cardiology experts, which averaged at
50%. Logistic regression proved to be the best model in terms
of accuracy, reaching 72 (15; 61–83)%. Power spectral density
features, time domain features, and Mel-frequency cepstrum
coefficients were found to be the most important predictors.
Most of these features were extracted from diastole. From
the medical perspective, this is reasonable, since the sounds
produced in the diastole originate from the heart chambers
refilling by blood. The heart of a CHF patient is more rigid
than a healthy heart and will thus vibrate differently. Another
observation is that several of the important features are related
to heart rate (BMP). Again, this is relevant from the medical
point of view, as patients in the decompensated phase have a
faster pulse than those that are not decompensated. Our method
was additionally tested on a public dataset of normal/abnormal
heart sounds where it achieved exemplary results, although a
direct comparison is not possible because the public dataset was
heavily unbalanced.

In view of early detection of decompensation episodes of
CHF and thus preventing decompensation from occurring or
to occur in milder forms that would not lead to hospitalization,
the results are promising, as they demonstrate that the ML
algorithms can substantially outperform a human expert solely
based on the heart sounds. It is important to stress that
the algorithms were trained on data from the two extreme

phases of CHF, indicating that the results obtained likely
represent the upper limit on the accuracy such an approach
can achieve. Thus, using only heart sounds for detection of
decompensation is not sufficient, however, it can represent a
valuable component of a decision-support system that takes
into account additional patient data, with patients performing
daily/weekly self-recording and self-assessment.

Recently, various approaches to automatic detection
of heart disease have been successfully implemented for
numerous data set modalities such as clinical features, images,
and electrocardiograms (ECG) (37). Although the reported
accuracies are very decent, some data are very difficult and/or
expensive to obtain. Future plan for our system to support
patients with CHF is to incorporate data that are easy to obtain
and relatively inexpensive, such as clinical data, self-reported
data, ECG data, daily activity data, and possibly others. In
addition, our models could be integrated into a virtual coaching
system (38) that tracks the patient’s cardiac status and overall
well-being and promotes medication use and/or physical
activity to prevent deterioration of the condition.

Limitations

This study has the following limitations. First, the recorded
patients are at different stages of CHF so a decompensated
phase of a relatively healthy CHF patient can be similar to a
recompensated phase of a patient with a later stage of CHF.
In addition, there are different subtypes of CHF, which we did
not consider in model building. Models trained separately for
each stage/subtype would most likely provide better results.
Second, the PCG is recorded when an individual is admitted
to/discharged from the hospital, and not on a regular basis with
the intention of capturing the deterioration of the condition.
Deterioration is unpredictable, and therefore data collection
starting with a CHF patient in good condition and then waiting
until the situation deteriorates is not practical. Third, since we
are using a dataset collected by ourselves, we cannot directly
compare the accuracy of our method with related work, but
only by testing it against a public dataset. Fourth, although ML
models outperform the experts’ classification, the inputs to the
models are computer-extracted sound features most of which
are not intuitive to the experts. Therefore, the models do not
really provide the experts with additional knowledge to help
them make decisions while listening to the heart, but can only
be used as a component of stand-alone decision-making tools.

Conclusion

This study demonstrates that in chronic heart
failure patients machine learning algorithms may
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outperformcardiologists in detecting decompensation episodes
based on heart sounds alone. The key predictor features are
derived from diastole and come both from time and frequency
domains. Although the results are promising, showing that
machine learning algorithms perform better than cardiology
experts, the use of heart sound data alone is not sufficient
for early detection of decompensation. Therefore, additional
clinical data must be added to the protocol before considering
the integration of this method into a decision-support system.
The inclusion of additional predictor variables such as weight,
self-reported data, and electrocardiogram falls within the
scope of future work.
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