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Background: Chronic kidney disease (CKD) is a highly comorbid condition

with significant effects on vascular health and remodeling. Upper extremity

veins are important in end-stage kidney disease (ESKD) due to their potential

use to create vascular accesses. However, unlike arteries, the contribution

of CKD-associated factors to the chronic remodeling of veins has been

barely studied.

Methods: We measured morphometric parameters in 315 upper extremity

veins, 131 (85% basilic) from stage 5 CKD/ESKD patients and 184 (89% basilic)

from non-CKD organ donors. Associations of demographic and clinical

characteristics with intimal hyperplasia (IH) and medial fibrosis were evaluated

using multivariate regression models.

Results: The study cohort included 33% females, 30% blacks, 32% Hispanics,

and 37% whites. Over 60% had hypertension, and 25% had diabetes

independent of CKD status. Among kidney disease participants, 26% had stage

5 CKD, while 22 and 52% had ESKD with and without history of a previous

arteriovenous fistula/graft (AVF/AVG), respectively. Intimal hyperplasia was

associated with older age (β = 0.13 per year, confidence interval [CI] = 0.002–

0.26), dialysis vintage > 12 months (β = 0.22, CI = 0.09–0.35), and previous

AVF/AVG creation (β = 0.19, CI = 0.06–0.32). Upper quartile values of IH

were significantly associated with diabetes (odds ratio [OR] = 2.02, CI = 1.08–

3.80), which demonstrated an additive effect with previous AVF/AVG history

and longer vintage in exacerbating IH. Medial fibrosis also increased as a

function of age (β = 0.17, CI = 0.04–0.30) and among patients with diabetes

Frontiers in Cardiovascular Medicine 01 frontiersin.org

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2022.1005030
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2022.1005030&domain=pdf&date_stamp=2022-11-07
https://doi.org/10.3389/fcvm.2022.1005030
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2022.1005030/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-1005030 November 3, 2022 Time: 6:57 # 2

Labissiere et al. 10.3389/fcvm.2022.1005030

(β = 0.15, CI = 0.03–0.28). Age was the predominant factor predicting upper

quartile values of fibrosis (OR = 1.03 per year, CI = 1.01–1.05) independent of

other comorbidities.

Conclusion: Age and diabetes are the most important risk factors for chronic

development of venous IH and fibrosis independent of CKD status. Among

kidney disease patients, longer dialysis vintage, and history of a previous

AVF/AVG are strong predictors of IH.
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intimal hyperplasia (IH), fibrosis, chronic kidney disease, diabetes, vascular aging

Introduction

Upper extremity vessels are the preferred sites for creation
of hemodialysis accesses. Traditional and non-traditional risk
factors in chronic kidney disease (CKD) are thought to induce
structural changes that lead to wall stiffness and impair
vasoactivity, affecting the capacity of vessels to remodel and
mature after vascular access creation (1). Unfortunately, most
of the mechanisms behind those changes are extrapolated from
the arterial system (2–4), despite differences in hemodynamics
and structure between arteries and veins. The impact of
CKD on chronic remodeling of upper extremity veins
remains understudied.

Intimal hyperplasia (IH) and imbalanced extracellular
matrix (ECM) remodeling are implicated in the origin
and progression of vascular diseases, and in postoperative
complications after vascular surgeries (2, 5–10). Concentric
development of IH and moderate degree of wall fibrosis are
frequently found in veins of CKD patients at the time of
hemodialysis access creation (8, 11, 12). Despite mild or no
associations of pre-access vein morphometry with arteriovenous
fistula (AVF) or graft (AVG) outcomes (8, 11, 13, 14), IH
and excessive fibrosis may negatively influence the selection of
vessels for vascular access surgeries (15).

In the acute or postoperative scenarios, IH is the
main pathophysiological feature in arterial restenosis and
vein graft disease (9, 16). Vascular fibrosis underlies post-
thrombotic syndrome after deep vein thrombosis (7). Excessive
postoperative fibrosis also plays a significant role in maturation
failure of newly created AVFs, which is further exacerbated
by concurrent IH (8, 17). The chronic and acute/postoperative
distinctions are particularly important to the study of vascular
remodeling. On one hand, both processes differ in the presence
or absence of wall injury, sources of inflammation, and the type
of regulatory or healing response. On the other hand, acute
remodeling occurs on the fabric of chronically adapted tissues,
which may influence the acute response. Importantly, most of
our understanding of venous IH and fibrosis applies to the

acute and postoperative settings, with limited information about
factors contributing to chronic wall changes due to the scarcity
of systematic histopathology studies.

In this work, we embarked on a comparative analysis
of upper vein morphometry in 131 veins from stage 5
CKD and end-stage kidney disease (ESKD) patients and 184
from non-CKD organ donors with moderate prevalence of
other chronic comorbidities. We studied the associations of
clinical characteristics with venous morphometry, and the
specific roles of CKD and hemodialysis on these vascular
changes. To our knowledge, this is the first systematic study
of upper extremity veins in more than 300 CKD and non-
CKD patients. This information may be valuable for the
understanding of mechanisms driving postoperative remodeling
of veins after access creation and for the design of preventive
treatments and lifestyle interventions to improve vascular health
in CKD patients.

Materials and methods

Study subjects and sample collection

The CKD cohort consisted of 131 patients, who were
undergoing surgery for AVF creation and enrolled in
prospective studies previously reported by us (8, 18). Of
these, 34 were classified as stage 5 CKD (CKD5; defined as
estimated glomerular filtration rate [eGFR] < 15, not on
dialysis) while 97 were hemodialysis-dependent (ESKD).
Dialysis vintage was defined as the time between the first day
of dialysis and the day of vein collection, minus the time with
a functioning kidney transplant. The patients provided written
informed consent during their preoperative visit, under a
protocol approved by the University of Miami Institutional
Review Board and adherent to the Declaration of Helsinki. We
obtained a 1–5 mm cross-section of the pre-access vein (111
basilic, 11 cephalic, 5 brachial, and 4 median cubital) that would
have been otherwise discarded after AVF creation.
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The non-CKD cohort included 184 organ donors
whose tissues were donated for research purposes through
a collaboration with the Life Alliance Recovery Agency. Cross-
sectional samples of upper extremity veins (164 basilic and 20
cephalic veins), approximately 2 cm in length, were obtained
post mortem following organ procurement procedures. All
veins were collected in RNAlater (QIAGEN, Germantown, MD)
and stored at –80◦C. A 1–5 mm cross-section was fixed in 10%
neutral formalin (Sigma-Aldrich, St. Louis, MO) before paraffin
embedding and sectioning.

Histology and morphometry
measurements

Vein sections were stained with Masson’s trichrome for
gross histomorphometric analysis. Medial fibrosis (% area of
collagen), intimal area, and medial area were quantified using
ImageJ (National Institutes of Health) and color thresholding
methods. Intimal hyperplasia (IH) was calculated as the
intima/media area ratio to normalize for vein size differences
due to anatomy or tissue shrinkage during formalin fixation and
dehydration. Images were acquired using a VisionTek DM01
digital microscope (Sakura Finetek, Torrance, CA). Operators
blinded to the clinical data performed image digital processing
and morphometric measurements.

Statistical analyses

Statistical analyses were performed using XLSTAT 2020.1.1
(Addinsoft Inc., New York, NY) and GraphPad Prism 8.4.0
(San Diego, CA). Normally distributed data were expressed
as mean ± standard deviation (SD) and compared using the
Student’s t-test. When normality criteria were not met, data
were expressed as median and interquartile range (IQR) and
compared using the Mann-Whitney test or Kruskal-Wallis tests
with post hoc comparisons. Categorical values were compared
using the Fisher’s exact test. Associations between binary
clinical covariates (positive or negative diagnosis of CKD/ESKD,
diabetes, and hypertension) and continuous morphometry data
(intima/media area ratio, and medial fibrosis) were evaluated
using multivariate general linear regression models adjusted
for age, sex, ethnicity/race, comorbidities, and type of vein. In
addition, we evaluated associations between clinical covariates
and upper quartile morphometry values (Q3-maximum).
Continuous data were converted to binary status (1 if ≥ Q3, 0
if < Q3) based on the upper quartile values of the overall study
population and analyzed using multivariate logistic regression
models adjusted for the above characteristics. To examine
the additive effects of CKD/ESKD and diabetes on upper
quartile morphometry status, we used logistic regression models
controlling for age. Results were considered significant when
p < 0.05.

Results

Characteristics of the study cohort

The overall cohort had a mean age of 49 years (± 15)
and was composed of 33% females, 30% non-Hispanic blacks,
32% Hispanics, and 36% whites (Table 1). Over 60% of
participants were positive for hypertension and 25% had
diabetes independent of CKD status. Most of the vessels were
basilic veins (275/315, 87%), with minor proportions of cephalic
(10%) and brachial or median cubital veins (3%). Because of
its deep anatomical location, the predominance of basilic veins
ensured that morphometric measurements reflected chronic
remodeling as a result of physiological stimuli and not likely due
to venipuncture or other vascular injuries.

As expected, the CKD/ESKD subgroup was significantly
older than non-CKD participants (56 vs. 45 years, respectively)
and had higher prevalence of hypertension (98 vs. 36%) and
diabetes (47 vs. 10%). There was also a different ratio of black
to white individuals between the CKD/ESKD and non-CKD
groups (Table 1). Among kidney disease participants, 34/131
(26%) were CKD5, while 29 (22%) and 68 (52%) had ESKD
with and without history of a previous AVF/AVG, respectively
(Table 1). Dialysis vintage ranged from 0.7 to 43.6 (median 4.5,
IQR 3.0–11.1) months in ESKD patients without a previous AVF
or AVG, and 0.2 to 163 (median 17.3, IQR 9.1–41.6) months in
participants with a prior AVF/AVG access. Eighteen patients in
the latter group had the previous access in the same arm, 9 in the
contralateral arm, and 2 bilaterally. Only 4/97 ESKD participants
had history of peritoneal dialysis.

Clinical factors associated with chronic
intimal hyperplasia

Intimal hyperplasia defined as intima/media area ratio was
quantified in venous cross-sections as a surrogate marker of
adaptive cell accumulation and/or survival. This parameter
illustrates intimal expansion compared to the media while
correcting for the size of the vessel. Intima/media area ratio
ranged from 0.00 to 1.50 in the overall cohort (Figure 1A).
Intimal hyperplasia was significantly higher in CKD/ESKD
patients than in non-CKD donors (median 0.32 vs. 0.21,
p < 0.0001), including patients with CKD5 status, ESKD with
and without a previous AVF/AVG, and ESKD with dialysis
vintage > 12 months (Table 2). After adjusting for additional
demographic and clinical characteristics, IH was significantly
associated with increasing age (β = 0.13, p = 0.046) and
CKD/ESKD (β = 0.18, p = 0.025), specifically with history of
a previous AVF/AVG and vintage > 12 months (Table 3). An
analysis controlling for both AVF/AVG history and vintage
was not possible due to collinearity between these variables.
Nonetheless, while the association with a previous AVF/AVG
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TABLE 1 Baseline characteristics of the study cohorts.

All (N = 315) CKD/ESKD (N = 131) Non-CKD (N = 184) P-value*

Demographics

Age (y)–mean± SD 49.33± 14.97 55.79± 13.57 44.72± 14.22 <0.0001

Female sex (%) 103 (33) 44 (34) 59 (32) 0.81

Hispanic (%) 102 (32) 47 (36) 55 (30) 0.27

Black (%) 95 (30) 68 (52) 27 (15) 0.0001

White (%) 118 (37) 16 (12) 102 (55) 0.0001

Comorbidities/CKD stage

Hypertension (%) 195 (62) 128 (98) 67 (36) 0.0001

Diabetes (%) 79 (25) 61 (47) 18 (10) 0.0001

CKD/ESKD (%) 131 (42) 131 (100) – –

Stage 5 CKD 34 (11) 34 (26) – –

ESKD no prior AVF 68 (22) 68 (52) – –

ESKD + prior AVF 29 (9) 29 (22) – –

Type of vein

Basilic (%) 275 (87) 111 (85) 164 (89) 0.30

Cephalic (%) 31 (10) 11 (8) 20 (11) 0.57

Other (%) =| 9 (3) 9 (7) – 0.0003

*P-values for CKD/ESKD vs. non-CKD comparisons.
=|Other types of veins include 4 median cubital and 5 brachial.

could be partly due to hemodynamic effects, longer dialysis
vintage by itself was a predictor of IH in ESKD patients without
a prior AVF or AVG access (β = 0.36, p = 0.003; Supplementary
Table 1).

In addition to the associations of age and ESKD subgroups
with gradual increases in IH (Figures 1B,C), we tested for
the relationship of clinical characteristics with upper quartile
values (Q3-maximum; IH ≥ 0.042). These represent conditions
that exacerbate intimal growth or imbalanced intimal/medial
remodeling. Only diabetes was significantly associated with
upper quartile IH values in the main logistic regression model
(Table 4 and Figure 1B), and further demonstrated a strong
additive effect with ESKD plus a prior AVF/AVG (Table 4 and
Figure 1D top). Dialysis vintage > 12 months also predicted
upper quartile IH values regardless of diabetes status, and
diabetes combined with vintage < 12 months (Table 4 and
Figure 1D bottom).

Clinical factors associated with chronic
medial fibrosis

The percentage of medial fibrosis in venous cross-sections
is a surrogate marker of adaptive ECM remodeling. Medial
fibrosis ranged from 14.92 to 66.52% in the overall study
cohort (Figure 2A). Higher medial fibrosis was associated with
increasing age (β = 0.17, p = 0.012) and diabetes (β = 0.15,
p = 0.018) in multivariate general linear regression models
(Table 3). In contrast with the increase of venous IH in
subgroups of ESKD, the percent of medial fibrosis was similar

between CKD/ESKD and non-CKD individuals (Tables 2, 3 and
Figure 2A).

Increasing age was the main predictor of upper quartile
values of fibrosis (≥ 46.85%; OR = 1.03 per year, p = 0.013)
(Table 4 and Figure 2B). Combined logistic regression models
of (+) diabetes/(+) CKD5 were only significantly different with
respect to a couple of (–) diabetes models but not with the rest
(Figures 2C,D), suggesting differential effects of CKD/ESKD
stages in ECM remodeling. These analyses demonstrated that
age is the primary factor predicting high values of venous
fibrosis independent of CKD or diabetes status. Figure 3
portrays representative pictures of vein morphometry in non-
CKD and CKD/ESKD individuals.

Discussion

Intimal hyperplasia and imbalanced ECM remodeling are
histopathological changes associated with poor venous health (7,
8, 10, 19, 20). Kidney disease is considered a major contributing
factor in the development of these vascular changes (2, 3, 5,
21). However, as various risk factors coexist in CKD patients,
it is important to understand the independent contribution
of each characteristic to detrimental vascular changes. In this
study we evaluated the associations of clinical and demographic
characteristics with the morphometry of upper extremity veins.
Our findings clarify the role of age, CKD stage, dialysis vintage,
vascular access history, hypertension, and diabetes in the
chronic remodeling of vessels, and may be applicable to the
improvement of vein health in CKD patients.
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FIGURE 1

Predictors of high intimal hyperplasia (IH) in CKD and non-CKD veins. (A) Histogram of IH expressed as intima/media area ratio in CKD/ESKD
and non-CKD veins. The minimum, first quartile (Q1), median (Q2), third quartile (Q3), and maximum values are indicated for the overall study
cohort. (B) Prevalence of age ≥ 50 years, diabetes, and CKD/ESKD per quartile of IH in the overall study cohort. (C) Distribution of CKD and
ESKD subgroups per quartile of IH according to disease stage and vascular access history (Top) or dialysis vintage (Bottom). (D) Probability of IH
falling in the upper quartile values (≥0.42) as predicted by age and combined status of diabetes and CKD/ESKD stages. CKD subgroups are
separated according to disease stage and vascular access history (Top) or dialysis vintage (Bottom). DM, diabetes; CKD5, stage 5 CKD;
ESKD_noAVF, ESKD without previous AVF or AVG; ESKD_w/AVF, ESKD and previous AVF/AVG history. ∗p < 0.05 vs. all individual models,
‡p < 0.05 vs. (–) DM/(–)CKD5/ESKD and (–) DM/ < 12 months.

TABLE 2 Morphometric comparisons between the CKD/ESKD and non-CKD cohorts.

N Intima/media ratio P-value* Medial fibrosis (%) P-value*

Non-CKD 184 0.21 [0.11–0.36] – 41.41± 8.04 –

CKD/ESKD 131 0.32 [0.22–0.51] <0.0001 41.75± 9.03 >0.99

CKD stage 5 34 0.34 [0.23–0.47] 0.0091 42.20± 9.74 >0.99

ESKD by AVF history

No prior AVF 68 0.31 [0.21–0.47] 0.017 41.71± 8.24 >0.99

With prior AVF 29 0.43 [0.25–0.59] 0.0002 41.30± 10.18 >0.99

ESKD by vintage

<4 months 29 0.30 [0.22–0.41] 0.29 39.94± 7.97 >0.99

4–12 months 34 0.29 [0.20–0.51] 0.26 42.36± 8.15 >0.99

>12 months 34 0.36 [0.26–0.65] 0.0001 42.23± 10.11 >0.99

Values presented as mean± SD or median [interquartile range].
*P-values vs. non-CKD. Bold values indicate statistical significance.
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TABLE 3 Clinical predictors of venous morphometry using multivariate general linear regression models.

Intima/media area ratio Medial fibrosis

β (95% CI) P-value β (95% CI) P-value

Main model

Age (per year) 0.13 (0.002, 0.26) 0.046 0.17 (0.04, 0.30) 0.012

Female sex –0.08 (–0.19, 0.03) 0.133 0.03 (–0.08, 0.14) 0.615

Hispanic –0.02 (–0.15, 0.11) 0.731 –0.06 (–0.19, 0.07) 0.345

Black –0.10 (–0.25, 0.04) 0.154 0.09 (–0.06, 0.23) 0.246

Hypertension –0.01 (–0.16, 0.14) 0.909 –0.04 (–0.19, 0.11) 0.628

Diabetes 0.06 (–0.06, 0.18) 0.333 0.15 (0.03, 0.28) 0.018

CKD/ESKD 0.18 (0.02, 0.34) 0.025 –0.11 (–0.27, 0.05) 0.170

Basilic vein –0.03 (–0.13, 0.09) 0.660 0.03 (–0.08, 0.14) 0.619

CKD subgroup models

By stage and AVF history

Age (per year) 0.13 (0.004, 0.26) 0.043 0.17 (0.04, 0.30) 0.013

Female sex –0.09 (–0.21, 0.02) 0.095 0.03 (–0.08, 0.14) 0.624

Hispanic –0.02 (–0.15, 0.11) 0.758 –0.06 (–0.19, 0.07) 0.344

Black –0.09 (–0.23, 0.05) 0.224 0.08 (–0.06, 0.23) 0.256

Hypertension –0.01 (–0.16, 0.14) 0.909 –0.04 (–0.19, 0.12) 0.638

Diabetes 0.06 (–0.07, 0.18) 0.359 0.15 (0.03, 0.28) 0.018

CKD subgroup

CKD stage 5 0.12 (–0.01, 0.25) 0.076 –0.06 (–0.20, 0.07) 0.341

ESKD no prior AVF 0.08 (–0.07, 0.23) 0.276 –0.09 (–0.24, 0.06) 0.254

ESKD + prior AVF 0.19 (0.06, 0.32) 0.004 –0.08 (–0.21, 0.05) 0.250

Basilic vein –0.04 (–0.15, 0.07) 0.522 0.03 (–0.08, 0.14) 0.606

By stage and vintage

Age (per year) 0.14 (0.005, 0.26) 0.042 0.17 (0.03, 0.30) 0.015

Female sex –0.10 (–0.21, 0.01) 0.088 0.02 (–0.09, 0.133) 0.705

Hispanic –0.02 (–0.15, 0.11) 0.763 –0.06 (–0.19, 0.07) 0.345

Black –0.09 (–0.23, 0.05) 0.210 0.09 (–0.06, 0.23) 0.225

Hypertension –0.01 (–0.16, 0.14) 0.882 –0.04 (–0.19, 0.12) 0.635

Diabetes 0.07 (–0.05, 0.19) 0.268 0.15 (0.03, 0.28) 0.017

CKD/ESKD subgroup

CKD stage 5 0.12 (–0.01, 0.25) 0.079 –0.06 (–0.20, 0.07) 0.344

Vintage < 4 mo. 0.05 (–0.09, 0.18) 0.496 –0.12 (–0.25, 0.01) 0.074

Vintage 4–12 mo. 0.03 (–0.10, 0.17) 0.631 –0.06 (–0.19, 0.08) 0.428

Vintage > 12 mo. 0.22 (0.09, 0.35) 0.001 –0.04 (–0.17, 0.09) 0.538

Basilic vein –0.03 (–0.14, 0.08) 0.573 0.03 (–0.08, 0.14) 0.635

Reference levels for binary variables are male sex, white race, non-basilic vein, and negative for hypertension, diabetes, and CKD/ESKD. CI, confidence interval. Bold values indicate
statistical significance.

Our analysis of > 300 CKD and non-CKD veins indicates
that IH and medial fibrosis are not unique to CKD/ESKD,
and that both groups present overlapping ranges of these
morphometric parameters. Both IH and medial fibrosis increase
over time as a function of age. The positive association of age
with both cellular and ECM changes agrees with the concept of
vascular aging that is thought to affect arteries and veins (22–24).
Age-related alterations in endothelial cells (ECs) and smooth
muscle cells (SMCs) induce intimal expansion and wall stiffness
in arteries in response to local mechanical, hemodynamic, and

neurohumoral stimulations (25, 26). The nature of the stimuli
is likely different in veins since they are not subjected to the
same hemodynamic conditions and pressure changes as arteries.
Nonetheless, there is evidence of endothelial dysfunction and a
pro-inflammatory and pro-oxidant phenotype in ECs of aged
veins (27–29) that may contribute to maladaptive vascular
changes. Dysregulation of the contractile SMC phenotype with
age has also been associated with vascular fibrosis and stiffness
(26). Specifically in aged veins, higher TGFβ signaling and
tissue inhibitors of metalloproteinases (TIMPs), along with
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TABLE 4 Clinical predictors of upper quartile (≥ Q3) morphometry values using multivariate logistic regression models.

Intima/media area ratio ≥ 0.42 Medial fibrosis ≥ 46.85%

OR (95% CI) P-value OR (95% CI) P-value

Main model

Age (per year) 1.01 (0.99, 1.03) 0.348 1.03 (1.01, 1.05) 0.013

Female sex 0.81 (0.46, 1.43) 0.470 1.40 (0.80, 2.44) 0.234

Hispanic 0.73 (0.37, 1.46) 0.372 0.75 (0.38, 1.48) 0.408

Black 0.76 (0.35, 1.61) 0.467 1.02 (0.48, 2.15) 0.960

Hypertension 1.03 (0.47, 2.23) 0.944 0.73 (0.34, 1.54) 0.405

Diabetes 2.02 (1.08, 3.80) 0.029 1.90 (0.99, 3.64) 0.052

CKD/ESKD 1.69 (0.79, 3.63) 0.177 0.92 (0.43, 1.96) 0.824

Basilic vein 1.33 (0.58, 3.04) 0.497 0.57 (0.27, 1.21) 0.146

Additive models

By stage and AVF history

Age (per year) 1.01 (0.99, 1.03) 0.188 1.03 (1.01, 1.05) 0.013

–DM, + CKD5 1.47 (0.46, 4.67) 0.519 0.51 (0.13, 1.98) 0.330

–DM, + ESKD_noAVF 1.20 (0.51, 2.86) 0.673 0.65 (0.26, 1.64) 0.360

–DM, + ESKD_w/AVF 1.43 (0.42, 4.86) 0.563 1.09 (0.32, 3.71) 0.891

+ DM, –CKD5/ESKD 1.42 (0.46, 4.39) 0.546 1.33 (0.45, 3.91) 0.605

+ DM, + CKD5 1.95 (0.65, 5.91) 0.236 2.87 (0.99, 8.28) 0.052

+ DM, + ESKD_noAVF 1.81 (0.74, 4.43) 0.197 1.48 (0.62, 3.56) 0.378

+ DM, + ESKD_w/AVF 13.19 (3.38, 51.50) < 0.001 0.68 (0.17, 2.66) 0.577

By stage and vintage

Age (per year) 1.02 (0.99, 1.04) 0.156 1.03 (1.01, 1.05) 0.015

–DM, + CKD5 1.44 (0.45, 4.60) 0.537 0.51 (0.13, 1.99) 0.335

–DM, < 12 months 0.53 (0.17, 1.64) 0.267 0.78 (0.30, 1.99) 0.598

–DM, > 12 months 3.25 (1.22, 8.62) 0.018 0.74 (0.23, 2.43) 0.621

+ DM, –CKD5/ESKD 1.40 (0.45, 4.34) 0.560 1.34 (0.45, 3.93) 0.598

+ DM, + CKD5 1.93 (0.64, 5.83) 0.246 2.88 (0.999, 8.33) 0.050

+ DM, < 12 months 3.15 (1.34, 7.41) 0.009 1.11 (0.45, 2.75) 0.821

+ DM, > 12 months 3.48 (1.09, 11.09) 0.035 1.37 (0.41, 4.53) 0.609

Reference levels for binary variables are male sex, white race, non-basilic vein, and negative for hypertension, diabetes (DM), and CKD/ESKD. The reference level for the additive model is
negative for both diabetes and CKD/ESKD. CI, confidence interval; OR, odds ratio. ESKD_w/AVF and _noAVF refer to ESKD patients with and without history of a previous AVF/AVG,
respectively. Similarly, < 12 and > 12 months refer to ESKD patients separated by dialysis vintage. Bold values indicate statistical significance.

lower metalloproteinase-2 (MMP-2) expression, could explain
an age-related imbalance in ECM deposition (30, 31).

The association of ESKD with increased IH is not at all
surprising, but finally puts to rest a presumed notion based on
comparisons with small numbers of non-CKD veins (three to
15 individuals) (3, 32–35). Our work further clarifies that this
association is only evident when dialysis vintage is > 12 months
or in patients with a prior history of an AVF or AVG, who also
tend to have longer dialysis vintage. The independent effect of
vintage IH was confirmed in ESKD patients without a previous
AVF. However, a hemodynamic effect of a previous access in
the arm is also likely. It is possible that the increase in IH is
a cumulative response to volume overload, oxidative stress, or
dialysis-related inflammation. The relationship between dialysis
vintage and history of a previous AVF/AVG with increased
IH underscores the importance of addressing poor access

maturation and patency outcomes, as the suitability of vessels
may be lower for secondary vascular accesses.

Despite the significant effects of dialysis vintage in IH,
we failed to find a consistent association between CKD/ESKD
stages and chronic venous fibrosis. The risk of high medial
fibrosis was significantly higher in patients with diabetes and
CKD5 only with respect to non-diabetic CKD5 or shorter
vintage ESKD patients, but not compared to the rest of
the models, suggesting differential effects of ESKD stages on
the venous ECM. These results contrast the widely known
association of kidney disease with increased fibrosis of kidneys,
heart, arteries, and other organ systems (36, 37). However,
recent studies in humans and mice have demonstrated that
the profibrotic effect of CKD is not so clear-cut, and that
different ECM deposition and degradation phenotypes exist
depending on disease activity and progression (38–40). Creation
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FIGURE 2

Predictors of high medial fibrosis in CKD and non-CKD veins. (A) Histogram of percent medial fibrosis in CKD/ESKD and non-CKD veins. The
minimum, first quartile (Q1), median (Q2), third quartile (Q3), and maximum values are indicated for the overall study cohort. (B) Prevalence of
age ≥ 50 years, diabetes, and CKD/ESKD per quartile of medial fibrosis in the overall study cohort. (C,D) Probability of medial fibrosis falling in
the upper quartile values (≥46.85%) as predicted by age and combined status of diabetes and CKD/ESKD stages. CKD subgroups are separated
according to disease stage and vascular access history (C) or dialysis vintage (D). DM, diabetes; CKD5, stage 5 CKD; ESKD_noAVF, ESKD without
previous AVF or AVG; ESKD_w/AVF, ESKD and previous AVF/AVG history. ∗p < 0.05 vs. (–) DM/(+) CKD5 and (–) DM/(+) ESKD_noAVF, ‡p < 0.05
vs. (–) DM/(+)CKD5 and (–) DM/ < 12 months.

of an AVF causes a profound increase in venous fibrosis in
the juxta-anastomotic segment of the access (8). Our results
indicate that this is a local effect that does not seem to affect
ECM remodeling in more proximal veins of patients with
previous AVF history.

Importantly, our study demonstrated a broad influence of
diabetes in the detrimental chronic remodeling of veins by
exacerbating IH and increasing medial fibrosis. This finding
is of interest given the treatable nature of hyperglycemia and
the potential benefits in improving vein health. A relationship
between diabetes and arterial IH and fibrosis has been
previously reported (2, 41–43), which has been mostly blamed
on the effects of advanced glycation end-products (AGEs)
on the vascular wall (44). The latter are known to increase
endothelial dysfunction, oxidative stress, vascular inflammation,
and angiotensin II signaling, among others (44, 45). The
association of diabetes with upper quartile levels of IH and
not with gradual increases mimics previous observations
in carotid IH (42), and suggests an exacerbating role or
independent mechanism superimposing the cellular responses

to dialysis conditions. The level of AGEs in tissues is
determined by glycemic control, turnover of proteins, and
kidney function (46–48). Therefore, an additive vasculopathic
effect of AGEs in CKD patients is highly conceivable (49).
Current guidelines by the Kidney Disease Outcomes Quality
Initiative for vessel preservation in pre-dialysis patients
mainly refer to avoidance of vessel injury (50). However,
improving vein suitability may be an additional reason for
life-long glycemic control. Interestingly, unlike arteries (26,
42), hypertension was not associated with chronic venous IH
or fibrosis, likely reflecting the low-pressure conditions of
venous circulation.

The limitations of the study include the retrospective
nature of the analyses, the lack of information on the
onset of comorbidities for the CKD cohort, and the limited
clinical records for organ donors which prevented us from
analyzing the effects of other clinical factors. While statistical
models accounted for both clinical and demographics factors,
differences in the latter between the CKD and non-CKD groups
may be a confounding factor to consider in future studies.
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FIGURE 3

Representative vein morphometry in CKD/ESKD and non-CKD patients. Representative cross-sections of non-CKD (A–C) and CKD/ESKD veins
(D–F) exemplifying mild (A,D), moderate (B,E), and high intimal hyperplasia (C,F). Pictures in (A,D,F) also show cases of low medial fibrosis,
whereas (B,C,E) present cross-sections with moderate-high fibrosis. I, intima; M, media. Scale bars = 400 µm.

Despite these limitations, to our knowledge, this is the first
systematic analysis of vein morphometry in CKD and non-CKD
individuals. This work improves our understanding of vascular
aging and dialysis effects in upper extremity veins and identifies
diabetes as a critical and manageable factor in the development
of venous IH and medial fibrosis.
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