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Low-density lipoprotein receptor-related protein 6 (LRP6) plays a critical role in

cardiovascular homeostasis. The deficiency of LRP6 is associated with a high risk of

arrhythmias. However, the association between genetic variations of LRP6 and sudden

cardiac death (SCD) remains unknown. This study aims to explore the association

between common variants of LRP6 and the prognosis of chronic heart failure (CHF)

patients. From July 2005 to December 2009, patients with CHF were enrolled from 10

hospitals in China. The single-nucleotide polymorphism (SNP) rs2302684 was selected

for the evaluation of the effect of LRP6 polymorphisms on the survival in patients with

CHF. A total of 1,437 patients with CHF were finally included for the analysis. During a

median follow-up of 61 months (range 0.4–129 months), a total of 546 (38.0%) patients

died, including 201 (36.8%) cases with SCD and 345 (63.2%) cases with non-SCD.

Patients carrying A allele of rs2302684 had an increased risk of all-cause death (adjusted

HR 1.452, 95% CI 1.189–1.706; P < 0.001) and SCD (adjusted HR 1.783, 95% CI

1.337–2.378; P < 0.001). Therefore, the SNP rs2302684 T>A in LRP6 indicated higher

risks of all-cause death and SCD in patients with CHF. LRP6 could be added as a novel

predictor of SCD and might be a potential therapeutic target in the prevention of SCD in

the CHF population.

Keywords: LRP6, single-nucleotide polymorphism, chronic heart failure, prognosis, sudden cardiac death

INTRODUCTION

Chronic heart failure (CHF), which may be caused by ischemic cardiomyopathy (ICM) or non-
ischemic cardiomyopathy (NICM), is one of the chief causes of morbidity and mortality worldwide
(1, 2). It currently affects more than five million Americans and the prevalence is expected to
increase by 25% within the next 15 years (3). This heart failure pandemic is also evident in Asia
and China (4). The predominant modes of death in CHF patients are pump failure and sudden
cardiac death (SCD) (5). Sudden cardiac death, caused by malignant ventricular tachycardia (VT)
or ventricular fibrillation (VF), remains a primary cause of mortality in patients with CHF (6).
Therefore, the prediction and prevention of SCD play critical roles in the management of the
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CHF population. So far, even several factors have been
known as potential predictors of SCD, including biomarkers,
hemodynamic status, and electrophysiological parameters, the
sensitivity and specificity are not powerful (7).

Low-density lipoprotein (LDL) receptor-related protein 6
(LRP6) is a single-pass transmembrane protein, which contains
four extracellular epidermal growth factor-like repeats and three
LDL receptor repeats (8). It is recognized as a coreceptor for the
Wnt signaling cascade and plays a critical role in regulating Wnt
signaling (9, 10). Work to date has identified that dysregulated
Wnt signaling conduces to a high incidence of arrhythmias
associated with various forms of heart disease (11). Furthermore,
accumulating evidence reveals the significant effect of LRP6 on
cardiovascular health and homeostasis (12). Additionally, LRP6
was mainly allocated within the gap junction of cardiomyocytes
(13). However, the potential relation between genetic variations
of LRP6 and SCDhas not yet been reported in previous studies. In
the present study, we examined the association between common
variants of LRP6 and the prognosis in patients with CHF.

MATERIALS AND METHODS

Study Population
From July 2005 to December 2009, patients with CHF were
enrolled from 10 hospitals in China. Details for the cohort have
been described previously (9, 14–16). Inclusion criteria include:
(a) CHF caused by ICM or idiopathic dilated cardiomyopathy
(DCM); (b) classification of the New York Heart Association
(NYHA) was II–IV with optimizing drug therapy; and (c) left
ventricular ejection fraction (LVEF) ≤50% in ICM or ≤45% in
DCM (9, 14–16). Ischemic cardiomyopathy was diagnosed as
≥70% luminal stenosis of one or more major coronary arteries
diagnosed by coronary angiography with a myocardial infarction
history at least 3 months before the enrolment. DCM was
diagnosed consistently with the guidelines of familial DCM (17).
Excluded criteria include: (a) pacemaker dependency; (b) unable
to perform the genotyping; and (c) pregnancy, terminal illnesses,
or other uncontrollable system diseases (9, 14–16).

The study was approved by the Ethics Committee of Beijing
Anzhen Hospital and Fuwai Hospital (Beijing, China), and
complied with the principles of the Declaration of Helsinki.
Written informed consent was obtained from all the enrolled
patients who reported themselves as Chinese Han nationality.

Endpoint Evaluation
All the participants were followed up periodically until August
2017 during regular outpatient clinics or by transtelephonic
visits. The endpoints included all-cause death, SCD (ICD
appropriate discharge was regarded as SCD), and non-SCD
(NSCD) (heart transplantation was regarded as non-SCD).
Sudden cardiac death was defined as an unexpected death within
1 h of onset of acute symptoms attributable to cardiac causes
or an unwitnessed death of someone last seen in a stable

Abbreviations: CHF, chronic heart failure; DCM, dilated cardiomyopathy; ICM,

ischemic cardiomyopathy; LRP6, low-density lipoprotein receptor-related protein

6; LVEF, left ventricular ejection fraction; PCR, polymerase chain reactions; SCD,

sudden cardiac death.

condition in 24 h without evidence of non-cardiac causes (7).
If there were discrepancies between the first two reviewers, the
event was adjudicated by a third investigator to provide the
final classification.

Tag Single-Nucleotide Polymorphisms
Selection
Tag single-nucleotide polymorphisms (SNPs) were selected by
the pairwise tagging method from the HapMap CHB databank
(HapMap Data Rel 24 PhaseII, Nov08, on NCBI B36 assembly,
dbSNP b126) via the tag SNPs’ online software (http://hapmap.
ncbi.nlm.nih.gov/cgi-perl/gbrowse/hapmap24_B36/#search).
Common variants were defined as a minor allele frequency
(MAF) > 0.05, with a linkage disequilibrium (LD) measure r2

threshold of 0.8. Forty-three tag SNPs that covered the entire
LRP6 gene were selected. To reduce the false-positive caused by
multiple tests, with 43 candidate SNPs, P < 0.001 was considered
statistically significant for SNP selection. Polymerase chain
reactions (PCRs) were performed firstly in 100 subjects with
CHF. There were no significant associations between SNPs and
clinical endpoints other than the SNP rs2302684 T>A. Thus,
rs2302684 was finally selected to perform the PCRs in the whole
study population for the analysis.

Genotyping in CHF Population
Genomic DNA was extracted from peripheral blood leukocytes
of the participants and stored at −70◦C after determination of
absorbance at 260 nm followed by Picogreen analysis (Molecular
Probes, Eugene, Oegon, USA) (18).

Primers were designed by Primer Premier 5.0 software
as follows: forward TTGATGATGCTCCTGTAA and reverse
TATTCTTGGCCTTGTTCT (328 bp). PCR amplification was
performed with the Geneamp PCR system 9700 (Applied
Biosystems). An initial 4min cycle at 94◦C was followed by 35
thermal cycles at 94◦C for 30 s, 47◦C for 30 s, and 72◦C for
30 s, and ended with a 10min extension at 72◦C. Each reaction
mixture (30 µl) contained 3 µl 10× PCR buffer, 0.5 µl dNTP-
mix (10 mmol/L), 0.5 µl of each primer (10 µmol/L), 0.5 µl Taq
polymerase (5 U/µl; Takara Bio), 1 µl genomic DNA (50 ng/µl),
and 24 µl double-distilled H2O.

PCR products were sequenced after purification by ABI
3130XL DNA Analyzer System (Applied Biosystems, USA).
Repeat genotyping was carried out in 95 (5.0%) random duplicate
samples to affirm the reproducibility was 100% (Figure 1).

Statistical Analysis
Continuous variables were presented as the mean ± SD
and compared by Student’s test. Categorical variables were
presented as numbers and percentages and compared by
chi-square analysis. A P-value of < 0.05 was considered
statistically significant. Linkage disequilibrium of rs2302684 was
analyzed by Haploview4.2, and Hardy-Weinberg equilibrium
of alleles was analyzed by chi-square analysis with 1 degree
of freedom. Survival analysis was performed in CHF patients.
Cox proportional hazards models were performed under three
different models (dominant, recessive, additive models) to
evaluate the effects of genotype on survival. Kaplan-Meier curve
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FIGURE 1 | Genotyping of the studied population showing the wild type (A) and the variants of rs2302684 T>A (B,C).

was applied to describe survival freedom from events and
multivariate cox proportional hazards models were used to adjust
for confounding factors. The covariates were selected according
to clinical significance and baseline data, including age, sex,
NYHA levels, LVEF, ischemic etiology, and other variables with
a P-value of < 0.2 in the baseline. Statistical analyses were
conducted using the IBM SPSS 26.0 software.

RESULTS

Clinical Characteristics of the Studied
Population
A total of 1,437 patients (age 60.55 ± 11.98 years, 1,134 males)
with CHF were finally enrolled for the analysis, including 957
patients with ICM and 480 patients with DCM. The mean LVDD
of the participants was 63.27± 9.77mm, and the mean LVEF was
36.04 ± 8.80%. Among them, 43.0% of patients had the NYHA
function of level II, 32.6% of patients had the NYHA function of
level III, and the other 24.4% patients had the NYHA function
of level IV. The mean BMI of the participants was 24.84 ± 3.84
kg/m2. The clinical characteristics were summarized in Table 1.

In the studied CHF population, 443 patients (age 61.41 ±

11.79 years, 340 males) carried A allele of SNP rs2302684. The
patients carrying A allele of SNP rs2302684 comprised a larger
percentage of patients with ICM than those carrying the wild
type of TT (71.6 vs. 64.4%, P = 0.009). Furthermore, CHF
patients with A allele of rs2302684 had a tendency to the higher
classification of NYHA level than those without (NYHA II, 38.8
vs. 44.9%; NYHA III, 33.2 vs. 32.4%; NYHA IV, 28 vs. 22.7%; P
= 0.047). However, no significant differences were demonstrated
in age, sex distribution, BMI, LVDD, LVEF, complications, the
prevalence of arrhythmias, and medication between the patients
with rs2302684 wild type of TT and those with A allele (Table 1).

Long-Term Follow-Up of the CHF
Population
During amedian follow-up of 61months (range 0.4–129months)
in 1,437 participants with CHF, a total of 546 (38.0%) patients
died, including 348 patients with ICM and 198 patients with

DCM. Among them, 201 (36.8%) cases had SCD, including 129
cases with ICM and 72 cases with DCM. The rest of 345 (63.2%)
cases had NSCD.

Associations of SNP Rs2302684 T>A and
the Clinical Endpoints
The correlation of mortality and A allele of rs2302684 were
analyzed by survival cox regression analysis in the CHF cohort
under the dominant, recessive, and additive models, respectively.
The effect of the A allele on mortality was significant under
different models (Table 2). Under the dominant model, the risks
of all-cause death (HR 1.45, 95% CI 1.21–1.73; P < 0.001)
and SCD (HR 1.85, 95% CI 1.39–2.45; P < 0.001) increased
significantly in patients with A allele of rs2302684. After adjusted
for age, sex, ischemic etiology, NYHA levels, LVEF, BMI, and the
use of β-blocker, the associations remained significant in all-cause
death (HR 1.43, 95% CI 1.20–1.72; P < 0.001) and SCD (HR 1.80,
95% CI 1.34–2.40; P < 0.001). The Kaplan-Meier curves made
under the dominant models were shown in Figure 2. Thus, SNP
rs2302684 T>A indicated a higher risk of all-cause death and
SCD but not NSCD in the CHF patients.

The effect of A allele of rs2302684 on the mortality endpoints
was generally consistent across the selected subgroups, including
different age (P for interaction = 0.268 for all-cause mortality
and 0.189 for SCD), sex (P for interaction = 0.838 for all-
cause mortality and 0.183 for SCD), and ischemic etiology (P
for interaction = 0.473 for all-cause mortality and 0. 664 for
SCD) (Figure 3).

DISCUSSION

Main Findings
In this prospective study of 1,437 patients with CHF in the
Chinese Han nationality, the associations of SNP rs2302684 T>A
in LRP6 and long-term clinical endpoints were explored. The A
allele of rs2302684 was recognized as an independent risk factor
and predictor of all-cause death and SCD in the CHF population.
To the best of our knowledge, this is the first study to show
the association between common variants in LRP6 gene with the
different causes of mortality in patients with CHF.
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TABLE 1 | Baseline characteristics of the studied population.

Clinical characteristics CHF

ALL TT TA+AA P-values

(n = 1,437) (n = 994) (n = 443)

Sex, n = Male (%) 1,134 (78.9) 794 (79.9) 340 (76.7) 0.203

Age (years) 60.55 ± 11.98 60.16 ± 12.05 61.41 ± 11.79 0.068

Etiology, n = ICM (%) 957 (66.6) 640 (64.4) 317 (71.6) 0.009

LVDD (mm) 63.27 ± 9.77 63.15 ± 9.57 63.55 ± 10.21 0.479

LVEF (%) 36.04 ± 8.80 36.26 ± 8.54 35.55 ± 9.36 0.157

NYHA, n (%) 0.047

I 0 0 0 –

II 618 (43.0%) 446 (44.9) 172 (38.8) –

III 469 (32.6%) 322 (32.4) 147 (33.2) –

IV 350 (24.4%) 226 (22.7) 124 (28) –

BMI (kg/m2 ) 24.84 ± 3.84 24.72 ± 3.80 25.10 ± 3.91 0.085

Hypertension, n (%) 723 (50.3) 493 (49.6) 230 (51.9) 0.45

Hyperlipidemia, n (%) 353 (24.6) 249 (25.1) 104 (23.5) 0.566

Diabetes, n (%) 361 (25.1) 245 (24.6) 116 (26.2) 0.579

QRS durations (ms) 110.45 ± 52.48 110.74 ± 53.36 109.80 ± 50.51 0.755

AF/AFL, n (%) 214 (14.9) 151 (15.2) 63 (14.2) 0.692

PVC/NSVT, n (%) 114 (7.9) 72 (7.2) 42 (9.5) 0.179

VT/VF, n (%) 43 (3.0) 27 (2.7) 16 (3.6) 0.452

Medications, n (%)

β-blocker 1077 (74.9) 733 (73.7) 342 (77.2) 0.184

ACEI 992 (69.0) 686 (69.0) 309 (69.8) 0.828

Diuretic 1055 (73.4) 720 (72.4) 333 (75.2) 0.309

Aldosterone antagonists 1066 (74.2) 738 (74.2) 328 (74.0) 0.987

ICD, n (%) 37 (2.6) 24 (2.4) 13 (2.9) 0.693

AF, atrial fibrillation; AFL, atrial flutter; BMI, body mass index; CHF, chronic heart failure; DCM, dilated cardiomyopathy; ICM, ischemic cardiomyopathy; LVDD, left ventricular end-

diastolic diameter; LVEF, left ventricular ejection fraction; NSVT, non-sustainable ventricular tachycardia; NYHA, New York Heart Association; PVC, premature ventricular contraction; VT,

ventricular tachycardia; VF, ventricular fibrillation.

M ± SD for normally distributed data and n (%) for categoric variables.

TABLE 2 | Associations of SNP rs2302684 T>A and clinical endpoints of the studied population.

Models Dominant (TA + AA compared with TT) Recessive (AA compared with TT + TA) Additive models

TT AA + TA HR (95% CI) TT + TA AA HR (95% CI) HR (95% CI)

All cause death 361 185 521 25

Unadjusted 1.45 (1.21–1.73) 1.83 (1.22–2.73) 1.40 (1.21–1.63)

Adjusted* 1.43 (1.20–1.72) 1.87 (1.25–2.79) 1.39 (1.20–1.62)

SCD 121 80 189 12

Unadjusted 1.85 (1.39–2.45) 2.36 (1.3–4.23) 1.71 (1.36–2.14)

Adjusted* 1.80 (1.34–2.40) 2.34 (1.33–4.29) 1.68 (1.33–2.12)

NSCD 240 105 332 13

Unadjusted 1.25 (0.99–1.57) 1.51 (0.87–2.64) 1.23 (1.01–1.50)

Adjusted* 1.24 (0.98–1.57) 1.54 (0.88–2.69) 1.23 (1.01–1.50)

CHF, chronic heart failure; HR: NSCD, non-sudden cardiac death; SCD, sudden cardiac death.

*Adjusted for: age, sex, BMI, NYHA class, ejection fraction, ischemic etiology, non-sustained ventricular arrhythmias, use of beta-blocker.

LRP6 and Wnt Signal Regulation
The human LRP6 gene, which is located in chromosome 12 p11–
p13, has 150 kb in length with 23 exons (8, 19). It encodes a

member of the low-density lipoprotein receptor family, which is
composed of cell surface proteins that participate in receptor-
mediated endocytosis of specific ligands (8, 19). LRP6 gene
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FIGURE 2 | Kaplan-Meier curves in the chronic heart failure (CHF) cohort. Patients carrying A allele of rs2302684 were more vulnerable to all-cause death and sudden

cardiac death (SCD) than those without it. The table denotes the number of patients at risk for every 20 months of the follow-up.

FIGURE 3 | The effect of A allele of rs2302684 on all-cause mortality and

sudden cardiac death in different subgroups, including different ages, sex,

and etiology.

is homologous to LRP5 and has large extracellular domains
consisting of four β-propeller motifs followed by three LDL
ligand-binding domains, which regulate the binding process
between Wnt secretory protein and frizzled family of receptors
(10, 20). LRP6 function as coreceptors for Wnt ligands and thus
play a central role in Wnt/β-catenin signaling involved in a wide
variety of biologic processes (12, 21).

Wnts are a family of secreted glycoproteins that participate
in activating several signaling pathways (22). It could bind to a

class of Frizzled receptors or LRP6 to downregulate the glycogen
synthase kinase-3β (GSK-3β) activity and to initiate the canonical
Wnt/β-catenin signaling cascade (22). Wnt/β-catenin signaling
is a crucial regulator of tissue development and homeostasis,
especially in cardiac differentiation and development (11, 20).
The conserved Wnt cascade has been confirmed to control
the proliferation, differentiation and polarity of cells (23–25).
Abnormal signaling disturbs tissue growth and function, which
could lead to a number of debilitating and terminal diseases
(20). Thus, alterations in the LRP6 gene might affect Wnt/β-
catenin signaling and lead to several human diseases including
osteoporosis, Alzheimer’s disease, coronary artery disease, and
metabolic disease (20, 26–31).

LRP6 and Sudden Cardiac Death
Wnt signaling is critical in cardiac development and various
cardiac pathologies, including cardiac hypertrophy and fibrosis,
myocardial infarction, heart failure, and arrhythmias (30, 32, 33).
It has been reported that abnormalities of Wnt signaling were an
important cause of familial sudden death in patients with ARVC
(34). Additionally, a recent genome-wide association study
showed that WNT8A was associated with atrial fibrillation (35).

Mutations in LRP6 could dysregulate Wnt signaling and
have been associated with numerous human diseases (12, 20).
The rs2302684 is an intron variant. No association has been
reported between this tag SNP of LRP6 and the prognosis of
patients with CHF in the Chinese Han population. Our study
revealed a close relationship between LRP6 common variants
and SCD in the CHF group. According to previous researches,
the potential reasons for this relationship might have two
aspects. On one hand, LRP6 serves as a scaffold protein that
regulates the cardiac gap junction assembly. LRP6 deficiency
might impair the dynamics of connexin43 protein trafficking and
stability, which disrupts gap junction formation and function.
The proper functioning of gap junctions is essential in the
generation and propagation of cardiac action potentials. Thus,
the disrupting connexin43 expression or phosphorylation caused
by LRP6 deficiency impaired the electrical communication
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in gap junctions and led to the initiation and maintenance
of arrhythmias (33, 36, 37). It was reported that defective
connexin43 gap junctions in LRP6-ablated mouse hearts induced
VT and VF (13). On the other hand, many studies demonstrated
that Wnt signaling was linked to cardiac fibrosis which
could impede electrical wave propagation and potentially cause
arrhythmias (38–40). Furthermore, a recent study reported that
LRP6 played an important role in keeping the integrity of
the intercalated disk, on which the coordinated excitation and
contractile performance of the myocardiumwere dependent, and
the interaction between LRP6 and connexin43 might be involved
in this process (41). Therefore, LRP6 variants might cause
malignant arrhythmias and SCD via disturbing Wnt signaling
pathways, as well as disrupting the function of gap junction and
the intercalated disk of the myocardium.

LRP6 and CHF With Different Etiologies
It was reported that LRP6 was dramatically decreased in heart
tissues with DCM (42). Additionally, LRP6 is genetically linked
to early coronary artery disease and hyperlipemia (20, 43, 44).
It has been demonstrated that mutant LRP6 was associated
with atherosclerosis. The underlying mechanism might be as
follows: firstly, LRP6 is critical in LDL receptor-mediated LDL
uptake, which is significant in atherosclerosis; secondly, LRP6
plays an important role in metabolic regulation, including lipid
homeostasis and glucose metabolism, thus it is associated with
atherosclerosis; lastly, mutant LRP6 could trigger atherosclerosis
by activating platelet-derived growth factor (PDGF)-dependent
vascular smooth muscle cell differentiation (31, 45). Considering
the close relationship of LRP6, DCM, and atherosclerosis, we
analyzed the association of LRP6 with the mortality endpoints in
different etiologies of CHF. In our study, the effect of rs2302684A
allele in LRP6 on the mortality endpoint was consistent in
patients with different CHF reasons, including ICM and DCM.
Therefore, we found that LRP6 variants were associated with
a higher risk of all-cause death and SCD in the CHF cohort
attributed to both ICM and DCM.

Study Limitations
There are several limitations to the study. The lack of functional
research in this work is one of the limitations. In this study,
we only found the association between the SNP of LRP6
and SCD in CHF patients via gene tests, however, the exact
mechanism of how the SNP affects the heart is still unknown.
We only speculate the possible mechanism according to existing
studies, and we still need further functional studies to explore
the underlying mechanism in our future work. Additionally,
ICD recordings were not collected in the present cohort, and

only a limited number of patients had a history of ventricular
arrhythmias (VAs). Therefore, we are not able to deepen
our investigation about the association between VAs and the
SNP of interest.

CONCLUSIONS

The study firstly demonstrated that LRP6 rs2302684
polymorphism is associated with increased risks of all-cause
death and SCD in CHF patients in the Chinese Han population.
Therefore, LRP6 could be regarded as an independent risk factor
and a novel predictor of SCD, and it might provide a potential
therapeutic target in SCD prevention.
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