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Forkhead box O3 (FOXO3) has been proposed as a homeostasis regulator, capable

of integrating multiple upstream signaling pathways that are sensitive to environmental

changes and counteracting their adverse effects due to external changes, such as

oxidative stress, metabolic stress and growth factor deprivation. FOXO3 polymorphisms

are associated with extreme human longevity. Intriguingly, longevity-associated single

nucleotide polymorphisms (SNPs) in human FOXO3 correlate with lower-than-average

morbidity from cardiovascular diseases in long-lived people. Emerging evidence indicates

that FOXO3 plays a critical role in vascular aging. FOXO3 inactivation is implicated in

several aging-related vascular diseases. In experimental studies, FOXO3-engineered

human ESC-derived vascular cells improve vascular homeostasis and delay vascular

aging. The purpose of this review is to explore how FOXO3 regulates vascular aging and

its crucial role in aging-related vascular diseases.
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BACKGROUND

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in individuals aged
65 years and above (1). Vascular aging has been implicated as a driver of a number of aging-
related vascular disorders (2). A large clinical study identified two specific age-related arterial
phenotypes, endothelial dysfunction, and increased arterial stiffness as independent predictors for
future diagnosis of CVD (3). At the macro level, aging vessels exhibit luminal expansion, diffused
stiffness, wall thickening, and blunted angiogenesis (4, 5). Microscopically, aging vessels undergo
vascular cell senescence and loss of vascular homeostasis, resulting in inflammation, oxidative
stress, and calcification of blood vessels (4). The pace of vascular aging differs in individuals due
to differences in their genetics and environment background.

The insulin/IFG-1 signaling (IIS) pathway is one of the major pathways involved in the
regulation of aging rate, which negatively influences the activity of forkhead box O3 (FOXO3)
(6). The first identified FOXO member, DAF-16/FOXO3, has been shown to prolong lifespan
in C. elegans by regulating insulin-like metabolic signaling (7, 8). Additionally, studies have
demonstrated that the IIS pathway is associated with an extended lifespan in a variety of species
including worms, yeasts, flies, and mice (9). To assess the genetic contributions of genes associated
with IIS signaling to human longevity, researchers performed a nested case-control study on 5
prospective longevity genes and found that FOXO3 variation was strongly correlated with human
longevity (10). Subsequently, this finding was quickly duplicated in a variety of populations around
the world (11–13). Five FOXO3 single nucleotide polymorphisms (SNPs) were shown to have
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a significant correlation with longevity in a meta-analysis of
11 independent studies (14). FOXO3 has been identified as the
second most replicated gene associated with extreme human
longevity (15). While FOXO3 is a convincing longevity gene,
the mechanism by which FOXO3 determines longevity remains
unknown. Interestingly, long-lived individuals demonstrated
some phenotypes associated with healthy aging, including a lower
prevalence of CVD and cancer (10). Additionally, the longevity-
associated FOXO3 SNPs correlate with lower-than-average CVD
morbidity in long-lived individuals (10, 16). Another study
found that longevity-associated FOXO3 genetic variants prolong
lifespan only in individuals with cardiometabolic disease (CMD),
but not in all individuals (17). These findings show that FOXO3
may maintain cardiovascular homeostasis, hence promoting
longevity. A single-cell transcriptomic analysis of coronary
arteries and aortas of young and elderly cynomolgus monkeys
found that FOXO3 expression was downregulated in six subtypes
of vascular cells in older monkeys compared to young monkeys
(18). Although the underlying mechanisms are unknown,
FOXO3 is require for maintaining vascular homeostasis under
stressful conditions and preventing vascular aging. In this review,
we will summarize the most recent findings on FOXO3 functions
and mainly focus on its role in aging-related vascular diseases.

OVERVIEW OF FOXO3

FOXO proteins are ubiquitously expressed transcription
factors that activate gene transcription when they recognize

promoters containing the sequence 5
′

-TTGTTTAC-3
′

(19). By
integrating multiple upstream signaling pathways, FOXOs help
maintain tissue homeostasis and counteract adverse effects of
environmental changes such as oxidative stress, metabolic stress,
and growth factor deprivation (20). The transcriptional targets of
FOXOs include genes involved in cell cycle arrest (21), oxidative
resistance (22), apoptosis (23), autophagy (24), DNA damage
repair (25), and energy metabolism (26). The biological role
of FOXOs is primarily to respond to stress conditions, rather
than as an essential agent of normal physiology. In humans, the
FOXO family comprises FOXO1, FOXO3, FOXO4, and FOXO6.
FOXO3 has been associated with a number of age-related
diseases, including cancer (27), CVD (28), intervertebral disc
(IVD) degeneration (29), and neurodegenerative diseases (30).
Particularly, the role of FOXO3 in CVD appears attractive.

REGULATION OF FOXO3

Numerous upstream factors regulate FOXO3 via post-
transcriptional or post-translational modifications. The
exquisite regulatory network formed by diverse upstream
regulators and downstream effectors of FOXO3 contributes to its
responsiveness to environmental changes and plays an important
role in maintaining homeostasis (20).

MicroRNAs Contribute to
Post-transcriptional Regulation of FOXO3
MicroRNAs (miRNAs) act as post-transcriptional regulators of
gene expression (31). Numerous miRNAs, including miR-155,

miR-132, miR-212, miR-223, miR-27a, miR-96, miR-30d, miR-
182, miR-592, miR-1307 and miR-29a, bind to FOXO3 3

′

-UTR
and inhibit its expression (27). Other miRNAs have an indirect
effect on FOXO3, for example, by targeting upstream factors of
FOXO3 to modulate its activity (32). Long non-coding RNAs
(lncRNAs) and circular RNAs (circRNAs) are also known to
regulate FOXO3 (33, 34). A comprehensive exploration of the
relationship between non-coding RNAs and FOXO3 will help in
the development of more effective chemotherapy.

Post-translational Modifications of FOXO3
FOXO3 activity is mainly regulated by post-translational
modifications (PTMs), including phosphorylation, acetylation,
methylation, ubiquitination, glycosylation, prenylation, and
sulphation. Most of these PTMs change the subcellular
localization of FOXO3 and its DNA binding affinity (27). The
subcellular localization of FOXO3 is essential for its activity and
function (35).

Phosphorylation and Dephosphorylation
The primary regulator of FOXO3 activity is its translocation
between the nucleus and cytoplasm. Phosphorylation is a critical
PTM that regulates FOXO3 activity. Numerous kinases recognize
specific sites on FOXO3 and may exert opposing effects on
its activity (36). FOXO3 is inactive under normal conditions,
due to negative regulation by IIS-PI3K-Akt signaling. Akt
phosphorylates FOXO3 at three highly conserved residues, T32,
S253, and S315, establishing docking sites for the chaperone 14-
3-3, preventing FOXO3 from re-entering the nucleus (37). PTEN
antagonizes the effect of PI3K and induces FOXO3 activation.
When cells are stressed, such as when reactive oxygen species
(ROS) levels are elevated, FOXO3 translocates into the nucleus
and exhibits increased transcriptional activity (20).

The majority of phosphorylases, including extracellular
signal-regulated kinase (ERK), IκB kinase isoform β (IKKβ),
serum-and glucocorticoid-inducible kinases (SGK), and
inhibitor of nuclear factor kappa-B kinase subunit epsilon
(IKBKE) suppress FOXO3 activity (38). In comparison, FOXO3
is activated upon phosphorylation by c-Jun N-terminal kinase
(JNK), mammalian sterile 20-like kinase 1 (MST1), and AMP-
activated protein kinase (AMPK) (39–41). AMPK-mediated
phosphorylation impacts FOXO3’s interaction with cofactors
but does not affect does not affect its subcellular localization
(42). JNK inhibits insulin signal transduction on multiple levels
by reducing the activity of insulin receptor substrate (IRS) and
inducing the release of FOXO3 from 14-3-3, hence surpassing
growth factor-induced FOXO3 inhibition (19).

Acetylation and Deacetylation
Nuclear FOXO3 is acetylated by p300 and CBP and deacetylated
by deacetylases such as SIRT1 and SIRT2. The effect on
acetylation and deacetylation on FOXO3’s affinity for DNA is
controversial (43, 44). Notably, the effects of SIRT1 on FOXO3
activity are not fixed rigidly, for instance, SIRT1 promotes the
expression of target genes associated with antioxidant stress but
suppresses the expression of proapoptotic genes (45).

Ubiquitination and methylation also act as regulators
of FOXO3, with multiubiquitination resulting in FOXO3
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degradation. Different PTMs may occur on the same lysine
residues on FOXO3, for example, lysine residues deacetylated by
SIRT1 might be ubiquitinated, thereby degrading FOXO3 (46).
Alterations in PTMs associated with aging may contribute to the
onset of some age-associated diseases.

ROLE OF FOXO3 IN VASCULAR AGING

Aging-associated mechanisms, including deregulated nutrient
sensing, oxidative stress, and epigenetic changes in the vascular
system may contribute to the pathogenesis of vascular aging.
FOXO3 acts as an integrator of multiple signaling pathways
involved in the maintenance of vascular homeostasis, and its
dysregulation is implicated in a variety of vascular disorders
(Figure 1).

FOXO3 and Oxidative Stress
Oxidative stress is a major driving force for vascular aging.
Age-related increases in reactive oxygen species (ROS) result
in endothelial dysfunction and arterial stiffness (47, 48).
Endothelium-derived nitric oxide (NO) possesses anti-
inflammatory, anti-thrombotic, and anti-leukocyte adhesion
properties. Under pathological condition, ROS inactivates NO,
which may contribute to the development of atherosclerosis (49).
Exercise can restore endothelium-dependent dilation in aged
mice by increasing NO bioavailability and reducing oxidative
stress (50).

FOXO3 deletion results in an increase in ROS in mouse
hematopoietic stem cells (51). FOXO3 is indispensable
for the antioxidant-mediated protection in cardiovascular

system. FOXO3 protects vascular endothelial cells (ECs)
and vascular smooth muscle cells (VSMCs) against oxidative
stress injury by up-regulating the expression of antioxidant
enzymes such as catalase and manganese-superoxide dismutase
(MnSOD) (52, 53).

FOXO3 and Dysregulated Nutrient-Sensing
Pathways
AMPK and mTOR
AMPK and mTOR are key regulators of energy homeostasis.
AMPK promotes ATP synthesis in response to an energy
deficit caused by glucose deprivation or exercise (54). Activated
AMPK regulates cell growth and metabolism at low energy
levels by phosphorylating a range of substrates (55). In VECs,
AMPK activates endothelial nitric oxide synthase (eNOS),
phosphorylating it directly and so promoting NO production
(56). Second, AMPK activation inhibits the generation of
inflammatory chemokines in VECs by attenuating nuclear factor-
kappaB (NF-κB) signal transduction (54). Two more studies
demonstrate that AMPK signaling in ECs is required for
angiogenesis in response to hypoxic stress and differentiation of
endothelial progenitor cells (57, 58). However, AMPK activity is
reduced in the aorta and cerebral arteries of old rodents (50, 59).

mTOR is a key regulator of anabolic processes and its activity
decreases in response to nutrient deprivation. Decreased mTOR
activity influences aging and longevity in invertebrates and
mice (60). Numerous studies have demonstrated that inhibiting
mTOR delays EC senescence (61, 62). Additionally, mTOR
inhibition mediates the phenotypic transition of VSMCs by

FIGURE 1 | FOXO3 is an integrator of multiple signaling pathways to maintain vascular homeostasis. Under normal conditions, FOXO3 is inactive due to the negative

regulation by IIS-PI3K-Akt pathway. Akt phosphorylates FOXO3 at three highly conserved residues T32, S253, and S315, thereby establishing docking sites for the

chaperone protein 14-3-3 and preventing it from re-entering the nucleus. PTEN antagonizes the effect of PI3K and induces FOXO3 activation. When cells are exposed

to stress, including growth factor deprivation, metabolic stress, and oxidative stress, FOXO3 translocates into the nucleus and exhibits increased transcriptional

activity. FOXO3 regulates a number of cellular processes, including apoptosis, autophagy, oxidative resistance, and metabolism, all of which are involved in the

pathological process of vascular aging.
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blocking the PDGF-induced contractile VSMC reduction (63).
Rapamycin, an mTOR inhibitor, suppresses oxidative stress and
vascular stiffness, revering the effects of age-related arterial
dysfunction (64).

Between AMPK and mTOR, there are intricate and
precise regulatory mechanisms that efficiently regulate energy
metabolism. Akt, a positive regulator of energy metabolism,
inhibits AMPK and promotes mTOR complex 1 (mTORC1)
activation (65). AMPK is activated in response to energy
stress, whereas mTORC1 is inactivated (66). Activated AMPK
phosphorylates FOXO3 (42), which is an effector of AMPK-
mediated apoptosis (67) and hypoxia-induced autophagy
(68). Additionally, FOXO3 may suppress mTORC1 activity by
inhibiting the regulatory associated protein of mTOR (Raptor)
(69). AMPK promotes FOXO3 activation and inhibits mTOR,
which seems to be protective in response to hypoxia, ROS, and
starvation (70).

SIRTs
SIRTs are also activated in cells with inadequate nutritional
status to increase their resistance to stress. The activated SIRT
family members have anti-inflammatory, anti-oxidative stress
and anti-senescence effects in the vasculature (71–74). SIRT1
acts as an anti-atherosclerotic factor in mice by preventing
DNA damage (75). However, endogenous SIRT1 expression
decreases with age (76). Decreased SIRT1 levels also contribute to
vascular endothelial dysfunction associated with aging through
its modulation of eNOS acetylation (77). Similarly, SIRT6
protects against DNA damage, telomere dysfunction, senescence,
and atherosclerosis in vascular cells (78, 79).

Chronic hyperglycemia induces accelerated vascular aging.
SIRT1-mediated deacetylation of FOXO3 is important for VECs
survival under high-glucose conditions (80, 81). High glucose
levels suppress the expression of SIRT1 and FOXO3 in VECs.
SIRT1 overexpression protects VECs from high glucose-induced
apoptosis (81). Additionally, the AMPK/SIRT1/FOXO3 signaling
pathway affects the phenotypic switching of VSMCs (82).
Moreover, the role of SIRT1 in ameliorating oxidative stress is
associated with FOXO3 activation (22). SIRT1 enhances catalase
activity and inducesMnSOD expression by deacetylating FOXO3
to control intracellular ROS levels (83).

Although caloric restriction (CR) slows the aging process
and decreases diabetes and CVD mortality, the underlying
mechanisms are unknown (84). Numerous studies have
highlighted the importance of nutrient-sensitive protein
pathways such as AMPK, mTOR, SIRTs, and the insulin pathway
(41). FOXO3 mediates cellular response to CR. By serving as a
downstream effector for the insulin, AMPK and SIRTs pathways,
FOXO3 stimulates the expression of stress genes in response to
nutritional deficiency (85).

FOXO3 and Apoptosis
Apoptosis is evident in ECs and VSMCs in atherosclerotic
plaques (86–88). FOXO3 up-regulates the expression of
numerous apoptosis-related genes, including FasL, Bim, Puma,
TRAIL, and Noxa (89). Bim is a proapoptotic member of the
Bcl-2 family, and its expression is suppressed by Akt activation
in VSMCs expressing wild-type FOXO3, but not in FOXO3

mutant cells (90). Apoptosis is an essential process by which
unwanted or abnormal cells are removed during development.
Apoptosis, however, may result in microvascular rarefaction and
aneurysm in the vasculature. VSMCs apoptosis may even cause
atherosclerotic plaque instability and rupture (91).

FOXO3 and Autophagy
Autophagy maintains homeostasis by removing damaged
organelles and misfolded proteins (92). Autophagy has
been shown to decrease with aging in animal models (93).
Overexpression of autophagy-related gene 5 (ATG5) induces
autophagy and prolongs life span in mice (94). In the vascular
system, autophagy is associated with diverse physiological and
pathophysiological processes, including angiogenesis, vascular
calcification, and atherosclerosis (95). Reduced autophagy
markers in senescent ECs may impair arterial endothelium-
dependent dilatation (96). Autophagy is also reported to preserve
arterial endothelial function by increasing NO bioavailability and
reducing inflammation and oxidative stress (96). Additionally,
spermidine-induced autophagy improves NO bioavailability and
reduces arterial stiffness in aged mice (97).

Numerous autophagy-related genes, includingATG12, BNIP3,
ATG8, and GABARAPL1 are targets of FOXO3 (24, 98). FOXO3
is an important pro-autophagic factor in cardiomyocytes (99).
In cardiac microvascular endothelial cells (CMECs), hypoxia
suppresses phosphorylation of FOXO3 which induces autophagy
formation (100). FOXO3 accumulation and nuclear translocation
also elevate ATG protein levels in renal tubular epithelial cells,
thus complementing the core component of autophagy (101).

FOXO3 and Epigenetics
Aging is a complex process driven by genetic and environmental
factors. Epigenetics, an important interface between genetic and
environmental factors influences aging as well as the occurrence
and progression of aging-related disorders (102). Epigenetics,
including DNA methylation patterns, histone modifications, and
non-coding RNA regulation, play a crucial role in vascular
aging (103).

MiRNA expression in VECs and VSMCs may correlate with
vascular aging (104). Various miRNAs that directly influence
FOXO3 expression, including miR-27a, miR-155, miR-233,
and miR-29a affect vascular pathological processes. MiR-155
inhibits EC proliferation and migration, which eventually
disrupts endothelial barriers (105). MiR-148a-3p upregulation
in atherosclerotic patients suppresses FOXO3 expression and
impairs EC proliferation and migration, ultimately aggravating
atherosclerosis (106). Upregulation of a disintegrin and
metalloproteinase with thrombospondin motifs-7 (ADAMTS-7)
by miR-29a repression attenuates VSMC calcification (107).
MiR-34a, upregulated in atherosclerotic plaques (108), targets

SIRT1 3
′

UTR to suppress SIRT1 expression (109). The role
of SIRT1 in reducing oxidative stress depends on FOXO3
activation. Notably, the reversibility of epigenetic changes is
a promising approach for developing epigenome-influencing
interventions against cardiovascular disorders.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 December 2021 | Volume 8 | Article 778674

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Zhao and Liu FOXO3 and Aging-Related Vascular Diseases

FOXO3 and ECM Remodeling
Aging alters extracellular matrix (ECM) synthesis and cell-
ECM interactions (110). Decreased elastin synthesis with
age reduces the elasticity and resilience of the vascular wall,
impairing its ability to cope with mechanical damage and
sudden changes in pulsatile pressure waves (111). Increased
collagen synthesis in arterial walls linked with aging contributes
to vascular fibrosis and arteriosclerosis (111). Aging also
affects the secretion phenotype of VECs and VSMCs and
affects matrix metalloproteinase (MMP) secretion (112).
Elevated MMP activation by high ROS levels impairs the
structural integrity of the vascular system and promotes
pathological remodeling, contributing to the possibility of
aneurysm formation and vascular rupture (112). Aging-
related ECM remodeling also obstructs microvascular barrier
function (113).

Studies on the effect of FOXO3 on MMPs have yielded
inconsistent results. MMP13, MMP2 and MMP3 are
considered FOXO3 targets. Activated FOXO3 induced
ECM breakdown via MMP13 activation (28). Apelin, an
adipocytokine, induces VSMC migration which is a critical
event in atherosclerosis progression. Apelin promotes Akt-
mediated phosphorylation of FOXO3, which enhances
FOXO3 translocation from the nucleus to the cytoplasm
and increases MMP2 levels (114). Additionally, FOXO3
phosphorylation has been shown to inhibit MMP3 promoter
activity (115). ECMs are important in EC survival. Constitutively
active FOXO3 enhances MMP3 expression and leads to
EC apoptosis, which can be reversed by an MMP inhibitor,
suggesting a novel mechanism of FOXO3-mediated EC
apoptosis (116).

FOXO3 IN AGING-RELATED VASCULAR
DISEASES

FOXO3 influences the progression of aging-related vascular
diseases by regulating the expression of genes involved in
oxidative stress, apoptosis, autophagy, and metabolic stress
(Figure 2). In the following section, we will discuss the role of
FOXO3 in diseases such as atherosclerosis, vascular calcification,
hypertension, and vascular aging-related heart diseases, kidney
diseases, and cerebrovascular diseases (Table 1).

The Role of FOXO3 in Atherosclerosis
FOXO3 genotypes are associated with the risk of death from
coronary artery disease (CAD) in the elderly. The longevity-

associated G allele of FOXO3 SNP rs2802292 is protective

against CAD mortality (117). The plasma TNF-α levels of G

allele carriers were lower than that of non-carriers, implying
that FOXO3-mediated inflammation inhibition is a protective
mediator of CAD death risk (117). LDL-cholesterol is an
important risk factor for CVD. FOXO3 and SIRT6 regulate
LDL cholesterol homeostasis by regulating the PCSK9 gene
expression, which lowers LDL levels by inhibiting LDL receptor
degradation (118).

Under normal growth conditions, FOXO3 is negatively

regulated by IGF-1/PI3K/Akt signaling (20). Age-related decline

of IGF-1R suppresses Akt/FOXO3 in VSMCs (119). Low levels

of VSMC apoptosis occur in atherosclerotic plates. Compared

with normal VSMCs, VSMCs in the atherosclerotic plate express

lower IGF-1R levels and exhibit higher apoptosis. IGF-1R
overexpression is reported to protect VSMCs from oxidative

FIGURE 2 | Effects of FOXO3 on vascular aging-related diseases. FOXO3 participates in various cellular processes implicated in the progression of vascular aging,

including oxidative resistance, apoptosis, autophagy, energy metabolism, and ECM remodeling processes by targeting the expression of effector genes. FOXO3 is a

key protective factor in maintaining vascular homeostasis. Dysregulation of FOXO3 has been shown to contribute to a variety of vascular aging-related diseases,

including atherosclerosis, vascular calcification, hypertension, and vascular aging-related heart diseases, kidney diseases, and cerebrovascular diseases.
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TABLE 1 | FOXO3 cellular signaling in vascular aging-related diseases.

Diseases Biological effects of FOXO3 References

Atherosclerosis The longevity-associated G allele of FOXO3 SNP rs2802292 is protective against CAD mortality (117)

Phosphorylated FOXO3 is increased in human carotid atherosclerotic plaques (114)

FOXO3 phosphorylated by Akt protects VSMCs from oxidative stress-induced apoptosis (90)

FOXO3 phosphorylation promotes VSMC migration (114)

Up-regulated AMPK/SIRT1/FOXO3 signaling increases the protein levels of the VSMC

contractile markers

(84)

FOXO3 suppresses VSMC proliferation and neointimal hyperplasia by downregulating CYR6 (122)

Decreased FOXO3 inhibits NLRP3-mediated EC pyroptosis (123)

Melatonin ameliorates atherosclerosis by regulating SIRT3/FOXO3/Parkin signaling (124)

Vascular calcification FOXO3 phosphorylated by Akt promotes VSMC calcification (125)

Vascular aging related-heart

diseases

FOXO3-null mice developed dilated cardiomyopathy within 12 weeks of age (129)

Reduced FOXO3 in senescent cardiac microvascular ECs leads to inhibition of proliferation and

tube formation

(130)

FOXO3 overexpression suppressed the aging of cardiac microvascular ECs by regulating the

antioxidant/ROS/p27 (kip1) pathway

(130)

Downstream proapoptotic genes mediated by FOXO3 are activated in aging cardiomyocytes (133)

FOXO3 deficiency in the heart enhances paraquat-induced aging phenotypes (134)

FOXO3 activation and expression are reduced in cardiac fibroblasts. Overexpression of FOXO3

inhibited while knockdown of FOXO3 enhanced TFGβ1-induced cardiac myofibroblasts

transformation

(135)

Vascular aging

related-kidney diseases

FOXO3 promotes the expression of Atg proteins to sustain autophagy in the chronically

hypoxic kidney

(101)

FOXO3 deacetylated by SIRT1 induces the expression of BNIP3, and ultimately promotes

mitochondrial autophagy, and protect aging kidneys

(137)

Tubular deletion of FOXO3 aggravates renal structural and functional damage (138)

Activated FOXO3 in mice with unilateral ureteral obstruction contributes to high levels of

autophagy

(139)

FOXO3 ameliorates oxidative stress, suppressing renal fibrosis induced by diabetes and

hypertension

(141–143)

Vascular aging

related-cerebrovascular

diseases

Increased risks of stroke are observed for FOXO3 block-A haplotype 2 “GAGC” and haplotype

4 “AAAT” carriers

(144)

Overexpressed FOXO3 in the cerebral cortex of MCAO mice promotes neuronal death (145, 146)

AMPK/FOXO3 and PTEN-Akt-FOXO3 pathways regulate neuronal apoptosis after

hypoxia-ischemia in the developing rat brain

(67, 147)

Increased FOXO3 activation has a protective effect on cerebral ischemia-reperfusion injury by

promoting autophagy

(148)

Primary hypertension Longevity related FOXO3 variants may contribute to low risk for essential hypertension in

Japanese women

(150)

stress-induced apoptosis by up-regulating Akt-mediated
phosphorylation of FOXO3 (90).

VSMC migration is a key event in the development
of atherosclerosis. In human carotid atherosclerotic plaques,
apelin induces FOXO3 phosphorylation in a dose-dependent
manner, and mediates VSMC migration (114). Glucagon-
like peptide-1 receptor (GLP-1R) is widely expressed in
various cell types, such as VSMCs and cardiomyocytes (120).
GLP-1R agonist exendin-4 not only inhibits angiotensin II-
induced cell senescence but also inhibits PDGF-induced VSMC
proliferation and migration (121). Exendin-4 has been shown
to elevate the expression of VSMC contractile markers,
Calponin and SM22α, by upregulating AMPK/SIRT1/FOXO3

signaling (82). Cysteine-rich angiogenic protein 61 (CYR61)
has been implicated in restenosis after angioplasty. FOXO3, a
CYR61 antagonist, inhibits VSMC proliferation and neointimal
hyperplasia (122).

The inflammatory response mediated by the NOD-
like receptor family pyrin domain-containing 3 (NLRP3)
inflammasome is associated with atherosclerosis
progression. MiR-30c-5p downregulates FOXO3
expression, inhibiting NLRP3-mediated EC pyroptosis in
atherosclerosis (123). Melatonin has been demonstrated
to ameliorate atherosclerosis by inhibiting NLRP3
inflammasome, which is regulated by SIRT3/FOXO3/Parkin
signaling (124).
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The Role of FOXO3 in Vascular
Calcification
Vascular calcification refers to the ectopic deposition of
calcium salts in blood vessels. It is associated with vascular
aging, atherosclerosis, advanced nephropathy, and diabetes
(125). Runt-related transcription factor 2 (Runx2), a key
osteogenic regulator, regulates VSMC osteogenic differentiation
and vascular calcification in atherosclerosis (126). Akt activation
is reported to contribute to oxidative stress-induced VSMC
calcification by upregulating Runx2 expression (127). Deficiency
in PTEN, an Akt inhibitor, results in sustained Akt activity,
which results in FOXO3 phosphorylation, Runx2 ubiquitination,
and VSMC calcification (125). Other members of the FOXO
family have also been implicated in the regulation of vascular
calcification. For example, FOXO1 dysregulation contributes to
peripheral arterial calcification (128).

The Role of FOXO3 in Vascular Aging
Related-Heart Diseases
Left ventricular hypertrophy is a crucial feature of cardiac
aging, leading to diastolic dysfunction, atrial fibrillation, and
heart failure. Moreover, atherosclerotic diseases (e.g., coronary
heart disease) might result in chronic myocardial insufficiency,
ischemic heart disease, or even heart failure. FOXO3 plays
important role in the maintenance of cardiac homeostasis. For
example, FOXO3-null mice developed dilated cardiomyopathy
within 12 weeks of age (129). Low expression of FOXO3
in senescent cardiac microvascular ECs suppressed the ability
of cell proliferation and tube formation. Additionally, it has
also been observed that FOXO3 overexpression slowed the
senescence of cardiac microvascular ECs via modulating the
antioxidant/ROS/p27 (kip1) pathway (130).

A previous study reported that compared with young
people, persons above the age of 70 years had 30% fewer
myocardial cells (131), which may be ascribed to apoptosis
(132). The aged heart is more susceptible to ischemia-reperfusion
injury. SIRT1 expression was significantly reduced in aged
cardiomyocytes, while FOXO3-mediated antioxidant kinase
decreased and apoptosis increased, aggravating myocardial
ischemia-reperfusion injury (133).

Paraquat inhibits FOXO3 activation and induces
cardiomyocyte senescence phenotype. FOXO3 silencing in
the heart greatly accelerated the aging phenotypes induced
by paraquat, including proliferation inhibition, apoptosis,
and galactosidase activity. FOXO3 has also been shown to
protect the heart against paraquat-induced aging phenotypes
by upregulating the expression of antioxidant enzymes and
inhibiting oxidative stress (134).

Cardiac fibroblasts (CFs) contribute to the maintenance of the
ECM balance in the normal heart. Under normal conditions, CFs
exist in a quiescent state and secrete only a small amount of ECM
components. However, CFs differentiate into more active cardiac
myofibroblasts (CMFs) under pathological conditions. This CMF
conversion is a hallmark of cardiac fibrotic diseases such as heart
failure and diabetic cardiomyopathy. TGF-β1 is a key protein
that regulates CMF transformation. Previously, it was reported

that TGF-β1 decreased FOXO3 expression in a concentration-
dependent manner in CFs. Overexpression of FOXO3 inhibited
whereas knockdown of FOXO3 enhanced TFGβ1-induced CMF
transformation (135). Therefore, FOXO3 may act as a negative
regulator of CMF conversion triggered by TGF-β1.

The Role of FOXO3 in Vascular Aging
Related-Kidney Diseases
Vascular aging increases the risk of chronic kidney disease
(CKD). A previous investigation established that arterial stiffness
contributed to the decline in kidney function (136). Hypoxia
inhibits the hydroxylation of FOXO3 prolyl, thereby reducing
the degradation of FOXO3. FOXO3 upregulates the expression
of Atg proteins, which promote autophagy in chronically
hypoxic kidneys (101). Calorie restriction maintains renal SIRT1
expression, and elevates BNIP3 expression by deacetylating
FOXO3, which promotes mitochondrial autophagy and delays
the effects of aging on kidneys (137). Previously, it was
demonstrated that tubular deletion of FOXO3 aggravated renal
structural and functional damage, leading to a more severe
CKD phenotype (138). FOXO3 was discovered to be activated
in mice with unilateral ureteral obstruction. Moreover, hypoxic
proximal tubules activates autophagy in response to urinary tract
obstruction (139).

Tissue fibrosis is a common manifestation of aging-related
diseases. Currently, there are limited therapeutic targets to
prevent fibrogenesis. As previously indicated, FOXO3 inhibits
fibroblast activation and ameliorates fibrosis levels in many
organs, including the kidney, liver, heart, and lung (140).
Renal fibrosis, including glomerulosclerosis and tubulointerstitial
fibrosis, is the pathological hallmark of CKD. FOXO3 ameliorates
oxidative stress, thereby suppressing renal fibrosis associated with
diabetes and hypertension (141, 142). FOXO3 was found to be
directly regulated by miR-132 in a mouse model experiment.
Indeed, silencing miR-132 delayed the progression of renal
fibrosis, implying that miR-132 could be a potential therapeutic
target for fibrosis treatment (143).

The Role of FOXO3 in Vascular Aging
Related-Cerebrovascular Diseases
During vascular aging, entry of high pulsating blood flow into
small cerebral vessels may damage the cerebral microvessels,
resulting in cerebrovascular diseases or cognitive impairment.
Haplotype analyses of FOXO3 revealed that FOXO3 block-A
haplotype 2 “GAGC” and haplotype 4 “AAAT” carriers had
a higher risk of stroke (144). Mice subjected to transient
middle cerebral artery occlusion (MCAO) developed severe
cerebral infarction and long-term neurological deficit. FOXO3
overexpression was previously described in the cerebral cortical
neurons of MCAOmice. Downregulation of miR-9 and miR-122
promoted neuronal death by up-regulating FOXO3 expression in
the brain of MCAO mice (145, 146). Moreover, AMPK/FOXO3
and PTEN-Akt-FOXO3 pathways have been implicated in
the regulation of neuronal apoptosis in response to hypoxia-
ischemia during the developmental stages of rat brain (67,
147). In addition, the ischemia-reperfusion injury resulted in
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activation of FOXO3. Activated FOXO3 promotes autophagy,
thereby reducing the injury caused by cerebral ischemia-
reperfusion (148).

The Role of FOXO3 in Primary
Hypertension
Clinical studies have shown that vascular aging is a predictor
and risk factor for hypertension. Patients with hypertension,
regardless of whether their blood pressure is normal or not,
are at an increased risk of developing cardiovascular events.
Researchers have found that patients receiving antihypertensive
drugs still have a 50% residual risk of cardiovascular death
(149). The longevity-related FOXO3 polymorphisms may be
associated with lower blood pressure (BP) in Japanese women
with hypertension (150).

FOXO3 as a Promising Therapeutic Target
in Aging-Related Vascular Diseases
FOXO3 is an ideal target for a variety of aging-related diseases,
including cancer, degenerative diseases, and vascular aging. As
previously described, FOXO3 is a good biomarker for cancer
initiation, progression, and drug efficacy, and resistance. FOXO3
reactivation may be an efficient antitumor strategy. Furthermore,
conditional deletion of FOXO1/3/4 in mice triggered IVD
degeneration, and therapeutic activation of FOXO could resist
IVD degeneration by promoting stress resistance and autophagy
(29). FOXO3 has a well-established function in the occurrence
and pathogenesis of vascular aging-related diseases. The AMPK-
FOXO3-Trx axis, which has been demonstrated to be a critical
defensive mechanism against excessive generation of ROS
induced by metabolic stress, may be a promising target in
treating CVDs in metabolic syndrome (151). Akt inhibition
activates FOXO3, which is also a good way to delay vascular
aging (152). UCN-01, a drug currently used in clinical trials
against cancer, inhibits Akt phosphorylation resulting in FOXO3
reactivation (153). UCN-01 was shown to be capable of reversing
bleomycin- induced lung fibrosis in vivo by activating FOXO3
(153). Curcumin, a polyphenol, enhances FOXO3 function by
inhibiting its phosphorylation, resulting in a two-fold increase
in target gene expression (154). Further evidence confirmed that
curcumin protects inflammatory cells in the vascular system
against lipid and oxidant-induced damage by increasing FOXO3
activity, so lowering the risk for aging-related CVD (154).
Additionally, human VECs, VSMCs, and MSCs expressing a
constitutively active version of FOXO3 exhibited enhanced self-
renewal capacity, greater regenerative capacity under ischemia
conditions, and increased resistance to oxidative injury (155).
The evidence presented above suggests that pharmacological
reconstitution of FOXO3 may be a novel treatment option for
aging-related vascular diseases.

Pharmaceutical regulation of the FOXO3 signaling pathway
is a promising strategy to promote healthy longevity. It was
found that FOXO3 longevity genotype mitigated the increased
mortality risk in men with a cardiometabolic disease (CMD).
Moreover, there was no association of FOXO3 longevity genotype
with lifespan in men without a CMD (17). Therefore, CMD
patients without the FOXO3 longevity genotype may benefit

most from intervention targeting FOXO3. However, FOXO3
may not be a easily druggable target, because its activity is
mediated by a complex network of interactions with other
DNA, RNA, and proteins. Direct regulation of gene expression
in a simple manner may not achieve the expected effect and
cause redundant functions. FOXO3 activity is finely regulated
by PTM modulators, which is a more feasible and acceptable
therapy. Researchers have explored a number of agents identified
as modulators of FOXO3 activity, including those that target
nuclear export and import, drugs that target upstream regulatory
targets, drugs that target FOXO3 protein interactions, and those
that target DNA binding (156). FOXO3 exhibits variable affinity
for target genes under different conditions (157). Consequently,
the development of FOXO3-specific therapy based on multiple
statuses is expected to improve efficacy and reduce the off-target
effects. To improve the development of FOXO3-based treatment
options, it is necessary to conduct additional studies on the
regulatory networks, including upstream regulatory molecules
and downstream pathways of FOXO3.

CONCLUSION

Healthy aging is critical for addressing the increasing severity
of global population aging. The unique role of FOXO3 in the
vasculature provides promising avenues for therapeutics against
aging-related vascular diseases. PTMs that regulate FOXO3
activity may be potential therapeutic targets. It is expected
that research into strategies for delaying the occurrence and
development of vascular aging by targeting the FOXO3 will
uncover novel perspectives for the development of new drugs.
Despite advances in our understanding of FOXO3’s function in
retarding vascular senescence, the particular processes remain
poorly known, and other issues remain unresolved. For instance,
FOXO3 activation promotes VSMCs apoptosis, which may
result in atherosclerotic plaque instability and rupture, causing
myocardial infarction, and cerebral infarction. In some cases,
FOXO3 promotes ECM degradation which may accelerate the
progression of atherosclerosis. While therapies targeting FOXO3
seem appealing, we need to understand all the details to
maximize its effectiveness. Despite these challenges, in-depth
research into FOXO3 functions may pave the way for future
therapeutic approaches.
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