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Cardiovascular diseases (CVDs) are major causes of mortality and morbidity in the

modern society. The rupture of atherosclerotic plaque can induce thrombus formation,

which is the main cause of acute cardiovascular events. Recently, many studies have

demonstrated that there are some relationships between microbiota and atherosclerosis.

In this review, we will focus on the effect of the microbiota and the microbe-derived

metabolites, including trimethylamine-N-oxide (TMAO), short-chain fatty acids (SCFAs),

and lipopolysaccharide (LPS), on the stability of atherosclerotic plaque. Finally, we will

conclude with some therapies based on the microbiota and its metabolites.
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INTRODUCTION

Cardiovascular diseases (CVDs) are the most common underlying cause of death accounting
for an estimated 17.8 million of 54 million total deaths (1). Atherosclerosis, determined as to
be the underlying pathology of CVD, is increasing in prevalence worldwide (2). The traditional
risk factors found associated with atherosclerosis include hypertension, hyperlipidemia, diabetes
mellitus, obesity, and smoking (3). In recent years, the incidence of atherosclerosis has continued
to increase which may indicate that these risk factors cannot fully explain the pathogenesis of
atherosclerosis. There is a more urgent need to deepen our understanding of the underlying
mechanisms of atherosclerosis.

With the development of technology, our knowledge of the roles of the microbiota in the
host has increased drastically. With 16S RNA sequencing and high-throughput sequencing,
scientists have found that in the atherosclerotic plaque, bacterial DNA exists (4). Besides,
there are several studies proving that the metabolites from microbiota also can influence
the development of atherosclerosis. Short-chain fatty acids have already been proven to play
protective roles in atherosclerosis, stabilizing plaque (5, 6). Simultaneously, they also found that
trimethylamine-N-oxide and lipopolysaccharide make the vascular endothelium disorder and
plaque unstable and facilitate thrombosis, but the intrinsic mechanism is still not clear (7, 8).

In recent years, several studies have investigated the effects of the gut microbiota on
atherosclerosis and proved that there are some connections between cardiovascular events and
atherosclerotic plaque characteristics (9–19). However, the roles of the gut microbiota in the
stability of plaque are still unclear. Therefore, in this review, we will discuss themicrobiota changing
in the atherosclerosis and whether there is a relationship between the bacterial flora and different
conditions of atherosclerosis. Besides, we will state the metabolites from microbiota and how they
can impact atherosclerosis. Moreover, we will discuss whether therapeutic strategies that target the
intestinal microbiota to alleviate the development of atherosclerosis are possible.

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2021.668532
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2021.668532&domain=pdf&date_stamp=2021-08-03
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:wangtsmc@126.com
https://doi.org/10.3389/fcvm.2021.668532
https://www.frontiersin.org/articles/10.3389/fcvm.2021.668532/full


Shen et al. Gut Microbiota and Plaque Stability

MICROBIOTA

Composition and Development of Gut
Microbiota
Gut microbiota is the collection of microorganisms including
viruses, archaea, fungi, and bacteria which are the most
abundant components in the gut (20). The microbiota usually
exists in the gastrointestinal (GI) tract, especially in the
ascending colon which is mostly anaerobic and characterized
by a nutrient-rich environment that is beneficial for the
propagation of microorganisms (21). The infant’s gut microbiota,
determined by the mode of delivery, appears to be unstable
and lacks diversity. The intestines of infants born through
the vagina, primarily composed of Lactobacillus and Prevotella,
are initially colonized by vaginal microorganisms. However,
the infant’s gut microbiota, born through cesarean section, is
modified and dominated by Streptococcus, Corynebacterium, and
Propionibacterium, similar to the skin of human (22). Thus,
the infants who were delivered by cesarean section may be
more susceptible to pathogen infections. Watson et al. found
that 64–82% of newborns infected with methicillin-resistant
Staphylococcus aureus were delivered by cesarean section (23).
Influenced by the environment around the infant, the intestinal
microbiota evolves until approximately the age of 3, becoming
a diverse, complex, and stable collection, with 6070% similarity
to the adult gut microbiota (24). During development, some
ingredients can affect the microbiota such as diet (i.e., breast
milk or formula feeding) and the use of antibiotics, which
is usually reported to be related to the disruption of the
infant gut microbiota. Several experiments found that the infant
gut microbiota can benefit long-term health and human gut
microbiota in the early stage is related to particular adult health
conditions (21, 25–27).

The gut microbiota of adults is mainly composed of five phyla:
Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria, and
Cerrucomicrobia. The healthy bacterial community Bacteroidetes
and Firmicutes together account for over 90% of the total bacterial
species (28). Simultaneously, the Firmicutes/Bacteroidetes ratio
(F/B ratio), which is viewed as a health indicator of intestinal
microbiota in all individuals, in different people is not the same.
The F/B ratio increases in people who are obese (the phylum
Firmicutes increasing, with the phylum Bacteroidetes decreasing)
and is also related to some cardiovascular diseases (29–35).
Emoto et al. proved that in coronary artery disease (CAD)
patients, there are some changes in microbial composition, with
a significant increase in Lactobacillales (Firmicutes) abundance
and a decrease in Bacteroidetes abundance (13). Besides, several
studies in hypertensive models demonstrated that there is a
higher F/B ratio (Figure 1) (31, 36, 37). The gut microbiota
not only develops in the early stage of infant as mentioned
above but in elderly individuals also changes within bacterial
diversity and shifting of the dominant species (e.g., decreasing
abundance of beneficial microorganisms and increasing
abundance of facultative anaerobic bacteria). These changes
may be related to the development of atherosclerosis in elderly
individuals (38, 39).

FIGURE 1 | Bacterial changes with age, delivery mode, and body shape. The

infants’, born through vagina, are initially colonized by vaginal

microorganisms—Lactobacillus and Prevotella. The infants’, born through

cesarean section, are dominated by Streptococcus, Corynebacterium, and

Propionibacterium, similar to the skin of humans. In children up to 3 years old,

the gut microbiota is stable, with 60–70% similarity to the adult gut microbiota.

The gut microbiota of adult with normal shape is mainly composed of five

phyla: Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria, and

Cerrucomicrobia. The adults who are so slim are prone to show the F/B ratio

increasing, while the F/B ratio of the obese decreasing. The gut microbiota of

the elder changed: the diversity decreasing, with facultative anaerobic

bacteria increasing.

Leaky Gut and Atherosclerosis
The term “dysbiosis” usually refers to the imbalance of
microbial communities, which is related to the changes in either
microbial composition or mucosal barrier function disruption.
Gut dysbiosis is usually caused by various factors such as
high-fat diet, several diseases, and antibiotic overuse (20,
40). Gut microbiota changes can also affect gut permeability,
thereby leading gut bacterial DNA translocation, influencing
metabolites and endotoxins absorbed into circulation. In the
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healthy condition, there is a multifaceted intestinal barrier
system including physical, biochemical, and immunological
components. The intestinal epithelial cells (IECs), a single layer
of cells, are the main part of the physical intestinal barrier, which
are connected by tight junction proteins. In addition, two layers
of mucus and gut commensal bacteria also serve as a physical
barrier to prevent damaging luminal contents absorbed into
circulation (41–43).

Hypertension and atherosclerosis have been proven above to
be related to gut microbiota dysbiosis with an increase in the
F/B ratio via productions of acetate and decreasing of butyrate.
Butyrate, once proved to be the main energetic resource of
IECs, is able to maintain the stability of gut barrier. High-fat
intake thought as the risk factor for atherosclerosis can induce
remarkable changes in gut microbiota composition (44–47).
Desai et al. conducted an experiment to prove that consumption
of low-fiber foods can lead to the expansion of mucus-degrading
bacteria, including Akkermansia muciniphila and Bacteroides
caccae, which significantly decreases the thickness of the mucus
layer in mice, causing higher susceptibility to pathogens and
endotoxins. Moreover, intake of a high-fat diet showed that
Lactobacillus abundance greatly decreased and Oscillibacter
abundance increased, which caused a significant permeability
increase in the proximal colon (48). Besides, infections can play a
role in regulating the mucosal barrier.Helicobacter pylori directly
increasing epithelial permeability by redistributing the TJ protein
ZO-1 may, for example, play a role in the atherosclerosis (49–51).
Overall, dysbiosis of the gut microbiota induced by a number
of factors can lead to leaky gut, causing the translocation of
bacteria and some injurious metabolites produced by the gut
microbiota and subsequently triggering a series of abnormal
immune responses and the development of atherosclerosis.

Microbiota and Atherosclerosis
In recent years, several studies have confirmed the presence of
bacterial DNA in atherosclerotic plaque which may contribute
to the development of cardiovascular disease (52). In addition,
researchers have also found that compared with people
without atherosclerosis, the patients with atherosclerosis
(Table 1) showed some differences in the gut microbiota
(9–19, 53). Garshick et al. donated aortas of Apoe-/- mice
with atherosclerosis into normolipidemic wild-type mice, then
feeding antibiotic. They found that compared with Apoe-/- mice,
plaque size in Abx–WT recipient mice did not differ, but has
a 32% reduction in CD68-expressing cells, suggesting that gut
microbiota is a potential role of the microbiome to influence
atherosclerosis inflammation (54). As shown in Table 1, two
studies found that patients with coronary heart disease (CHD)
or high IMT values, a marker of subclinical atherosclerosis,
have greater Firmicutes/Bacteroidetes ratio, which are usually
found in people who are obese and can confirm the protective
effect of butyrate in the CVDs (15, 19). Simultaneously, the
other two trials indicated that phyla Escherichia are enriched in
the patients with subclinical carotid atherosclerosis (SCA) and
coronary artery disease (CAD) which provide a new predictor in
the development of atherosclerosis (16, 17). Ji et al. once found
that Acidaminococcus was more abundant in the CAS patient.

Acidaminococcus was once often enriched in patients with
several inflammatory diseases and positively correlated with a
proinflammatory diet, which may indicate that Acidaminococcus
was a proinflammatory microbiota and represent inflammatory
status in the development of AS (18). In atherosclerotic plaques,
phylum Proteobacteria dominated and the phylum Firmicutes,
predominantly found in the gut, is also present in atherosclerotic
plaques. However, according to previous studies, there is still
no conclusion on whether the microbiota is important in the
development of AS or not. Mitra et al. proved that the gut
microbiota in patients with stable plaques shows a significant
difference from that in patients with unstable plaque. However,
Hållenius et al. found that there were no major differences in
bacterial DNA content or microbial composition between stable
and unstable plaques (9, 11). Some researchers have observed
that bacterial DNA may trigger macrophages thereby activating
the innate immune system via Toll-like receptor 2 (TLR2) and
TLR4 which are closely related to the stability of plaques (55–57).
The research conducted by Chen et al. proved that the feasibility
of remodeling of the gut microbiome to prevent the onset and
progression of atherosclerosis in LDLr-/- mice which indicates
that the gut microbiota plays some roles in atherosclerosis and
may also provide a new therapy (58). One study (6) also found
that introducing the proinflammatory Casp1-/- microbiota
into Ldlr-/- mice promotes plaque growth with neutrophil
accumulation in plaques and a significant reduction in the
short-chain fatty acids producing taxonomies (Akkermansia,
Christensenellaceae, Clostridium, and Odoribacter). In summary,
there is no clear conclusion on whether there exists a crucial
gut microbiota for the development of atherosclerosis. Studies
should still focus on the items about the relationships of the gut
microbiota, bacteria in plaques, and atherosclerosis.

METABOLITE

TMAO
TMAO Metabolism
Trimethylamine N-oxide (TMAO), a proatherogenic
metabolite, is generated from phosphatidylcholine, carnitine,
γ-butyrobetaine, betaine, and crotonobetaine, which are mainly
from animal-derived foods, such as red meat, eggs, dairy
products, and salt-water fish (59, 60).

Trimethylamine (TMA) is generated by the enzymes
produced by the gut microbiota, which includes three types. The
first one is cutC/D, which is abundant in the Desulforibrio,
Desulfuricans, Protebacteria (Grammaprotebacteria,
Deltaprotebacteria), and Proteus mirabilis Firmicattes (Clostridia,
Bacillus) (61, 62). Wang et al. have proved that 3,3-dimethyl-
1-butanol (DMB), a structural analog of choline, can inhibit
cutC/D choline TMA lyase activities to decrease the serum
TMAO level, which may serve as a potential therapeutic
approach for the treatment of cardiometabolic diseases (63).
However, Orman et al. have argued that DMB has no use in
inhibiting choline-metabolizing enzyme cutC. In addition, a
small molecule, betain aldehyde, can effectively inhibit this
kind of enzyme. The others are CtnA/B and Yea X/Y, which are
proved to be highly homologous (64, 65).
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TABLE 1 | Different kinds of bacteria present in the plaque, and the gut bacterial changes between the controls and patients.

References Year (species) Method Disease Bacteria

Plaque Koren et al., (53) 2010 (H) 16SrRNA AS Proteobacteria and Firmicutes

Three OTUs -Propionibacterineae, one OTU -Burkholderia were

specific for atherosclerotic plaques

Mitra et al., (9) 2015 (H) 16S rRNA Symptomatic AS Helicobacteraceae, Neisseriaceae, sulfur-consuming families and

Thiotrichaceae

Asymptomatic AS Porphyromonadaceae, Bacteroidaceae, Micrococcaceae, and

Streptococcaceae

Ziganshina et al., (10) 2016 (H) 16S rRNA AS Proteobacteria (71.4–97.3%) [Burkholderiales (67.0–94.1%);

Actinobacteria (0.2–24.1%) ]

Bacteroidetes (0.3–2.1%) [Saprospirales (0.3–2.1%) and Firmicutes

(0.1–5.2%)]

Lindskog Jonsson et al., (11) 2017 (H) 16S rRNA AS Proteobacteria (48.3%), Actinobacteria (40.2%), Firmicutes (4.0%),

Cyanobacteria (3.9%), Bacteroidete

No differences in the microbial composition between symptomatic

AS and asymptomatic AS

Gut Koren et al., (53) 2010 (H) 16S rRNA AS No significant difference between the AS and controls

Karlsson et al., (12) 2012 (H) Metagenomics Symptomatic AS Collinsella dominating,the Ruminococcus enterotype genes in the

peptidoglycan pathway were enriched

control Eubacterium and Roseburia and three species of Bacteroides

dominating

Emoto et al., (13) 2016 (H) 16S rRNA CAD The order Lactobacillales increasing

Phylum Bacteroidetes (Bacteroides + Prevotella) decreasing

Jie et al., (14) 2017 (H) Metagenomics ACVD Escherichia coli, Klebsiella spp., Enterobacter aerogenes,

Ruminococcus gnavus, Eggerthella lent increasing

Roseburia intestinalis and Faecalibacterium cf. prausnitzii

(butyrate-producing bacteria) reducing

Cui et al., (15) 2017 (H) Metagenomics CHD Phyla Bacteroidetes and Proteobacteria decreasing

Phyla Firmicutes and Fusobacteria increasing

Zhu et al., (16) 2018 (H) 16S rRNA CAD Escherichia-Shigella; Enterococcus enriching

Faecalibacterium; Subdoligranulum; Roseburia; Eubacterium

rectale depleting

In plaque associated with atherosclerosis, the phylum Proteobacteria dominated and the phylum Firmicutes was also present. In the gut, we may find greater Firmicutes/Bacteroidetes

ratio and phyla Escherichia was enriched in patients with atherosclerosis.

TMA formed in the gut is absorbed into the portal circulation
and then oxidized to TMAO by the action of hepatic flavin
containing monooxygenases FMO3 and FMO1 (66). Some
studies have demonstrated that knockdown of the FMO3 gene
can significantly reduce the production of TMAO (67, 68).
In recent years, several new approaches have been found to
inhibit the TMAO formation to alleviate the development of
atherosclerosis (69, 70). However, most researches conducted
in vivo studies are in murine models, with few in humans.
In that circumstance, reducing TMAO to reduce the incidence
of atherosclerosis with some effective, safe strategies may
significantly benefit public health.

TMAO and Plaque Stability
Some studies have indicated that TMAO is an independent
predictor of the cardiovascular diseases. In this review, we will
discuss the effect of TMAO on the atherosclerotic plaque stability
(Figure 2). Senthong et al. and Sheng et al. have discovered
that plasma TMAO levels are closely related to the coronary
atherosclerotic burden in patients with ST-segment elevation

myocardial infarction (STEMI) and stable coronary artery disease
(CAD), as quantified by the Synergy Between PCI with Taxus
and Cardiac Surgery (SYNTAX) score (71, 72). Liu et al. once
proved that the non-culprit plaques in CAD patients with higher
TMAO levels have exhibited more vulnerable characteristics:
thinner fibrous cap thinner (FCT), higher presence of a thin-cap
fibroatheroma (TCFA), andmicrovessels (73). Simultaneously, in
one experiment, researchers have discovered that high-choline
diet fed on mice intends to increase intraplaque hemorrhage
instead of altering atherosclerotic burden or plaque composition,
which is a relatively novel finding (74). In recent years, more
trials found that TMAO may become a totally new marker to
predict future risk of CVDs, which focused on the appropriate
serum levels to diagnose CVDs (75, 76). It is important to
differentiate between plaque rupture and plaque erosion to
determine a personalized treatment strategy. In patients with
STEMI, the treatment used for plaque rupture and plaque
erosion is completely different. Tan et al. have concluded that
the cutoff threshold of TMAO was 1.95µM for discriminating
plaque rupture from plaque erosion with maximum sensitivity
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and specificity (72). In addition, TML (a precursor of TMAO)
and GBB (an intermediate product of L-carnitine) were shown
to predict the cardiovascular diseases independently in recent
studies (77, 78).

Mechanisms
Mechanisms on how TMAO is able to promote atherosclerosis
have already been studied at the molecular level. In the context
of immunity, TMAO could activate heat shock protein 60
(HSP60), which has been shown to be the initiating event in the
atherosclerosis and to take part in foam cell formation via Toll-
like receptors, which can also be activated by SR-A1 and CD36 in
macrophages after TMAO stimulation (79–82). Besides, TMAO
could induce NLRP3 activation, which promotes IL-18 and IL-
1β expression to trigger inflammation, which contributed to the
endothelial injury that initiates atherosclerosis (83, 84). In the
inflammation part, TMAO could induce the expression of IL-1,
TNF-α, C-reactive protein (CRP) via mitogen-activated protein
kinase (MAPK), and NF-kappa B (NF-κB) signaling to promote
the formation of atherosclerosis (85–88). TMAO also can reduce
the reverse cholesterol transport through activating the nuclear
receptor Farnesoid X receptor (FXR) and small heterodimer
partner (SHP) to inhibit the expression of Cyp7a1, which could
reduce the synthesis of bile acids in the liver with the result of
accelerating atherosclerosis development (89, 90).

Lipopolysaccharide
Lipopolysaccharide (LPS) which is a central component of the
outer membrane in Gram-negative bacteria usually exists in the
gut and oral cavity has a great impact on the atherosclerosis.
LPS existing in the outer membrane of Gram-negative bacteria
contains three parts: lipid A, a core oligosaccharide, and the
O-antigenic polysaccharide (91–94). LPS can be detected in
healthy human’s plasma at low concentrations (between 1 and
200 pg/ml), which proves that small amounts of LPS are able
to cross the intestinal barrier. Although the function of low
circulatory levels of LPS is still unclear, some researches have
recently shown that it may be related to the immune modulation
with some benefits on resisting infection or some damages to
increase inflammation (95–97).

However, in some conditions, intestinal permeability can
be increased leading the circulatory levels of LPS to rise.
In atherosclerosis, the number of butyrate-producing bacteria
decreased, causing a reduction of butyrate levels to result in the
dysfunctional gut mucosal barrier which may cause more LPS
entering into circulating blood. Besides, the high-fat diet can
also lead concentrations of LPS to increase through different
ways, especially through the increasing gut permeability (98, 99).
Firstly, it can cause the excessive chylomicron to form, which
may increase the local pressure and cause the loosening of
junctional complexes between the enterocytes (100, 101). The
composition of gutmicrobiota also can be altered due to the high-
fat diet. The abundance of Gram-negative bacteria (Bacteroides)
increases degrading mucus glycoprotein and leading to increased
circulatory concentrations of toxins. Meanwhile, the abundance
of Gram-positive bacteria usually promotes a stable environment
and inhibits the translocation of bacteria and toxins to decrease

(102, 103). Besides, the high-fat diet could decrease the activity
of intestinal alkaline phosphatase, which may decrease LPS
degradation to increase circulating LPS levels (104, 105).
Except for the atherosclerosis and high-fat diet, the other risk
factors, such as insulin resistance, hypertension, liver diseases,
and other neurological diseases, may also cause the intestinal
permeability to increase—leading the circulatory levels of LPS to
rise (41).

LPS and Plaque Stability
LPS has already been proven to be involved in infectious diseases
such as septic shock for several years. However, in recent
years, some researches have demonstrated that there may be
some relationships between LPS and atherosclerosis (106–108).
Carnevale et al. have found that circulating levels of LPS and
zonulin which is a protein that reflects the condition of intestinal
permeability are much higher in patients with critical stenosis of
carotid artery (>70%) than controls without the plaque, revealing
that circulatory levels of LPS may be positively correlated with
the atherosclerosis. Besides, the authors discovered that in the
area of carotid plaque sections positive for LPS and TLR4,
macrophages, which are closely related to the formation of
atherosclerosis and the stability of the atherosclerotic plaque,
were much bigger than macrophages in the area with less
reactivity to LPS and TLR4. In that research, they also found
that LPS can activate monocyte via TLR4 activation with
an intracellular signaling mechanism involving expressions
of Nox2 to increase, which is among the most important
cellular producer of reactive oxygen species. As a result, this
downstream effect can lead to the formation of oxidized LDL,
proving that LPS is a molecule that promotes oxidative stress
at the site of atherosclerotic plaque (Figure 2), which may
lead to the rupture of the plaque (93). Yoshida et al. have
detected species with differential abundance between CAD and
controls with 16S ribosomal RNA gene sequencing, revealing a
significantly lower abundance of Bacteroides vulgatus, Bacteroides
dorei, and higher LPS concentration in patients with CAD.
Atherosclerosis-prone mice fed with B. vulgatus and B. dorei
then showed attenuation of atherosclerotic lesion formation and
decrease in gut microbial lipopolysaccharide production. In that
circumstance, they discussed that pathogenesis of atherosclerosis
alleviation may be due to dampening of systemic innate
immune cell activation and Th1-driven inflammation caused
by the live Bacteroides treatment-induced reduction in plasma
LPS concentration (8). Loffredo et al. have demonstrated that
patients with peripheral arterial disease (PAD) have increased
systemic LPS concentrations that inversely correlate with the
ankle brachial index (ABI) which indicated that LPS can be
the promoter of atherosclerotic burden (109). In the animal
experiments, Jaw et al. found that the plaques of mice exposed
in LPS presented features of vulnerability including hemorrhage
and thrombus formation, which can easily induce acute plaque
rupture (110).

LPS-Binding Protein
When LPS enters into the circulatory system, it can initiate
various signaling pathways to recruit inflammatory cells into
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FIGURE 2 | Effects of metabolites produced by the gut microbiota on atherosclerosis and possible therapies focusing on the gut microbiota to prevent atherosclerosis

development and stabilize plaque. A healthy lifestyle usually can cause SCFAs to increase with related bacteria increasing. The SCFAs can protect gut barrier by

supporting tight junctions to inhibit translocation of LPS, TMAO, and other damaging metabolites into the circulation. They also can prevent the development of

atherosclerosis and stabilize the plaque. The high-fat diet, sedentary lifestyle may cause the plasma concentrations of TMAO and LPS to increase by increasing some

kinds of bacterium and intestinal permeability, which can make the plaque more vulnerable.

atherosclerotic lesions, which involves a large number of
proteins, such as LPS-binding protein (LBP), CD14, Toll-like
receptor-4 (TLR4), andMD-2. LBP, a 50-kDa polypeptide mainly
synthesized in the liver and released into the bloodstream after
glycosylation, is the first protein to bindwith LPS, which indicates
that it might be a reliable biomarker that predicts the activation
of innate immune responses (111–114). Lepper et al. once found
that serum LBP levels significantly increased in patients with
CAD according to CAD severity compared with those without
CAD, which may indicate that LBP might be able to be used
as a biomarker for coronary artery disease. They also pointed
that LBP deposited in regions of atherosclerosis, indicating
it may be involved in the development and progression of
atherosclerotic lesions (115, 116). Serrano et al. discovered that
circulating LBP was positively associated with atherosclerotic
risk factors, such as obesity, insulin resistance parameters,
and so on. Besides, they also found that circulating LBP may
independently contribute to the presence of carotid plaque
and the carotid intima-media thickness, which may indicate
that LBP is associated with the development of atherosclerotic
lesions (117).

Short-Chain Fatty Acids
Depending on the length of the carbon chain, the fatty acids has
been classified into three types, which contains long-chain fatty
acids (LCFAs, the number of carbon chain more than 12), mid-
chain fatty acids (MCFAs, the number of carbon chain between
6 and 12), and short-chain fatty acids (SCFAs, the number of
carbon chain <6) (118). The short-chain fatty acids are mainly
produced from bacterial fermentation of food fiber and the non-
digestible carbohydrates containing resistant starch (RS), non-
starch polysaccharides (NSP), oligosaccharides (prebiotics), and
so on. The SCFAs were mainly fermented in the large intestine
due to its environment (warm, moist, anaerobic, and full of
feed residues) which caters for the conditions to make prolific
bacterial growth (119, 120). SCFAs which are thought as the
energy resources are found to play key roles in meditating
gut epithelial and immune regulation. As described above, the
structure of gut epithelial covered and protected by a mucus
layer is essential to prevent the bacteria from spreading into the
circular blood, leading susceptibility to enhance infections and
the development of chronic inflammatory diseases. In addition,
the mucus layer covering and protecting the gut epithelium
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is maintained by the gut microbiota and diet that is mainly
due to SCFAs. The main components of SCFAs were acetate,
propionate, and butyrate, which account for almost 95% SCFAs.
These SCFAs were mostly produced by some families of bacteria,
including anaerobic Bacteroides, Bifidobacterium, Eubacterium,
Streptococcus, and Lactobacillus (Table 2). The SCFAs were
released at high concentrations in the ascending colon, with a
decline in the transverse colon and the descending colon (121,
122).

SCFAs and Atherosclerosis
Ghosh et al. have proven that attributing to butyrate, whole-milk
consumption was inversely associated with CAC progression,
which is the independent risk factor for atherosclerosis
(123). One experiment once suggested that after ApoE-/-
mice consumed a diet containing 1% butyrate for 10 weeks,
atherosclerosis in the aorta was reduced by 50%, with lower
macrophage infiltration and increased collagen deposition,
suggesting a more stable fibrous cap. These phenomena are
mostly associated with CD36 decreasing in macrophages and
endothelial cells, reduction of proinflammatory cytokines, and
lower NFkB activation. They also found that the decrease in
macrophage may be due to the reduction of oxidative stress
related to NADPH oxidase and iNOS expression levels (124).
Vascular smooth muscle cell (VSMC) proliferation is considered
to play an important role in the pathogenesis of atherosclerosis
(Figure 2). There are several studies proving that butyrate can
prevent the development of atherosclerosis by proliferation of
VSMCs (125–127). Kasahara et al. put forward a new axis
Roseburia-fiber-butyrate with atherosclerotic germ-free ApoE-
/- mice colonized with a defined community of eight bacteria
with or without Roseburia intestinalis. With that axis, the
atherosclerotic plaque sizes are reduced by 30% without affecting
the levels of cholesterol and TMAO perhaps relating to the ability
of SCFAs to maintain the integrity of the gut (128, 129). Besides,
Bartolomaeus et al. have found that propionate application to
ApoE-/- mice reduced vascular inflammation and atherosclerotic
lesion burden and alleviated the level of blood pressure, which
is considered traditional risk factors of plaque rupture (130).
Overall, the above studies may lead to the development of a new
approach—supplementing SCFAs to prevent the development
of atherosclerosis and stabilize the plaque in cases of the
actual cardiovascular accidents. However, few studies have been
conducted in humans, so more explorations of the function of
SCFAs are still needed.

Other Metabolites
There still exist other metabolites produced by gut microbiota
affecting the stability of atherosclerosis. Uremic toxins, usually
increasing in the chronic kidney disease (CKD), are metabolites
of amino acids produced by gut microbiota (131, 132). Several
studies have proved that the protein-bound uremic toxins can
significantly induce VSMC proliferation and VSMC calcification,
which are closely related to atherosclerosis (133–135). Besides,
phytoestrogens, anthocyanins, and bile acids are also associated
with atherosclerosis developing (136, 137). Recently, Nemet
et al. have found a new metabolite, PAGln, generated by gut

microbiota which is connected to cardiovascular disease risk
because it increases the possibility of thrombus formation and
thrombosis potential (138). Thus, it still has a great potential
to explore whether there exist known metabolites or new
metabolites connected to the gut bacteria and there being some
connections between them and atherosclerosis.

THERAPY

Daily Lifestyle, Gut Microbiota, and
Atherosclerosis
Diet
Diet (139, 140) has shown to be closely associated with the
composition and diversity of gut microbiota (Figure 2). De
Filippo et al. once conducted a study that aimed to find whether
there are some differences between the gut microbiota of children
(BF) fed with traditional rural African diet, characterized with
low in fat and animal protein and rich in starch, fiber, and plant
polysaccharide and children (EU) eating a typical western diet
high in animal protein, sugar, starch, and fat and low in fiber.
AS a result, the Bacteroidetes dominated the gut microbiota of
BF children, while the gut microbiota of the EU children was
dominated by Firmicutes (141). The F/B ratio above proved to be
related to the metabolic situation that is usually found increasing
in people who are obese.

WHO has declared that a healthy diet comprises low saturated
fats, low salts, and high fruits and vegetables (142). In recent
years, scientists have found that adhering to the Mediterranean
diet (MeDiet) greatly has been strongly linked to a significant
reduction in overall mortality and morbidity, providing a new
management approach to prevent cardiometabolic diseases. This
diet is featured by high consumption of fruits, vegetables,
legumes, unrefined cereals, and nuts; moderate consumption
of fish, poultry, and dairy products (principally cheese and
yogurt); low consumption of red meat products; use of olive
oil as the main edible-fat source; and regular but moderate
wine consumption (143–147). Baragetti et al. once found
that people without subclinical carotid atherosclerosis consume
(SCA) higher amounts of cereals, starchy vegetables, milky
products, yogurts, and bakery products compared with those
with SCA consuming more mechanically separated meats. The
diet whereby people without SCA consumemay closely in accord
with MeDiet and cause changes in specific bacterial species
(demonstrated above) (17). Several studies have noticed that
the level of fecal SCFAs proved to play protective roles in the
development of AS increased in the patients with MeDiet (148–
150). Nagpal et al. have detected that MeDiet could make some
influence on gut microbiota. Compared with those having the
Western diet, macaques fed with the MeDiet presented higher
microbial diversity and lower Firmicutes and Verrucomicrobia
(lower Firmicutes to Bacteroidetes ratio) (151). One study also
found that high adherence to Mediterranean diet was associated
with increases in Prevotella and Firmicutes, besides low adherence
was correlated with higher urinary TMAO levels (152).

Several researchers have proven that insisting on MeDiet can
prevent atherosclerosis development. Some studies focused
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TABLE 2 | Pathways of main SCFA production and their related microorganisms.

Type Structures Pathway Microorganisms References

Acetate From pyruvate in acetyl-CoA pathway Akkermansia muciniphila, Bacteroides spp., Bifidobacterium

spp.

Prevotella spp., Ruminococcus spp.

Koh et al., (120)

Wood-Ljungdahl pathway Blautia hydrogenotrophica, Clostridium spp., Streptococcus

spp.

Propionate Succinate pathway Bacteroides uniformis.;Bacteroides vulgatus.;Prevotella

copri.;

Alistipes putredinis.;Dialister

invisus;Phascolarctobacteriumsuccinatutens;

Akkermansia muciniphila

Louis et al., (121)

Acrylate pathway Coprococcus catus

Propanediol pathway Roseburia inulinivorans;Eubacterium hallii;Blautia obeum;

Butyrate Butyryl-CoA transferase: acetate Co-A pathway Eubacterium rectale;Roseburia inulinivorans;Roseburia

intestinalis;

Eubacterium hallii; Anaerostipes hadrus;Coprococcus catus;

Faecalibacterium prausnitzii;Eubacterium biformec

Louis et al., (121)

Butyrate kinase pathway Coprococcus eutactus;Subdoligranulum variabile

on the endothelial dysfunction which was the crucial
step in AS development (153–155). Besides, adherence to
Mediterranean diet also can modulate intima-media thickness
and atherosclerotic plaques (156–159). Some scientists have
found that MeDiet acted on the atherosclerotic inflammatory
process by downregulating proinflammatory biomarkers and
upregulating biomarkers associated with the stability of plaque.
On the vessel imaging, people intervening with a MedDiet
showed a reduction in the height of plaque, suggesting that
plaques have been stabilized. In addition, a report indicated that
greater adherence to MeDiet may be associated with a decreased
burden of carotid atherosclerotic plaque with a reduction in
plaque thickness and area. However, the mechanisms that
underlie the MeDiet acting on atherosclerosis is still unknown.
As we demonstrated before, MeDiet can alter the gut microbiota.
Therefore, we hypothesize that the role of MeDiet in AS may
have some relationships with gut microbiota.

Prebiotics
In the past few years, a number of scientists have discovered
that intake of appropriate prebiotics may improve health and
protect the cardiovascular system (160). The latest concept
of prebiotics is “selectively fermented ingredients that allow
specific changes, both in the composition and/or activity of the
gastrointestinal microbiota that confer benefits upon host well-
being and health” (161, 162). Prebiotics, including the fructans,
inulin and oligofructose, resistant starches, and so on, have been
found to increase the relative abundance of Bifidobacteria which
reflects the situation of gut health to some degree (163–165).
Besides, prebiotics were also able to modify blood lipid profiles
mainly because of their ability to bind cholesterol or BA in the
upper gut and increase sterol excretion, or for some, through
their gel-forming nature, which causes a bulking effect in the
intestine and triggering satiety (166–168).

Exercise
It has already been proven by several studies that exercise
can alleviate the development of atherosclerosis (169–173).
However, whether there are some relationships between the
change of gut microbiota induced by sports and atherosclerosis
is still not clear (Figure 2). Some investigations have found
that changes in microbial diversity caused by exercise are able
to improve tissue metabolism, cardiorespiratory fitness, and
insulin resistance that can effectively prevent the cardiovascular
incidents (174–177). Scientists discovered that compared with
sedentary controls, women completing over 3 h of exercise per
week had increased levels of butyrate-producing microbiota, A.
muciniphila especially associated with a lean body mass index
(BMI), and improved metabolism (178).

The modifications of gut microbiota induced by physical
exercise are due to the gut transit time, the modification of
the bile acids profile, the production of SCFAs via AMPK
activation, the modulation of the Toll-like receptor (TLR)
signaling pathway, immunoglobulin A, the number of B,
and CD4+ T cell (179–182). These factors listed above have
already been discovered to be related to the progress of
atherosclerosis, providing a new approach to management.
Although increasing studies have pointed that physical exercise
can make some benefits on modulation of gut microbiota, the
intrinsic mechanism should still be explored.

Others
Except for the lifestyles demonstrated before, there are several
new findings about daily intervening factors of gut microbiota
in enhancing the stability of plaques. As we all know, Pu-
erh tea displays cholesterol-lowering properties, recent years
scientists have some new discoveries on it. Xiao et al. have
found that ApoE-/- mice consuming Pu-erh tea can reduce
early fatty streak formation and the advanced fibrofatty plaque
sizes through alleviating the chronic inflammatory state by
reducing NF-κB activation and promotingmacrophage apoptosis
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(183). In addition, Huang et al. have indicated that Pu-
erh tea alters the gut microbiota in mice and humans,
predominantly suppressing microbes associated with bile-salt
hydrolase (BSH) activity. This finding may present a new kind
of therapy on antihypercholesterolemia and antihyperlipidemia
with decreasing intestinal BSHmicrobes or FXR-FGF15 signaling
(54). Huang et al. have demonstrated that glycoursodeoxycholic
acid (GUDCA) once proven to be able to improve metabolic
disorders may protect against atherosclerosis progression by
reducing the plaque area and elevating plaque stability. Besides,
they also found that the mice gut microbiota dysbiosis fed
with GUDCA administration could be partially normalized,
suggesting that GUDCA is a potential approach to prevent
atherosclerotic cardiovascular diseases (184). Besides, in recent
years, people facing more stress and lack of sleep may not only
increase inflammation-associated microbial members but also
lose species that secrete anti-inflammatory metabolic products.
As we described above, such conditions can accelerate the
development of atherosclerosis and make plaques more prone
to rupture.

Probiotics and Atherosclerosis
The definition of probiotics is “live strains of strictly selected
microorganisms which, when administered in adequate amounts,
confer a health benefit on the host (185).” Probiotics can
interact with the existing microbial community dynamic through
competition with pathogens (Figure 2). Probiotics must satisfy
the following criteria: (1) be live microorganisms; (2) can keep
alive and stable before use; (3) resistant to the digestion process;
(4) be scientifically proven to be beneficial to the host; and (5)
be proven to be safe and reliable or a member of the original
intestinal microflora. In fact, many products (e.g., yogurt) sold
on the market do not cater these basic standards. Up to
now, probiotics includes the related bacteria of Lactobacillus,
Bifidobacteria, Escherichia coli (E. coli), Enterococcus and some
yeasts (186).

Recently, supplementation with adequate probiotics has been
shown to beneficially modify a number of major atherosclerosis-
associated risk factors, such as hypercholesterolemia,
dyslipidemia, hypertension, and chronic inflammation
(187, 188). However, not all kinds of probiotics have been
found to play protective roles in atherosclerosis. Chan et al. have
demonstrated that supplementation with VSL#3, a consortium of
eight lyophilized lactic acid bacterial strains, significantly reduced
atherosclerosis lesion development of ApoE-/- mice induced by
high-fat diet (189). Huang et al. found that the ApoE-/- mice
that intervened with L.4356, belonging to Lactobacillus strains,
presented a notable reduction in the atherosclerotic lesion area
(190). One clinical trial showed that multispecies probiotics
supplementation improved several parameters of endothelial
dysfunction while Blattl et al. did not find some significant
changes in 30 subjects with metabolic syndrome receiving
Lactobacillus casei Shirota (191, 192). Several meta-analyses
concluded that probiotics were associated with a significant
reduction in TC and LDL-C, especially Lactobacillus acidophilus
(193, 194). Although there is evidence that probiotics played

some roles in host lipid profiling, the involved mechanisms are
still not fully understood.

Besides, probiotics can improve the integrity of epithelial
barriers and function of tight junctions which can effectively
inhibit the harmful metabolite (TMAO, LPS, and so on) from
entering into the circulatory system, proved to be able to prevent
the progress of atherosclerosis (195). In the past, probiotics
can make some beneficial effects on atherosclerotic risk factors,
providing a promising therapy of atherosclerosis. However, little
is understood about the mechanisms underlying the observed
effects of probiotics on host health.

Fecal Microbiota Transplantation
Recently, fecal microbiota transplantation (FMT) is popularized
in the treatment of various systemic diseases related to dysbiosis
of intestinalmicroorganisms (Figure 2). Up till now, in refractory
and relapsed Clostridium difficile infection (CDI), FMT has
already been shown to be effective and a primary therapy (196–
198). In recent years, some scientists have found that FMT may
become a potential approach for treating non-gastrointestinal
diseases, such as treating CVDs, metabolic syndrome, diabetes,
and so on. Being infused with intestinal microbes from lean
donors, the obese patients can enhance insulin sensitivity known
as the traditional risk factors for atherosclerosis (199, 200). In
some mouse model experiments, FMT have already made some
impressive benefits, such as the increasing production of SCFAs,
extended lifespan, attenuated myocarditis, and so on (201, 202).
However, some clinical trials have demonstrated that although
FMT can effectively change the composition of gut microbiota, it
did not show any practical influence such as TMAO production
capacity, parameters related to vascular inflammation, and
significant metabolic effects. Besides, the safety of FMT, a new
therapeutical approach, is still unclear. First, it can disrupt the
existing intestinal microorganisms, regardless of whether the
bacteria are beneficial or damaging. Besides, FMT may transfer
endotoxins or infectious agents into the circular system causing
unnecessary complications (203, 204). Thus, more clinical trials
and laboratory experiments are needed to study the efficiency of
its application and its potential adverse events.

CONCLUSION

In recent years, gut microbiota have been recognized as
another organ of the human body. It not only affects the
physiological processes of the host but also has been reported
to be associated with several diseases such as cardiovascular
diseases, endocrine disease, psychoses, and so on. In these
diseases, CVDs were the most common underlying cause of
death. In this review, we discussed whether the gut microbiota
affects the stability of atherosclerotic plaque, whose rupture
may cause a series of malignant events such as acute heart
failure, myocardial infarction, and shock. Several studies have
found that bacteria exist in atherosclerotic plaque, and there also
exist some differences between the stable and unstable plaque.
However, there is still no uniform conclusion on whether the
bacteria will cause the plaque to more easily rupture or not.
Besides, gut microbiota in the patient with atherosclerosis also
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show some changes compared with the control patient without
atherosclerosis, and patients in diverse trials also present various
alterations of the gut microbiota. Thus, it is still a long way for us
to study the relationship between atherosclerosis and microbiota.

Except for the microbiota itself, the metabolites produced by
gut microbiota also take various effects on the stability of plaque.
As for TMAO, one of the metabolites, a great deal of studies
detecting its influences on CVDs showed that it can providemore
vulnerable characteristics to plaques. Besides, another metabolite,
LPS, involved in infectious diseases has recently shown to have
some effects on atherosclerosis based on in experimental and
clinical trials by binding to various proteins, such as LBP, CD14,
TLR-4, and MD-2. SCFAs, the main energetic resource of IECs,
are able to maintain the gut barrier stable which can be the
effective management to prevent the other harmful metabolites
from entering into the circulation. SCFAs can prevent the
development of atherosclerosis through traditional risk factors
and VSMC proliferation.

Based on the characteristics of microbiota and its metabolites,
there emerges a lot of new treatments to prevent plaque rupture
and development of AS. Interference with lifestyle (healthy diet,
supplying prebiotics, spending more time on exercise, some

special drink or food), supplementation with probiotics, and
FMT have recently been discussed for application in CVDs.
However, due to the lack of long-term clinical trials, safety and
effectiveness should still be explored.
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