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Background: Left atrial enlargement (LAE) can independently predict the development

of a variety of cardiovascular diseases.

Objectives: This study sought to develop an artificial intelligence approach for the

detection of LAE based on 12-lead electrocardiography (ECG).

Methods: The study population came from an epidemiological survey of heart disease in

Guangzhou. Elderly people (3,391) over 65 years old who had both 10-s 12 lead ECG and

echocardiography were enrolled in this study. The left atrial (LA) anteroposterior diameter

>40mm on echocardiography was diagnosed as LAE, and the LA anteroposterior

diameter was indexed by body surface area (BSA) to classify LAE into different degrees. A

convolutional neural network (CNN) was trained and validated to detect LAE from normal

ECGs. The performance of the model was evaluated by calculating the area under the

curve (AUC), accuracy, sensitivity, specificity, and F1 score.

Results: In this study, gender, obesity, hypertension, and valvular heart disease seemed

to be related to left atrial enlargement. The AI-enabled ECG identified LAE with an

AUC of 0.949 (95% CI: 0.911–0.987). The sensitivity, specificity, accuracy, precision,

and F1 score were 84.0%, 92.0%, 88.0%, 91.3%, and 0.875, respectively. Physicians

identified LAE with sensitivity, specificity, accuracy, precision, and F1 scores of 38.0%,

84.0%, 61.0%, 70.4%, and 0.494, respectively. In classifying LAE in different degrees,

the AUCs of identifying normal, mild LAE, and moderate-severe LAE ECGs were 0.942

(95% CI: 0.903–0.981), 0.951 (95% CI: 0.917–0.987), and 0.998 (95% CI: 0.996–1.00),

respectively. The sensitivity, specificity, accuracy, positive predictive value, and F1 scores

of diagnosing mild LAE were 82.0%, 92.0%, 88.7%, 89.1%, and 0.854, while the

sensitivity, specificity, accuracy, positive predictive value, and F1 scores of diagnosing

moderate-severe LAE were 98.0%, 84.0%, 88.7%, 96.1%, and 0.969, respectively.

Conclusions: An AI-enabled ECG acquired during sinus rhythm permits identification

of individuals with a high likelihood of LAE. This model requires further refinement and

external validation, but it may hold promise for LAE screening.

Keywords: left atrial enlargement (LAE), convolutional neural network (CNN), electrocardiogram (ECG),

echocardiography, artificial intelligence (AI)
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INTRODUCTION

The left atrium (LA) is a crucial component of cardiac physiology,
which is involved in collecting blood from pulmonary veins
returning to the heart and regulating left ventricular filling
during systole and diastole (1). Left atrial enlargement (LAE)
can be caused by pressure overload and/or volume overload,
which can lead to left atrial structural remodeling. Macrophages
and neutrophils, as the key cellular mediators of inflammation,
may also remodel the atria by infiltrating, releasing reactive
oxygen species (ROS), and producing inflammatory cytokines
and myeloperoxidases (2). LAE occurs commonly in association
with diastolic dysfunction, left ventricular hypertrophy, mitral
valve disease, and systemic hypertension (3, 4). There are no signs
and symptoms of LAE in itself, and it is a pathophysiological
response to other potential cardiovascular diseases. It has been
proven that LAE can independently predict the development of a
variety of cardiovascular diseases (5, 6). Although LAE can lead
to the change of P-wave, the low sensitivity of ECG in diagnosing
LAE limits its clinical application (7). Echocardiography, cardiac
computed tomography (CCT), and cardiac magnetic resonance
imaging (CMR) are the main means to diagnose LAE, and
echocardiography is the most common choice because of its
availability and safety (8, 9).

With the development of deep neural network models
(DNNs), artificial intelligence (AI) has made great progress and
has been gradually applied to the diagnosis of echocardiography
and ECG (10, 11). Since DNNs can recognize patterns and learn
useful features from raw input data without requiring extensive
data preprocessing, feature engineering or handcrafted rules, and
DNNs’ performance tends to increase as the amount of training
data increases, this approach is suitable for ECG analysis (12).
AI-enabled ECG algorithm has achieved satisfactory results in
the diagnosis of atrial fibrillation (AF), myocardial infarction
(MI), and cardiac insufficiency (13–15), and its application in
diagnosing LAE is also expected.

We hypothesized that in the absence of any severe heart
disease, detection of LAE may be helpful in clinical decision
making. There may be subtle changes in ECG due to the
structural changes of LAE, andwe can trainDNNS to identify and
diagnose LAE. Diagnosing LAE with this low-cost, convenient,
and widely available method, we may screen out the potential
cardiovascular diseases or the high-risk groups of specific
cardiovascular diseases early.

METHODS

Data Collecting
The study population came from an epidemiological survey
of heart disease in Guangzhou, South of China. This survey
was conducted from July 2015 to August 2017. Randomized
multistage cluster sampling was used to recruit permanent
residents aged 35 and above from Guangzhou City. More than
12,000 adults were enrolled in this survey, and those aged over
65 years old or diagnosed with AF (N = 3,585) underwent
both standard 10-s, 12-lead, 500-Hz ECG, and echocardiography.
The intervals between ECG and echocardiography were within

2 weeks, and the results were diagnosed and verified by
two specialists. Patients (180) with previous or present atrial
fibrillation and nine patients with pacemakers were excluded.
Five patients’ ECGs were missing, and the remaining 3,391
patients were all included in this study. The left atrial
anteroposterior diameter >40mm on echocardiography was
diagnosed as LAE. ECGs were divided into the LAE group and
the normal group. There were 286 ECGs in the LAE group, and
3,105 ECGs in the normal group (Figure 1).

Data Preprocessing
Each ECG was a 12 × 5,000 (12 leads by 10-s duration sampled
at 500Hz) matrix, where the first dimension represented a spatial
dimension, and the second represented a temporal one. The raw
ECG data contained a large amount of noise and suffered from
baseline drift (Figure 2A). Therefore, all raw ECG data were
preprocessed before training. In order to eliminate the baseline
drift and low power noise of raw ECG data, we first filtered
the raw data using a low-pass filter to get the baseline and
flattened the baseline by zeroing the mean (Figure 2B), and then
we achieved denoising by filtering out the high-frequency signal
(Figure 2C).

The 12-lead ECG is recorded using eight physical leads and
four augmented leads created as a linear function of leads I and
II, which do not contain incremental information. To optimize
performance, we selected only the eight independent leads (leads
I, II, and V1–6) because any linear function of the leads could be
learned by the models. We used 8 s of ECG data by excluding the
first and last 1-s periods because more artifacts were contained
within these ranges. Consequently, we created two-dimensional
(2D) data of 8 × 4,000 from each ECG to develop and validate
the algorithm.

Data Splitting
We randomly selected 50 ECGs from 3,105 normal ECGs and
50 ECGs from 286 LAE ECGs as the testing set, and then
divided the left 3,291 ECGs into the training set and validation
set at proportions of 7:3, respectively (Figure 1). In order to
produce more data, we expanded the training and validation
set by shifting the start point and choosing continuous 3,950
points of each lead, which contains 4,000 points in total, so
it can be expanded to 50 samples for each sample by shifting
the start point 50 times. After data expanding, the expanded
training set contained 8,250 LAE samples and 106,950 normal
samples, while the validation set contained 3,550 LAE samples
and 45,800 normal samples. To avoid training bias caused by
the imbalance of the training and validation data, we randomly
sampled the same amounts of normal ECGs as the LAE ECGs for
training. The training set was used to train the neural network,
the validation set was used to optimize the network and select
the parameters, and the testing set was used to evaluate the
performance of the neural network. ECGs in different dataset
were not repeated.

Model Training and Developing
Convolutional neural networks (CNNs) were built by using
the Keras Framework with a TensorFlow backend and Python.
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FIGURE 1 | Patient flow diagram.

CNNs extracted the subtle changes in ECGs by convolution.
Categorical cross entropy loss was used as the loss function,
and Adam optimization method was applied. If the training
process was not improved for 10 consecutive epochs, the training
would be stopped. The training could be carried out in 100
epochs at most, and the minimum batch size was 64. A receiver-
operating characteristic curve (ROC) was created for the testing
and validation sets to assess the area under curve (AUC) of
the AI-enabled ECG to determine whether LAE was present.
Measures of diagnostic performance included the AUC, accuracy,
precision, sensitivity, specificity, and F1 score. Multiple networks
were tested, and the simplest (the one with fewer parameters or
layers) that resulted in the highest AUCwas selected. The selected

network consisted of seven convolution layers. The first six layers
were designed to learn features within each lead, the number of
filters in the first convolution layer was 32, and the number of
filters was doubled every two layers. The shapes of the filters were
composed of 5 ∗ 1 and 3 ∗ 1 alternately. After each convolution
layer, there was a “Relu” activation layer, a batch- normalization
layer, and a max-pooling layer (4 ∗ 1 after the first and forth
layers and 2 ∗ 1 after others). In the last convolution layer, the
filter shape was 8 ∗ 1, allowing it to fuse data from the different
leads. After that, the data were fed to a dropout layer and a fully
connected network with two hidden layers to avoid overfitting.
The output layer had two classes and was activated using the
“Softmax” function.
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FIGURE 2 | Data pre-processing. (A) Shows representative ECG with interference and baseline drift. (B) Shows representative ECG without baseline drift after

preprocessing. (C) Shows representative ECG without interference and baseline drift after preprocessing.

Classification of Left Atrial Enlargement
LA anteroposterior diameter was indexed by body surface area
(BSA) to quantify left atrial enlargement. According to the results,
the data were divided into three groups: normal (<2.4 cm/m2),
mild enlargement (≥2.4 and <2.7 cm/m2), and moderate–
severe enlargement (≥2.7 cm/m2). There are 2,664, 550, and
177 patients in the normal, mild, and moderate–severe groups,
respectively. Fifty ECGs were randomly selected from each group
as the testing set, and then the left ECGs were divided into the
training set and validation set at proportions of 7:3, respectively.
Then the same model was trained to validate its ability to detect
LAE in different degrees.

RESULTS

Baseline Characteristics
The differences of clinical characteristics between the LAE group
and the normal group are shown in Table 1. There are 139
males and 147 females in the LAE group with an average age
of 72.6 years, while there were 1,135 males and 1,970 females
in the normal group with an average age of 71.8 years. There
were more males in the LAE group (P < 0.0001), and no
differences were shown in age between the two groups (P =

0.0651).Moreover, hypertension, diabetes, myocardial infarction,
valvular heart disease, cardiac insufficiency, obesity, and chronic

kidney disease were more common in the LAE group (P <

0.05). Multivariate analysis further indicated that gender, obesity,
hypertension, and valvular heart disease might be associated with
LAE. Although the prevalence rates of myocardial infarction (P
= 0.0545) and cardiac insufficiency (P = 0.0596) in the LAE
group seemed to be higher, the statistical differences were still
not reached.

Performance of AI Algorithm
Following training and validation, the ROC curves of detecting
LAE were drawn (Figure 3). The AUC of the validation set was
0.973 (95% CI: 0.969–0.976). 3,318 of 3,550 normal ECGs and
3,116 of 3,550 LAE ECGs were correctly diagnosed by the AI
model, with sensitivity, specificity, accuracy, precision, and F1
scores of 87.8%, 93.5%, 90.6%, 93.1%, and 0.903, respectively
(Table 2). The AUC of the testing set was 0.949 (95% CI: 0.911–
0.987) with sensitivity, specificity, accuracy, precision, and F1
score of 84.0%, 92.0%, 88.0%, 91.3%, and 0.875, respectively.
The results suggested that the AI model has a satisfactory
ability to diagnose LAE. Compared with the AI model, only 42
normal ECGs and 19 LAE ECGs of the testing set were correctly
diagnosed by physicians, with sensitivity, specificity, accuracy,
precision, and F1 scores of 38.0%, 84.0%, 61.0%, 70.4%, and
0.494, respectively (Table 2).
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TABLE 1 | Clinical characteristics of patients.

LAE Normal P-Value

Univariate

analysis

Multivariate

analysis

Age (mean) 72.6 71.8 0.0651 0.3670

Gender Male 139 1,135 <0.0001 <0.0001

Female 147 1,970

BMI <18.5 2 182 <0.0001 <0.0001

18.5–25 92 1,914

25–30 147 881

≥87 45 128

Hypertension Yes 206 1,539 <0.001 <0.0001

No 80 1,566

Diabetes Yes 54 436 0.0266 0.6911

No 232 2,669

Hyperlipidemia Yes 76 781 0.5969 –

No 210 2,324

Myocardial infarction Yes 24 117 0.0003 0.0545

No 262 2,988

Stroke Yes 14 109 0.2330 –

No 272 2,996

Chronic kidney <60 86 726 0.0115 0.8321

disease ≥32 200 2,379

Valvular heart No 180 2,555 <0.0001 <0.0001

disease AVD 39 386

Mi-VD 40 111

Mu-VD 27 53

EF (%) <50 5 6 <0.0001 0.0596

≥96 281 3,099

AVD, aortic valve disease; Mi-VD, mitral valve disease; Mu-VD, multiple valve disease.

FIGURE 3 | Performance of left atrial enlargement’s (LAE’s) diagnosis.

The ability to classify LAE was also verified, ROCs were
plotted for all classifications of LAE (normal, mild LAE, and
moderate-severe LAE) (Figure 4). In the validation set, the AUCs
of normal, mild LAE, and moderate-severe LAE were 0.962
(95% CI: 0.957–0.967), 0.953 (95% CI: 0.947–0.959), and 0.999
(95% CI: 0.999–1.00), while the AUCs in the testing set were
0.942 (95% CI: 0.903–0.981), 0.951 (95% CI: 0.917–0.987), and
0.998 (95% CI: 0.996–1.00), respectively. The confusion matrix of
classifying LAE is shown in Table 3. The sensitivity, specificity,
accuracy, positive predictive value, and F1 scores of diagnosing
mild LAE were 82.0%, 92.0%, 88.7%, 89.1%, and 0.854, while
the sensitivity, specificity, accuracy, positive predictive value,
and F1 scores of diagnosing moderate-severe LAE were 98.0%,
84.0%, 88.7%, 96.1%, and 0.969, respectively. The CNN model
achieved satisfactory results in classifying different degrees of
LAE, especially in the diagnosis of moderate-severe LAE.

DISCUSSION

In this study, we found that AI-enabled ECG performed well in
diagnosing LAE (AUC 0.95), especially in diagnosing moderate
and severe LAE. Compared with other medical screening tests,
such as the B-type natriuretic peptide for heart failure (AUC
0.60–0.70) (16), Papanicolaou smear for cervical cancer (AUC
0.70) (17), and CHA2DS2-VASc Score for stroke risk (AUC
0.57–0.72) (18), the diagnostic performance was better.

LA size is an indicator for assessing the risk of cardiovascular
disease (19–21). A clinical study involving 1,160 elderly
patients suggested that LA size could independently predict
cardiovascular events (22). Although most clinical studies on LA
size have focused on the elderly, Leung et al. (23) found that LAE
was also a predictor of multiple cardiovascular diseases through
long-term follow-up of unselected young (mean age 47 years)
patients with sinus rhythm (n = 483) (median follow-up of 6.8
years). Besides, LA size is also an important prognostic indicator
for a variety of cardiovascular diseases. In patients with AF, LA
size has predictive value for stroke risk, event-free survival, and
recurrence after cardioversion (8). LAE has also been shown
to predict the prognosis of myocardial infarction (24–26). In
a clinical study of 314 patients with AMI followed up for 15
months, LAEwas a powerful predictor of all-causemortality (24).
In addition, LAE is not only a predictor of prognosis in patients
with dilated cardiomyopathy (DM) (27) and hypertrophic
cardiomyopathy (HCM) (28, 29) but also has predictive value for
the prognosis of mitral regurgitation or stenosis (8). Therefore,
it is of great significance to identify LAE in a cheap, widely used,
and convenient way. By screening the LAE population, we can
identify the underlying cardiovascular disease causing LAE or
screen out the high-risk population of specific cardiovascular
diseases early and provide clinical guidance.

Echocardiography, as an effective means of detecting LAE, is
cheaper and more available than cardiac computed tomography
(CCT) and cardiac magnetic resonance (CMR), but it is still
a high-cost screening tool for people at risk of cardiovascular
disease. Therefore, a safe, convenient, low cost, and good
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TABLE 2 | The confusion matrix of diagnosing left atrial enlargement (LAE).

Predicted Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) F1 scores

Normal LAE

Validation Set Normal 3,318 232 87.8 93.5 90.6 93.1 0.903

LAE 434 3,116

Testing Set AI Normal 46 4 84.0 92.0 88.0 91.3 0.875

LAE 8 42

Physicians Normal 42 8 38.0 84.0 61.0 70.4 0.494

LAE 31 19

FIGURE 4 | Classification of LAE. (A–C) Show the performance of the AI algorithm in classifying normal ECGs, mild LAE ECGs, and moderate-severe LAE ECGs.

performance detection method will be valuable as a new
screening tool, especially in developing countries like China,
where the level of primary care is relatively poor. Our data
suggested that a simple, inexpensive, non-invasive 10-s 12-lead
standard ECG may identify LAE patients with the aid of the
AI algorithm.

Although the anteroposterior diameter may not exactly reflect
the size of LA, especially in the case of asymmetric enlargement
of LA, and LA volume has been described as a more accurate
measure of LA size (30), the anteroposterior diameter is still a

simple and acceptable measure of LA size that used in clinical
studies (31, 32). LAE was diagnosed by the anteroposterior
diameter of LA in this study because only the anteroposterior
diameter was available in most participants. Since the size of LA
increases with an increase in body size (5), LA anteroposterior
diameter was indexed by body surface area (BSA) to quantify
LAE. Identifying potential patients with LAE by AI-enabled
ECG indicated that although no obvious abnormalities were
observed in ECG, in fact, changes in cardiac electrophysiological
signals caused by pathophysiological changes of the disease itself
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TABLE 3 | The confusion matrix of classifying LAE by the artificial intelligence (AI) model.

Predicted Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) F1 scores

Normal Mild Moderate-severe

Validation set Normal 1,739 144 17 91.5 92.6 92.2 86.4 0.889

Mild 265 1,628 7 85.7 95.5 92.2 91.7 0.886

Moderate-severe 8 3 1,889 99.4 88.6 92.2 98.7 0.990

Testing set Normal 43 5 2 86.0 90.0 88.7 81.1 0.835

Mild 9 41 0 82.0 92.0 88.7 89.1 0.854

Moderate-severe 1 0 49 98.0 84.0 88.7 96.1 0.969

had already existed. Moreover, the greater the degree of LAE,
the better the performance of artificial intelligence algorithms
because with the degree of LAE increased, the model was
easier to recognize the changes in cardiac electrophysiological
signals. However, a key limitation in existing neural networks
is interpretability. Decoding the “black box” will allow us to
identify more abnormal electrophysiological signals in the ECG,
and make physicians have a more accurate and comprehensive
understanding of physiological and pathological ECG signals.

In this study, 286 of the 3,991 patients were diagnosed as LAE.
The prevalence rate was 7.2%, and gender, obesity, hypertension,
and valvular heart disease were related to LAE. Although the
exact prevalence of LAE is not available, a study conducted by
Bombelli et al. revealed that after over 10 years of follow-up,
123 of 1,045 patients (11.8%) with normal baseline LA size were
progressed to LAE, and gender, obesity, hypertension may be
related to LAE (33). Men and obese people have a larger LA,
probably because they have a larger body size. In patients with
myocardial infarction and/or systolic heart failure, the presence
of LAE is common. However, myocardial infarction and cardiac
insufficiency were not associated with LAE in this study. It may
be because the prevalence of these two diseases were too low in
the study population. LAE occurs commonly in association with
mitral valve disease and systemic hypertension, which can lead to
left atrial structural remodeling by pressure overload and volume
overload. It is worth noting that, in patients with hypertension,
LAE is likely to be substantially related to the presence and
extent of left ventricular hypertrophy, as well as to the risk of
development of hypertensive heart failure. Thus, detecting LAE
with AI-enabled ECG will be of great value for the stratified
management and treatment in patients with hypertension. In
addition, the sensitivity, specificity, accuracy, precision, and F1
score of physicians in diagnosing LAE by ECG were 38.0%,
84.0%, 60.0%, 70.4%, and 0.494, respectively. Similar to this
study, previous studies suggested that LAE detection by ECG had
a poor sensitivity of 30–60%, and a high specificity of about 90%
(7). The population included in this study was ≥65 years old.
Although the AI algorithm performed well in this population,
its diagnostic performance in younger population remained to
be verified.

Although DNN performance tends to increase as the amount
of training data increases, it is difficult to obtain such large
amounts of labeled data in most circumstances. In fact, DNNs
are also applicable in small datasets. Makimoto et al. (11) used

the PTB ECG database consisting of 289 ECGs including 148
myocardial infarction (MI) cases to develop a CNN to recognize
MI in ECG. The deep learning with a simple CNN for image
analysis may achieve a comparable capability to physicians in
recognizing MI on ECG. Using dermoscopic images of selected
lesions from 514 patients, Phillips et al. developed an artificial
intelligence algorithm to identify melanoma with an accuracy
similar to that of specialists (34). Moving the start point of
each lead to produce more samples may be helpful to the
development of AI applications for ECG diagnosis with small
datasets (35).

In conclusion, an AI-enabled ECG acquired during sinus
rhythm permits identification of individuals with a high
likelihood of LAE. This result could have important implications
for screening for potential cardiovascular diseases that cause LAE
or for high-risk groups of specific cardiovascular diseases. This
model requires further refinement and external validation, but it
may hold promise for LAE screening.
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