AUTHOR=Nagy Magdolna , van Geffen Johanna P. , Stegner David , Adams David J. , Braun Attila , de Witt Susanne M. , Elvers Margitta , Geer Mitchell J. , Kuijpers Marijke J. E. , Kunzelmann Karl , Mori Jun , Oury Cécile , Pircher Joachim , Pleines Irina , Poole Alastair W. , Senis Yotis A. , Verdoold Remco , Weber Christian , Nieswandt Bernhard , Heemskerk Johan W. M. , Baaten Constance C. F. M. J. TITLE=Comparative Analysis of Microfluidics Thrombus Formation in Multiple Genetically Modified Mice: Link to Thrombosis and Hemostasis JOURNAL=Frontiers in Cardiovascular Medicine VOLUME=6 YEAR=2019 URL=https://www.frontiersin.org/journals/cardiovascular-medicine/articles/10.3389/fcvm.2019.00099 DOI=10.3389/fcvm.2019.00099 ISSN=2297-055X ABSTRACT=
Genetically modified mice are indispensable for establishing the roles of platelets in arterial thrombosis and hemostasis. Microfluidics assays using anticoagulated whole blood are commonly used as integrative proxy tests for platelet function in mice. In the present study, we quantified the changes in collagen-dependent thrombus formation for 38 different strains of (genetically) modified mice, all measured with the same microfluidics chamber. The mice included were deficient in platelet receptors, protein kinases or phosphatases, small GTPases or other signaling or scaffold proteins. By standardized re-analysis of high-resolution microscopic images, detailed information was obtained on altered platelet adhesion, aggregation and/or activation. For a subset of 11 mouse strains, these platelet functions were further evaluated in rhodocytin- and laminin-dependent thrombus formation, thus allowing a comparison of glycoprotein VI (GPVI), C-type lectin-like receptor 2 (CLEC2) and integrin α6β1 pathways. High homogeneity was found between wild-type mice datasets concerning adhesion and aggregation parameters. Quantitative comparison for the 38 modified mouse strains resulted in a matrix visualizing the impact of the respective (genetic) deficiency on thrombus formation with detailed insight into the type and extent of altered thrombus signatures. Network analysis revealed strong clusters of genes involved in GPVI signaling and Ca2+ homeostasis. The majority of mice demonstrating an antithrombotic phenotype