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Graphite is known and used by humankind since ancient times. It is composed of sp2-

bonded, two-dimensional, atomically flat, carbon layers called graphene, weakly joined

together by van derWaals forces. Through the ages, graphite foundmany applications, from

a refractory material to electrode for batteries, from pencils to lubricants, among others.

In a pioneering calculation, Wallace obtained the electronic structure of graphite and

graphene (Wallace, 1947) that revealed the linear dispersion when the bands cross the

Fermi level at the vertices K and K’ of the hexagonal Brillouin zone, a feature that, many

years later, became widely known as the perfect emulation of a two-dimensional massless

Dirac fermion (Novoselov et al., 2005). For almost 60 years, this result appeared ellusive to

experimental investigation, as the isolation of a single layer of graphene—the ultimate 2D

system - was thought to be forbidden by the Mermin-Wagner theorem (Mermin, 1968).

But Nature has it own ways, and graphene research took a dramatic turn when Geim

&Novoselov isolated graphene for the first time using the mechanical exfoliation (“scotch

tape”) method (Novoselov et al., 2004). In 2010, they received the Physics Nobel Prize for

this discovery and subsequent studies on this material, which led to a plethora of

observations of the truly exquisite properties of 2D massless Dirac fermions to be

accessible in tabletop experiments (Geim and Novoselov, 2007).

The discovery of graphene ignited the broader field of 2D materials (Novoselov et al.,

2016). Novel layered materials are discovered or predicted in a daily basis, with diverse

properties (metals, insulators, semiconductors, magnetic, topological, etc). In addition,

the possibility of combining these materials in stacked structures called “van der Waals

heterostructures” offers endless possibilities of design engineering of novel structures to

meet target functionalities.

These already infinite possibilities can be yet infinitely multiplied by turning the knob that

controls the twist angle between neighboring layers. From early theoretical predictions that

the electronic structure of bilayer graphene could be tuned by the twist angle (Lopes dos

Santos et al., 2007), this possibility evolved to a truly new subfield of graphene and 2D

materials research called “twistronics”. A turning point was the discovery of superconductivity

in twisted bilayer graphene near the so-called “magical angle” (Cao et al., 2018; Lee et al., 2019;

Yankowitz et al., 2019), where bands near the Fermi level become flat and give rise to a variety

of strongly-correlated phenomena. This discovery sparkled verifications of such effects in

similar and promising systems, such as trilayer graphene (Park et al., 2021; Hao et al., 2021).

Today, twistronics is a hot topic not only in graphene but in 2Dmaterials research in general.

Although the superconductivity in twisted graphene systems appears to be of unconventional

type, the underlying theoretical description is still ellusive, representing an important
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challenge in graphene physics. The possibility to explore the twist

degree of freedom has been extended to other 2D materials and

combinations thereof (Devakul et al., 2021). The immense number

of possibilities of different structures—combining different

materials and twist angles - offers yet another challenge: to

predict and design structures for target electronic or optical

properties, a daunting task that certainly must be dealt with

using artificial intelligence methods (Tritsaris et al., 2021).

The discovery of new phenomena and the use of single and

multilayer graphene for selected applications require steady

advances in graphene synthesis. From the early works on

mechanically exfoliated graphene (Novoselov et al., 2004),

synthesis has evolved considerably. Several methods currently

exist to synthesize graphene, each having its own advantages and

difficulties (Shams et al., 2015; Zhu et al., 2010). Graphene can be

synthesized by top-down approaches such as graphite intercalation,

pyrolysis, reduction of graphene oxide, electrochemical exfoliation,

sonication, etc., as well as bottom-up approaches such as chemical

vapor deposition (CVD), epitaxial growth on SiC, and others.

Considerable advances have been achieved in CVD growth of

large-area monolayer and bilayer graphene (Wang et al., 2021).

Novel bottom-up approaches involving precursor molecules were

very sucessful in the bottom-up synthesis of atomically-precise

graphene nanoribbons and related structures (Cai et al., 2010;

Ruffieux et al., 2016), as well as large area graphene sheets

synthesized at liquid-liquid interfaces (Lopes et al., 2018). For

industrial-scale graphene synthesis, challenges include improve

quality control, uniformity and reproducibility of graphene flakes

and, in the case of CVD graphene, increasing production rate and

scalability. In general, inconsistent quality over different producers

is also an issue, and the need to improve an unified standardization

or grading scheme is critical (Lin et al., 2019).

Raman spectroscopy holds a special place among graphite and

graphene characterization techniques (Jorio et al., 2011). It can be

used to determine the number of layers in a multilayer sample

(Silva et al., 2020), it is quantitatively sensitive to the presence of

both linear and point defects (Cançado et al., 2017), doping

(Ferrari, 2007) and pressure (Machon et al., 2018). Recent

developments on tip-enhanced Raman spectroscopy (TERS) of

graphene (Gadelha et al., 2021) have extended the spatial

resolution of Raman measurements to unprecedented regimes,

alllowing for measurements of localized phonon modes in twisted

bilayer graphene. One challenge in Raman spectroscopy of

graphene is to improve even more spatial resolution to measure

Raman signals of single defects in graphene in the near future.

The unusual electronic dispersion of graphene gives rise to

very attractive optical and plasmonic properties (Grigorenko

et al., 2012; Cui et al., 2021), with many possible applications

in optoelectronic devices. Plasmons-polaritons in

graphene—coupled excitations of photons and

electrons—inherit the behavior of 2D massless fermions and

can be gate-controlled and imaged (Fei et al., 2012; Chen et al.,

2012), enabling the possibility of novel and compact optical

devices operating from terahertz to visible frequencies, such as

metamaterial and transformation optics devices (Zhao et al.,

2016; Vakil and Engheta, 2011; Ju et al., 2011; Lee et al., 2012),

photodetectors (Liu et al., 2011); photonic crystals (Xiong et al.,

2019), lasers (Chakraborty et al., 2016) and X-ray sources (Wong

et al., 2015). Challenges in plasmonic and optical properties of

graphene involve improving the quality and reproducibility of

patterned nanostructures, efficient coupling light in and out of

graphene, and extending plasmon tunability to the vis-NIR range

(García de Abajo, 2014).

From the early days of graphene research, prospects

applications of graphene in electronics and spintronics were

conceived. Graphene itself does not have a band gap, limiting

the possibilities of applications in digital electronics. However,

several other applications have been explored, from flexible

displays (Ahn and Hong, 2014) to radio-frequency devices

(Palacios et al., 2010). In addition, the discovery of graphene

opened the door to other 2D materials, many of them

semiconductors and holding a greater potential for

applications in electronics. Furthermore, from the

understanding and control of spin injection, transport and

relaxation in graphene, several spintronics applications have

been conceived (Han et al., 2014). Challenges in graphene

electronic and spintronic applications rely in devising

controlled fabrication protocols that lead to stable and

reproducible devices. Scalabality and wafer-scale integration

are of course important issues as well.

The number of graphene applications is growing steadily

every year. Graphene’s planar geometry and its sensitivity to the

surrounding molecular enviroment make it an ideal material for

electrochemical sensors and biosensors (Shao et al., 2010).

Graphene and graphene oxide are promising materials for

biomedical applications such as drug delivery, biosensing,

bioimaging, cancer therapy and theranostics [Shi and Fang,

2018; Song et al., 2020). Applications related to graphene’s

outstanding mechanical and conductive properties are also

promising, such as anti-corrosive coatings (Cui et al., 2019)

and various types of composites (with polymers, metals,

oxides, and others) (Huang et al., 2012). Graphene and its

composites can be used in a variety of applications, such as

fuel cells (Liu et al., 2014), Li-ion batteries (Cai et al., 2017),

supercapacitors (Velasco et al., 2021), photocatalysis (Li et al.,

2016) and photovoltaic devices (Liu Z. et al., 2015). Graphene-

based membranes appear to be a great platform for molecular

separation and filtration as well (Liu G. et al., 2015). Challenges
in the field of graphene applications involve overcoming the

bottlenecks of production cost and volume, in comparison to

competing technologies. In addition, to substantially boost

graphene penetration in industry, graphene needs to find its

“killer” applications, those in which the contributions of

graphene are irreplaceable and unique (Lin et al., 2019).

All these applications require careful studies of possible

health and environmental impacts of graphene and its
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derivatives. Whenever possible, such studies must be

incorporated in the very early stages of product and process

development (“safety-by-design”). Fortunately, from the whole

plethora of nanomaterials, graphene-related materials are one of

the most well studied in this aspect (Ding et al., 2022; Fadeel et al.,

2018; Bortolozzo et al., 2021). Challenges in this field are further

understanding the structure-activity relationships of graphene

materials in health and environment and devising novel methods

of mitigation of possible hazardous effects.

In summary, almost 20 years of after its discovery, the study of

graphene and graphene-related materials (including graphite, of

course) remains a hot topic from both fundamental and applied

science. As such, theGraphite-ene Section of Frontiers in Carbon

will be devoted to bring to their readers the latest discoveries in all

aspects involving this superlative material.
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