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The tuned mass damper is one of the most frequently employed structural
control devices for mitigating dynamic vibrations in structures subjected
to earthquake ground motions. Conventional tuned mass dampers require
substantial mass to effectively reduce the structure’s vibration. However,
implementing multiple-tuned mass dampers can also improve seismic
performance while reducing the required mass. The dynamic characteristics
of these devices play a critical role in enhancing the effectiveness of multiple-
tuned mass dampers and the seismic performance of the structure. This study
investigates the efficiency of double-tuned mass dampers and the optimization
of their dynamic characteristics to minimize structural displacement and
acceleration. The tuning process is carried out using a combination of Pareto
front derived from seven multi-objective metaheuristic optimization algorithms
with two objectives. The proposed methodology is applied to a 10-floor
case study, using ground acceleration time histories to evaluate its seismic
performance. To demonstrate the efficiency of the proposedmethod, the results
are compared with those from a double-tuned mass damper system and an
uncontrolled structure. The evaluation is carried out using seven earthquake
ground motion records in addition to one benchmark record. The findings
show that employing optimally tuned double-tuned mass dampers reduced
acceleration by 30% and displacement by 50%. The numerical results confirmed
that the proposed methodology effectively identifies the optimal double-tuned
mass damper configuration under earthquake excitation.

KEYWORDS

double tuned mass damper, seismic control, seismic response, multi-objective
optimization, evolutionary algorithm, global Pareto front

1 Introduction

In modern society, there is an increasing trend toward constructing large and
complex structures for various economic and social reasons.These structures, characterized
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by significant height, lightweight materials, flexibility, and limited
damping capacity, are particularly susceptible to vibrations.
Vibrations adversely affect most engineering systems due to their
destructive potential. Earthquakes, as one of the most hazardous
natural disasters, pose a serious threat to these buildings by
generating seismic vibrations (Wang et al., 2022). Other hand,
seismic vibrations can cause asynchronous movements in adjacent
buildings with insufficient separation, amplifying impact forces
and significantly increasing the risk of severe structural damage a
phenomenon known as structural pounding (Kamgar et al., 2025).

Structural vibration control is an effective and economical
method for protecting buildings during earthquakes (Choi et al.,
2023; Sadeghi-Movahhed et al., 2022; Sadeghi-Movahhed et al.,
2023; Sadeghi-Movahhed et al., 2024a;Majdi et al., 2024). Numerous
control strategies have been developed and implemented to improve
the seismic performance of structures, especially to enhance the
seismic performance of adjacent structures (Gattulli et al., 2019; Lin
and Lin, 2021; Mazza and Labernarda, 2021; Majdi et al., 2023;
Sadeghi-Movahhed et al., 2024b). Among these, the tuned mass
damper (TMD) stands out as one of the most reliable devices,
first proposed by Frahm (1909), to mitigate dynamic vibrations in
structures subjected to seismic forces (Cao et al., 2019). A TMD
system consists of a mass, a spring, and a dashpot. The fundamental
principle of a TMD is to transfer vibrational energy from the primary
structure to itself and dissipate it through a damping element. TMDs
operate by adjusting their natural frequency to be close to the
fundamental vibration frequency of the main structure, generating
an antiphase resonance that absorbs and dissipates the disturbance
energy (Lee et al., 2022; Zuo et al., 2021). These devices can be
easily attached to the main structure without the need for serious
changes to the main structure. The TMD is specifically tuned to a
particular structural frequency, causing it to resonate out of phase
with the structural motion when that frequency is excited. The
parameters of the TMD, mass, stiffness, and damping coefficient,
play a critical role in influencing the response of the primary
structural system. Consequently, parameter optimization is a key
design consideration for improving safety performance, as it directly
impacts the reduction of structural vibrations such as displacements
and acceleration.

Since the optimum parameters of a TMD are crucial for its
effectiveness, determining these parameters is important (Cetin
et al., 2019). However, identifying the optimal parameters is
complex, particularly for damped systems. Two general approaches
are commonly used to identify the optimal structural parameters for
TMDs: analytical methods and optimization algorithms. Analytical
methods rely on mathematical models and equations to predict the
optimal parameters based on the characteristics of the structure
and the expected loads. Thompson (1981) used a frequency locus
method to obtain optimal damper parameters. Closed-form derived
formulas for the design of TMDs subjected to lateral loads, such
as wind and earthquake loadings, were proposed by Chang (1999).
Lin et al. (2001) used an extended random decrement method
to reduce the dynamic responses of a multi-degree-of-freedom
system subjected to seismic loading. Yahyai et al. (2021) proposed
a method for the optimal design of a structure equipped with TMD
by minimizing the frequency response function of displacement.

Some studies have investigated the use of optimization
algorithms in determining TMD parameters. In the optimization

algorithms method, evolutionary techniques are commonly
employed to iteratively search for the best parameters by improving
potential solutions. Metaheuristic algorithms, such as genetic
algorithm (Desu et al., 2006; Hadi and Arfiadi, 1998; Mohebbi et al.,
2013; Singh et al., 2002), particle swarm optimization (PSO)
algorithm (Leung and Zhang, 2009), harmony search algorithm
(Bekdaş and Nigdeli, 2011) have been widely applied to tune TMD
parameters. Notably, the first study in this field was presented
by Hadi and Arfiadi (1998). Mashayekhi et al. (2023), used
PSO, the whale optimization algorithm (WOA), and Hybrid
PSO-WOA (HPW) algorithms to identify the optimal TMD
parameters. Additionally, Farshidianfar and Soheili (2013) used
the ant colony algorithm to optimize TMD parameters while
considering soil-structure interaction effects, aiming to minimize
the displacement and acceleration of high-rise building floors.
The Ability of metaheuristic algorithms to handle nonlinear
optimization problems and find near-optimal solutions makes
them particularly suitable for tuning TMD parameters in complex
structural systems.

In tall buildings, installing a single TMD can be challenging
due to the significant space and mass required. While a TMD
tuned to higher-mode vibrations can significantly impact the
overall response of a tall building. Moreover, the performance
of a single TMD is highly sensitive to variations in the natural
frequency of the structure or the damping coefficient of the damper,
which can lead to issues such as poor frequency tuning and
suboptimal damping performance (Akhlagh Pasand and Zahrai,
2024; Steinbuch, 2011). To address these limitations, researchers
have developed more advanced systems, such as damping-coupled
TMDs,which consist of twomass units with slightly different natural
frequencies coupled by a damping unit (Alnayhoum et al., 2023).
Xu and Igusa (1992) introduced the concept of multiple TMD
(MTMD). According to their study, an optimally designed MTMD
can be more robust and efficient than a single optimally designed
TMD with the same total mass, achieving greater reductions in
structural responses (Chowdhury et al., 1987). Rahman et al.
(2017) evaluated the performance of TMD and MTMD systems
in a 10-floor building. Their findings indicated that MTMDs,
when distributed across different stories, were more effective than
TMDs. Similarly, Elias et al. (2017) studied the multimode seismic
control of a 20-floor benchmark structure usingMTMDsdistributed
according to the mode shapes. The study’s results demonstrated
that this control method outperformed both single TMDs and
MTMDs placed on the roof or distributed randomly. Fasil and
Sajeeb (2019) introduced double-tuned mass dampers (DTMDs),
capable of suppressing vibrations near the first and second natural
frequencies of the structure. Their study showed that DTMDs
provide superior performance in controlling floor displacements,
accelerations, and base shear across a wider frequency bandwidth
of the structure. Numerous studies have further demonstrated the
impact of using MTMDs in various structures (Alnayhoum et al.,
2023; Daniel and Lavan, 2014; Mohebbi et al., 2013).

The effectiveness of MTMD depends on their mass ratios,
quantities, design frequencies, and arrangement. However, when
MTMD are tuned to different structural modes, they can
significantly enhance seismic performance (Kleingesinds and Lavan,
2022). The optimal design of MTMD is crucial for maximizing
their effectiveness, as optimizing their parameters is inherently a
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multi-objective challenge, necessitating the use of multi-objective
optimization approaches. Recent studies have addressed this
challenge. For instance, Ok et al. (2008) proposed a multi-objective
optimization-based design methodology for bi-TMDs to ensure
robust seismic performance despite discrepancies between nominal
and actual structural conditions. Lu et al. (2022) introduced a
MTMD type with a broad frequency band for vibration attenuation
and effective multi-mode control, aiming to mitigate vibrations
in seismically excited high-rise buildings through multi-objective
optimization. Similarly, Cao & Tran (2023) proposed a multi-
objective design approach for bi-TMDs. However, no research has
yet incorporatedwell-knownmetaheuristic optimization algorithms
or evaluated their application for identifying the optimal parameters
of MTMD in a multi-objective context.

In a recent study, a combination of multiple multi-objective
optimization algorithms is utilized to identify the optimal
parameters for TMD in a structure equipped with DTMDs.
The innovative approach aimed at enhancing the efficiency and
performance of the TMD system in mitigating seismic vibrations.
This paper is organized as follows: After the introduction, section 2
introduces the concept of modeling DTMD. Section 3 provides
the concept of multi-objective optimization algorithms. Section 4
presents the proposed methodology of this study. In Section 5,
a parametric study is conducted on a frame equipped with
DTMDs to absorb earthquake excitations, using a numerical
example. In the next section, Section 6, the optimal parameters
of DTMD are determined by solving its optimization problems
for each optimization algorithm. Additionally, the effectiveness
and robustness of the optimum DTMD are compared in
Section 6. Finally, the conclusions drawn from this study are
presented in Section 7.

2 Modeling of the DTMD-structure
system

In this section, the modeling of a structure equipped with
DTMD is described in detail. In this paper, a DTMD is considered
for mitigating a specific vibration mode of a multi-degree-of-
freedom structure. The equations of motion for a structure are
influenced by the placement of the tuned DTMD. Specifically, the
structural equations of motion for a damped n-story shear frame,
which is outfitted with a DTMDon its roof (Figure 1), and subjected
to ground motion, can be formulated as shown in Equation 1. This
equation is fundamental in understanding how theDTMDmitigates
seismic responses by altering the natural frequencies and damping
ratios of the primary structure.

[M]{ü(t)} + [C]{u̇(t)} + [K]{u(t)} = ‐[M]{Γ} ̈ug(t) (1)

Equation 1 incorporates the acceleration, velocity, and
displacement vectors of the multi-degree-of-freedom system,
denoted as ü(t), u̇(t) and u(t), respectively. The vector {Γ}, a column
vector consistent with the system’s degrees of freedom, and it
accounts for the input ground motion. The dynamic characteristics
described in Equation 1 are computed using Equations 2–4. In this
study, the mass (mi), stiffness (ki), and damping coefficients (ci)
of the ith floor, along with the TMD mass (mdj), TMD damping

coefficients (cdj), and TMD stiffness (kdj) of jth TMD, are utilized in
the matrices of mass (M), stiffness (K), and damping (C). These
matrices are multiplied by the corresponding derivative of the
displacement vector, which includes the displacements of each
story and the DTMD relative to the ground. The formation of these
matrices is detailed in Equations 2–4.

Equation 2 represents the mass matrix M, a diagonal matrix
that includes the masses of the structure and the additional masses
of the TMDs.

[M] = diag[m1,m2,…,mn,md1 ,md2] (2)

Equation 3 outlines the stiffness matrix K, accounting for the
structural stiffness and the added stiffness from the TMDs.

[K] =

[[[[[[[[[[[[[[

[

k1 + k2 −k2
−k2 k2 + k3 −k3

−k3 k3 + k4 ⋱
⋱ ⋱ ⋱

⋱ ⋱ −kn−1
−kn−1 kn−1 + kn −kn

−kn kn + kd1 + kd2 −kd1 −kd2
−kd1 kd1
−kd2 kd2

]]]]]]]]]]]]]]

]
(3)

Equation 4 describes the damping matrix C, which incorporates
both the inherent damping of the structure and the additional
damping provided by the TMDs.

[C] =

[[[[[[[[[[[[[[

[

c1 + c2 −c2
−c2 c2 + c3 −c3

−c3 c3 + c4 ⋱
⋱ ⋱ ⋱

⋱ ⋱ −cn−1
−cn−1 cn−1 + cn −cn

−cn cn + cd1 + cd2 −cd1 −cd2
−cd1 cd1
−cd2 cd2

]]]]]]]]]]]]]]

]
(4)

TheDTMD’s effect on the structure can be observed through the
modifications in these matrices, specifically in how they adjust the
system’s dynamic properties to minimize seismic responses.

3 Multi-objective optimization

In engineering design, decision-making often involves multiple
criteria, such as cost, performance, and other factors that frequently
conflict with one another. To address these challenges and find
optimal solutions, multi-objective optimization methods can be
used, as they effectively find suitable solutions that balance these
competing factors (Coello et al., 2020).Multi-objective optimization
involves the simultaneous optimization of several conflicting
objective functions.This problem is generally formulated as follows:

Find: x∗ = [x∗1 ,x
∗
2 , ...,x
∗
n]

Minimize: F(x⃗) = { f1(x⃗), f2(x⃗), ..., fk(x⃗)}

Subjectedto: gi(x⃗) ≥ 0, i = 1,2, ...,m

hi(x⃗) = 0, i = 1,2, ...,p

Li ≤ xi ≤ Ui, i = 1,2, ...,n

Where: x = [x1,x2, ...,xn]

(5)
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FIGURE 1
The schematic of n-floor shear frame with the DTMD.

Where x∗ is the vector of decision variables, n is the number of
variables, k is the number of objective functions, m is the number
of inequality constraints, p is the number of equality constraints,
g i is the ith inequality constraints, hi indicates the ith equality
constraints, and Li and U i are the lower and upper boundaries of
ith decision variable. In single-objective optimization, there exists
a unique optimal solution due to the presence of a single objective
function. However, in multi-objective optimization, a single best
solution does not exist, as multiple conflicting objectives must
be considered simultaneously. Instead, the solution to a multi-
objective problem comprises a set of trade-off solutions that balance
these competing objectives. The most widely used method in
the literature for such comparisons is Pareto dominance, which
is specifically defined for minimization problems according to
Equation 6.

∀i ∈ {1,2, ...,k}: fi(x⃗) ≤ fi( ⃗y) ∧ ∃i ∈ {1,2, ...,k}: fi(x⃗) < fi( ⃗y) (6)

Where x⃗ = (x1,x2, ...,xk) and ⃗y = (y1,y2, ...,yk). Equation 6 shows
that a solution is better than another in a multi-objective
search space if it is equal in all objectives and better in
at least one of the objectives. Pareto optimal dominance is
denoted as (x⃗ ≺ ⃗y). The concept of Pareto optimality pertains to
solutions that are optimal when evaluated using Pareto dominance.
These solutions are also referred to as non-dominated solutions.

The set of all such non-dominated solutions is known as the
Pareto optimal solution set, which is mathematically expressed
as Equation 7.

ΡS = {x⃗, ⃗y ∈ S|∄ ⃗y ≺ x⃗} (7)

Where S indicates a set of solutions and PS shows the Pareto
solutions set. Equation 7 implies that within the Pareto-optimal
solution set, no solution is dominated by any other. In other words,
all solutions in this set are non-dominated.The primary objective of
a multi-objective optimization algorithm is to identify this set. The
fundamental concept in multi-objective optimization is the Pareto
front. Each solution in the Pareto optimal set corresponds to a point
in the objective function space forming a curve or surface known as
the Pareto front.

3.1 Metaheuristic algorithms for
multi-objective optimization

Metaheuristic algorithms are inspired by natural processes and
biological systems, serving as analogies that guide the design of
efficient optimization techniques (Mashayekhi andMosayyebi, 2023).
These algorithms effectively explore and exploit search spaces,making
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FIGURE 2
The general process of metaheuristic algorithms is mentioned.

them well-suited for solving complex multi-objective optimization
problems. A typical metaheuristic optimization algorithm follows
a structured procedure consisting of several key steps. The process
begins with initialization, where a diverse set of candidate solutions is
generated within the defined search space to ensure broad coverage
and prevent premature convergence. The next phase, evaluation,
assesses the fitness of each solution by computing its performance
across multiple objective functions, identifying the most effective
solutions. In the selection stage, high-quality solutions are chosen
based on criteria such as fitness and diversity. Methods such as
Pareto ranking and crowding distance are often employed to ensure
an appropriate balance of solutions. During the regeneration phase,
new solutions are generated through variation operators, facilitating
the exploration and exploitation of new regions within the search
space. The replacement step updates the population by selecting
the best solutions from both the existing and newly generated

ones. This phase also maintains an archive of non-dominated
solutions that collectively represent the Pareto front. Finally, the
termination phase is reached when a predefined stopping criterion is
satisfied, such as the completion of a maximum number of iterations
or the stabilization of the Pareto front. At this stage, the final
Pareto front is produced, offering a representation of the optimized
trade-offs between competing objectives. By effectively balancing
exploration and exploitation, metaheuristic algorithms provide a
powerful approach to solving multi-objective optimization problems,
yielding robust and diverse solutions suitable for complex engineering
applications.

Figure 2 provides a conceptual summary of the process and
structural differences of the metaheuristic algorithms presented
in the following sections. Although each algorithm has its own
specific details, readers are encouraged to refer to the cited references
for a more in-depth understanding.
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FIGURE 3
Schematic representation of the methodology.

TABLE 1 The properties of the structural.

Parameters Value

Floor height (H i) 3 m

Floor mass (Mi) 360 ton

Floor stiffness coefficient (K i) 650,000 kN
m

Floor damping coefficient (Ci) 12,400 kN.s
m

TMDmass (Md) 108 ton

3.2 Non-dominated sorting genetic
algorithm II (NSGA-II)

The NSGA-II, developed by Deb et al. (2002), is a widely
used multi-objective evolutionary algorithm designed to find a

diverse set of Pareto-optimal solutions. The primary goal of
NSGA-II is to identify non-dominated solutions that collectively
form the Pareto front. The algorithm begins with the random
generation of an initial population, followed by the evaluation
of fitness functions. It employs a non-dominated sorting method
to rank solutions based on Pareto dominance and calculates a
crowding distance to assess the density of solutions within the
same rank. Selection of parent solutions is performed using a
binary tournament based on rank and crowding distance. Genetic
operators such as crossover and mutation are then applied to
generate new offspring. The parent and offspring populations
are merged and sorted, and the best individuals are selected
based on their rank and crowding distance to form the new
population. This iterative process continues until termination
criteria are met, ultimately yielding a set of high-quality, diverse
solutions that represent the optimal trade-offs among the objectives.
Through thismethod,NSGA-II effectively balances convergence and
diversity, providing robust solutions for complex multi-objective
optimization problems.
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TABLE 2 The properties of the structural element.

Structural element Element type E ( N
m2
) A (m2) I (m4)

Columns Elastic beam column E = 6.5 E+8 1.0 1.125

Beams Elastic beam column E = 2 E+20 1.0 1.0

FIGURE 4
Model of TMD.

TABLE 3 The limitation of design variable.

Parameters Value

TMD stiffness coefficient (Kdi) Kdi ≤ 5000
kN
m

TMD damping coefficient (Cdi) Cdi ≤ 1000
kN.s
m

3.3 Multi-objective particle swarm
optimization (MOPSO)

TheMOPSO algorithm, introduced by (Coello et al., 2004), is a
highly effective method for multi-objective optimization, known for
its ability to cover the Pareto front of objective functions and achieve
rapid convergence. This effectiveness stems from its mechanisms
for leader selection and archive maintenance. The algorithm begins
with the initialization of particles, assigning them random positions
and velocities. Each particle’s fitness is then evaluated, and the
optimal solutions are stored in an external archive. The personal
best positions of the particles and the global best position among
all particles are updated accordingly. A leader is selected from
the archive using Roulette-wheel selection. Subsequently, particles’
velocities and positions are updated based on their personal best
positions and the global best position. The archive is updated
by retrieving non-dominated solutions, ensuring the retention of
high-quality solutions. This iterative process continues until the
algorithm converges or the maximum number of iterations is
reached. Through these steps, MOPSO efficiently explores the
solution space and maintains a diverse set of Pareto-optimal
solutions, making it a competitive choice for solving complex multi-
objective optimization problems.

3.4 Multi-objective grasshopper
optimization algorithm (MOGOA)

The MOGOA, introduced by Mirjalili et al. (2018), extends
the grasshopper optimization algorithm to effectively address

multi-objective optimization problems. This algorithm emulates
the behavior of grasshopper swarms, incorporating a modified
comfort zone coefficient to balance exploration and exploitation
effectively. The process begins with the random initialization
of a population of grasshoppers. Each grasshopper’s fitness is
evaluated, and the population is ranked using non-dominated
sorting based on Pareto dominance. The crowding distance for
each solution is then calculated to maintain diversity within
the population. A target grasshopper is selected using Roulette-
wheel selection. The movement of grasshoppers is simulated
to explore the search space, guided by their positions relative
to the target. The archive is updated to retain non-dominated
solutions. This iterative process continues until convergence
or a predefined number of iterations is reached. Through
these steps, MOGOA efficiently searches the solution space,
maintaining a diverse set of Pareto-optimal solutions, and
ensuring robust performance in solving complex multi-objective
optimization problems.

3.5 Multi-objective gray wolf optimization
algorithm (MOGWO)

The MOGWO algorithm is an extension of the grey wolf
optimization algorithm, inspired by the social hierarchy and
hunting behavior of grey wolves (Kumar et al., 2019), as
proposed by Mirjalili et al. (2016). The MOGWO starts with the
random initialization of a population of grey wolves. Each wolf ’s
fitness is assessed, followed by non-dominated sorting to rank
the wolves based on Pareto dominance. The crowding distance is
calculated to maintain diversity among the solutions.The algorithm
then identifies the leading wolves (alpha, beta, and delta) using
Roulette-wheel selection based on their fitness. The positions of
the wolves are updated by simulating the social leadership and
encircling techniques observed in grey wolves, guided by the
leading wolves. The archive is updated to store non-dominated
solutions. This process repeats iteratively until the stopping criteria
are met. Through these steps, MOGWO effectively explores the
solution space and maintains a diverse set of Pareto-optimal
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FIGURE 5
Earthquake of 1940 Imperial Valley used in seismic analysis of study, (A) acceleration time history, (B) response spectrum (5%).

TABLE 4 FEMA P 695 ground motion records (FEMA P 695, 2009).

ID no. Magnitude Year Event name Station name Vs 30 (m
s
) Site class PGA(g)

1 7.0 1992 Cape Mendocino Rio Dell Overpass 312 D 0.541

2 7.1 1999 Duzce Bolu 326 D 0.82

3 6.5 1979 Imperial Valley Delta 275 D 0.35

4 7.5 1999 Kocaeli Duzce 276 D 0.357

5 7.3 1992 Landers Yermo Fire Station 354 D 0.244

6 6.9 1989 Loma Prieta Capitola 289 D 0.528

7 6.5 1987 Superstition Hills El Centro Imp. Co. 192 D 0.357
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FIGURE 6
The original and scaled ground motion records.

solutions, demonstrating robust performance in solving complex
multi-objective optimization problems.

3.6 Multi-objective african vulture
optimization algorithm (MOAVOA)

The MOAVOA is a metaheuristic algorithm inspired by the
lifestyle of African vultures, initially developed to solve continuous

optimization problems (Balakrishnan et al., 2022). Khodadadi et al.
(2022a) extended this algorithm to address multi-objective
optimization problems. The MOAVOA begins by generating
an initial population of vultures randomly and assessing
the fitness of each individual. Solutions are then sorted
based on Pareto dominance, and crowding distances are
calculated to ensure diversity among the solutions. The
leading vultures are identified using Roulette-wheel selection
based on their fitness. The positions of the vultures are
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FIGURE 7
Spectral acceleration of the original and scaled ground motion records. (A) spectral acceleration of the original ground motion records, (B) spectral
acceleration of the scaled ground motion records.

updated using the leader positions and specific flight
dynamics, simulating the vultures’ behavior in nature. An
archive is maintained to store non-dominated solutions.
This process is iteratively repeated until a predefined
stopping condition is met. Through these steps, MOAVOA
effectively explores the solution space, maintaining a
diverse set of Pareto-optimal solutions and demonstrating
robust performance in solving complex multi-objective
optimization problems.

3.7 Multi-objective ant lion optimization
algorithm (MOALO)

The MOALO is an extension of the single-objective ant lion
optimization, designed to tackle multi-objective optimization
problems. Inspired by the hunting mechanisms of ant lions in
nature, MOALO was proposed by (Mirjalili et al., 2017) as a
novel approach to address complex multi-objective challenges.
The algorithm starts by randomly initializing a population of
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TABLE 5 Average spectral errors for scaled records compared to the
target design spectrum.

ID no. Event name-scaled Average error (%)

1 Cape Mendocino 14.8

2 Duzce 27.3

3 Imperial Valley 13.7

4 Kocaeli 14.2

5 Landers 1.4

6 Loma Prieta 28.5

7 Superstition Hills 3.3

ant lions and evaluating their fitness. Solutions are ranked
using Pareto dominance, and crowding distances are calculated
to preserve diversity among the solutions. Elite and random
ant lions are selected from the archive using Roulette-wheel
selection. The algorithm then models the hunting behavior
of ant lions, simulating the random walk of ants within the
search space and normalizing it to ensure effective exploration.
An archive is maintained to store non-dominated solutions,
which is updated iteratively. This process continues until the
termination criteria are met. Through these steps, MOALO
effectively balances exploration and exploitation, maintaining
a diverse set of Pareto-optimal solutions and demonstrating
robust performance in solving complex multi-objective
optimization problems.

3.8 Multi-objective stochastic paint
optimization algorithm (MOSPO)

The MOSPO algorithm is inspired by color theory, the color
wheel, and color combination methods. Initially introduced as
a single-objective algorithm by Kaveh et al. (2022) and later
extended to handle multi-objective problems by Khodadadi et al.
(2022b). MOSPO aims to find a balance of solutions using
principles of color harmony. The algorithm begins by randomly
generating an initial population of colors and evaluating their
fitness. Solutions are ranked based on Pareto dominance, and
crowding distances are calculated to maintain diversity within
the population. Leading colors are selected from the archive
using rank and crowding distance via Roulette-wheel selection.
New colors are created by mixing existing ones to achieve
a pleasing balance while preserving diversity. The archive is
updated with non-dominated solutions, and the process is
repeated iteratively until the termination conditions are met.
By simulating the natural blending and balancing of colors,
MOSPO effectively explores the solution space, ensuring a
diverse set of Pareto-optimal solutions and demonstrating
strong performance in solving complex multi-objective
optimization problems.

4 Proposed methodology

Optimization is a systematic process that determines the values
of design variables to identify the best set of options for minimizing
or maximizing a specified objective function.The process of finding
optimum values of DTMD parameters to minimize a structural
response under certain conditions and constraints is an optimization
problem. In this paper, a multi-objective optimization problem is
addressed, as defined by Equation 8, with the aim of identifying
a set of optimal designs known as Pareto optimal solutions for a
frame equipped with a DTMD to mitigate vibrations effectively.The
multi-objective optimization is particularly beneficial in vibration
control as it enables balancing competing performance criteria,
such as minimizing acceleration and displacement, which directly
affect structural integrity (Islam et al., 2018). The primary objective
in this study focuses on minimizing the displacement response
of the top floor of the structure, denoted as f1(X), while the
secondary objective aims to minimize the acceleration response of
the same floor, represented as f2(X). These objectives are critical,
as excessive acceleration can lead to discomfort for occupants and
potential structural damage, whereas significant displacement may
affect the stability and load-bearing capacity of the frame during
seismic events (Joe et al., 2017).

Find: X = [x1,x2, ...,xn]

Tominimize: F(X) = [ f1(X) = disp(X), f2(X) = acc(X)]
(8)

Here, X represents the design set comprising the dynamic
properties of the TMDs, such as mass, damping coefficient, and
stiffness, while n denotes the number of design variables involved
in the optimization process. The functions f1(X) and f2(X) quantify
the displacement and acceleration of the roof floor, respectively.
The consideration process of the optimization objectives will be
elaborated upon in the following sections, highlighting a balance
betweenminimizing vibrations andmaintaining structural integrity.
This study formulates a multi-objective optimization problem to
identify the optimal combination of dynamic characteristics for
TMDs, aiming to achieve the best trade-off between reducing roof
floor acceleration and displacement. The methodology employed
in this study consists of five main steps, systematically addressing
the modeling, optimization, and evaluation of TMD configurations.
These steps are as follows:

A) Modeling a frame equipped with DTMD in OpenSEES: The
first step involves developing a numerical model of a structural
frame equipped with a DTMD using OpenSEES (McKenna,
2011). This numerical model serves as the foundation for
subsequent dynamic analyses and optimization.

B) Modification of DTMD dynamic characteristics using a
randomly generated population in metaheuristic optimization
algorithms: In this step, the dynamic properties of the DTMD
(damping coefficient and stiffness) are iteratively adjusted
using metaheuristic optimization algorithms to evaluate its
effect on the structure’s vibrational behavior.

C) Performing dynamic time history analysis and recording
structural responses: once a set of DTMD characteristics is
considered from the random population of the optimization
algorithm, dynamic time history analysis is performed to
evaluate the effectiveness of a set of DTMD characteristics on
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FIGURE 8
Pareto fronts executed by NSGA-II Algorithm through 5 set of runs.

FIGURE 9
Box plots of NSGA-II’s objectives, (A) optimal displacements, (B) optimal accelerations.

structure. In this step, the acceleration and displacement of the
structure are determined and recorded for each set of DTMD
characteristics.

D) Iterative execution of steps B and C for each optimization
algorithm: to ensure convergence andoptimality; Steps B andC

are repeated iteratively for each metaheuristic algorithm until
a well-defined Pareto front is obtained.The optimization stops
when reaching max iterations, meeting convergence criteria,
or no further improvement occurs. The Pareto front identifies
trade-offs that provide optimal DTMD design selection.
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TABLE 6 The optimal solutions.

Algorithm Kd1 (
N
m
) Cd1 (

N⋅s
m
) Kd2 (

N
m
) Cd2 (

N⋅s
m
)

MOALO 3,149,338 241386.5 4167303.5 270021.5

MOAVOA 3,164,857 85,499 4,085,753 147,961

MOGOA 2,133,306.5 24,456.5 4093146.5 163,278

MOGWO 4,537,859 280327.5 3113387.5 69717.5

MOSPO 4,079,761 140,678 1,803,251 0

MOPSO 2,061,399 186,281 3,883,939 207,327

NSGA-II 4,997,634 179,777 2,847,171 157

E) Comparing Pareto front curves and identifying optimal
DTMD characteristics: after obtaining Pareto front solutions
from different metaheuristic algorithms, a comparative
analysis is performed to identify the best-performing DTMD
characteristics.The Pareto fronts from different algorithms are
compared to assess solution efficiency. A global Pareto front
is formed by selecting the best solutions, ensuring an optimal
DTMD design. The final design is chosen using weighting
methods. Through this comparative process, the study arrives
at well-optimized DTMD characteristics that offers the best
trade-off between reducing vibrations.

By following these five steps, this study provides an optimization
and analysis of the DTMD optimal design, along with a comparative
evaluation across multiple optimization techniques. Figure 3
presents a graphical representation of the methodology employed
in this study, clearly illustrating its various steps and providing a
comprehensive overview of the approach.

5 Case study for the application of
methodology

This section presents a case study to evaluate the proposed
methodology. It includes the specifications of the structural model,
the earthquake excitation model, and the optimization variables.
Further details are provided in the following subsections.

5.1 Description of structure and
assumptions

In this study, a 10-floor, two-dimensional shear frame model
equipped with a DTMD on the roof floor is used to investigate
the efficiency of the DTMD in reducing the structural response
under earthquake excitation.The frame ismodeled usingOpenSEES
(McKenna, 2011) and subjected to ground acceleration based
on a time history model. The TMDs are typically installed on
the upper floor of a frame, as this location corresponds to the
point of maximum amplitude of the first mode shape, where the
effects of vibrations are most pronounced (Ras, 2024). To ensure

a comprehensive analysis, the structural properties of the frame
are assumed to be identical across all floors. TMDs are typically
designed to operate within a structure’s primary frequency range
so that the response of the structure remains linear (Banerjee and
Ghosh, 2020). On the other hand, standard design frameworks, such
asASCE 7-16, utilize linear response analysis for initial TMDdesign,
making this approach suitable for preliminary evaluations (Haselton
et al., 2017). In this study, the response of the structure is considered
based on linear behavior due to the enhanced performance of
optimization functions and other mentioned reasons.

The geometry and structural properties of the frame, along
with the TMDs mass, are summarized in Table 1, which serves
as a reference for the model parameters and their effects on
dynamic performance. The linear members, including beams and
columns, are modeled as elastic beam-column elements, which
behave elastically. This approach allows for a rapid estimation of the
structural behavior under dynamic loading conditions.Thematerial
used for the beam and column sections is assumed to be elastic. The
floor damping is represented using a viscous material model with
a damping coefficient c = 1.24 E+7 N.s

m
, and alpha = 1, utilizing a

two-node link element to simulate the interaction between the floors
and the damping mechanisms effectively. To meet the objectives of
the shear frame model, the beams are assumed to be rigid, while the
columns are characterized by the stiffness formula K = 24EI

L3
, where

E is the modulus of elasticity, I show the moment of inertia, and L is
the length of the column, as shown in Table 2.

The DTMDs are strategically positioned at both ends of the
beam on the roof floor, following the methodology proposed by
Alibabaei Shahraki et al. (2023) as shown in Figure 4. For the TMDs,
the masses are set to a constant, assumed to be approximately
30% of the floors mass, ensuring effective vibration mitigation. The
schematic of model is presented in Figure 1.

The predominant natural period of the structure without TMDs
is approximately 0.93 s.With the incorporation of TMDs, this period
increases, with the extent of the increase depending on the dynamic
properties of the TMD. Although the weight of the dampers was
considered constant, other dynamic characteristics of the TMD
must be considered and presented. These are presented in more
detail below.

5.2 Definition of the optimization problem

There are specific limitations to changing the mass of TMD
such as space restrictions (Li, 2000), retrofitting challenges
(Sun and Nagarajaiah, 2014), and installation (Li and Ni,
2007). Maintaining a constant mass minimizes material costs.
Instead of adding expensive additional mass, optimizing stiffness
and damping provides a more cost-effective solution with
minimal structural modifications. Based on this consideration,
the stiffness (Kdi) and damping coefficient (Cdi) of each
TMD serve as the design variables in this study (four design
variables). These characteristics are vital for enhancing the
overall dynamic performance of the structure; however, practical
constraints limit their values. To optimize efficiency, this study
adopts the allowable values for the stiffness and damping
coefficients as proposed by (Mashayekhi et al., 2023), which are
detailed in Table 3.
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TABLE 7 Percentage of displacement reduction (%).

Floor Controlled frame (%)

MOALO MOAVOA MOGOA MOGWO MOSPO MOPSO NSGA-II

1 44.68 47.40 44.20 46.29 42.35 43.43 47.58

2 44.82 47.62 44.43 46.48 42.53 43.58 47.81

3 44.98 47.80 44.68 46.70 42.76 43.76 48.09

4 45.09 46.87 44.76 46.90 42.75 43.92 48.37

5 45.16 46.04 44.65 47.07 42.61 43.99 48.35

6 44.98 45.15 44.08 46.71 41.96 43.54 47.99

7 44.31 44.36 43.30 46.13 41.14 42.85 47.23

8 43.60 43.71 42.51 45.32 40.26 41.99 46.53

9 42.84 43.23 41.93 44.68 39.63 41.32 46.02

10 42.31 42.93 41.77 44.33 39.41 40.93 45.82

Mean 44.75 45.59 44.14 46.38 42.16 43.49 47.69

Mean percentage of displacement reduction in the frame.

TABLE 8 Percentage of acceleration reduction (%).

Floor Controlled frame (%)

MOALO MOAVOA MOGOA MOGWO MOSPO MOPSO NSGA-II

1 2.74 2.12 1.79 2.48 1.52 2.23 2.15

2 3.96 3.08 2.62 3.59 2.22 3.22 3.13

3 6.40 5.32 4.70 5.95 4.18 5.46 5.39

4 20.28 19.21 18.56 19.85 18.01 19.30 19.30

5 28.69 27.65 26.93 28.28 26.35 27.66 27.76

6 32.65 31.70 30.90 32.30 30.26 31.58 31.84

7 37.81 37.04 36.19 37.58 35.52 36.75 37.23

8 40.18 39.54 40.01 39.92 40.07 40.16 39.68

9 38.19 37.63 38.13 37.97 38.21 38.21 37.79

10 37.89 37.46 37.21 37.74 38.10 37.98 37.64

Mean 30.67 29.67 28.91 30.29 28.30 29.62 29.80

Mean percentage of acceleration reduction in the frame.

However, the optimization problem is a frame with two TMDs,
each with different values for stiffness and damping coefficient.
Different values for these two parameters are the initial values
in each metaheuristic algorithm, and then these values change

based on the structure of the algorithm. After each change
in the decision variables, a seismic analysis was performed to
estimate the dynamic vibrations of the model. The details of the
seismic analysis are provided below.
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FIGURE 10
Percentage of displacement and acceleration reduction.

FIGURE 11
Global Pareto front.

5.3 Earthquake excitation model

In this study, a specific earthquake excitation record is selected
to optimize the stiffness and damping parameters of the TMDs,

considering several reasons. First, it ensures an accurate evaluation
of the structure’s performance under real conditions. Additionally,
it simplifies calculations and enables a focused analysis of the
structural response to a specific input, enhancing the efficiency of the

Frontiers in Built Environment 15 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1559530
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Zamani et al. 10.3389/fbuil.2025.1559530

FIGURE 12
Number of contributions to global Pareto front.

TABLE 9 The optimal dynamics characteristics of DTMD under various
ground motion records.

Event name-
Scaled

Kd1 (
N
m
) Cd1 (

N⋅s
m
) Kd2 (

N
m
) Cd2 (

N⋅s
m
)

Cape Mendocino 4,153,433 115,728 4,855,690 33,108

Duzce 3,828,354 0 3,559,814 0

Imperial Valley 4,588,916 60,055 1,523,859 250,626

Kocaeli 2,901,368 31,537 3,042,742 3,493

Landers 2,792,754 58,312 4,224,771 54,152

Loma Prieta 2,132,938 67,547 4,167,025 116,911

Supertition Hills 4,197,754 195,981 4,420,625 108,853

optimization process. Finally, this approach serves as a foundation
for more advanced analyses involving multiple earthquake records.
Among the various methods for earthquake excitation modeling,
time history analysis is regarded as one of themost effective, offering
detailed insights into the dynamic behavior of structures under
seismic loading (Greco et al., 2018). In this study, the El Centro
groundmotiondata from the ImperialValley, California earthquake,
which occurred on 18 May 1940, is considered to simulate the
ground shaking applied to the building. The El Centro earthquake
is widely considered a significant historical benchmark due to
its varied frequency contents (Figure 5B), and well-documented
ground motion records, making it a standard reference for seismic
analysis (Udwadia and Trifunac, 1973). The excitation data consists
of 2830 points of acceleration values at a time interval of 0.02.
The absolute peak ground acceleration in this record is 3.43 m/s2,
as provided in Figure 5A. For an accurate seismic simulation, the
building is assumed to be on soft soil (Type D), consistent with the

El Centro earthquake record. The design spectrum from ASCE 41-
17 (American Society of Civil Engineers, 2017) for the same soil
type, with Ss = 0.7 and S1 = 0.36, is also considered to determine
the spectral characteristics of the structure.

After optimizing the structure using the specified earthquake
record, additional optimization is conducted to assess the efficiency
of the proposed method using multiple earthquake records
representative of the seismic characteristics of the site of model. By
incorporating a diverse set of ground motions, the effectiveness of
the optimized TMD parameters is examined under varying seismic
conditions. For this purpose, seven far-field ground motion records
from FEMA P 695 (FEMA P 695, 2009)are selected, as listed in the
Table 4. The selected ground motions are adjusted to make them
compatible with the target spectrum using the spectral matching
technique. These ground motion records are scaled to spectral
acceleration proposed by ASCE 41-17 (American Society of Civil
Engineers, 2017), as the target spectral acceleration by SeismoMatch
(version 2025) program (Seismosoft, 2025). SeismoMatch adjusts
ground motion records to match a target response spectrum using
a wavelet-based algorithm. This method modifies the amplitude
of frequency components in the time domain while preserving
the original phase characteristics and duration. Figure 6 displays
the original and scaled ground motion records. Additionally,
Figure 7 presents the target design spectrum, along with the spectral
acceleration of both the original and scaled ground motion records.
Although the scaled ground motion record closely matches the
target design spectrum, some discrepancies remain due to inherent
differences, which are often unavoidable in real-world scenarios.
The average error values for the spectrum of each record are
presented in Table 5.

6 Results and discussion

In this study, the dynamic characteristics of two TMDs installed
in a 10-floor frame are analyzed to mitigate seismic vibrations. To
achieve optimal tuning, seven distinct optimization algorithms are
applied, refining the dampers’ parameters to enhance the frame’s
dynamic response during seismic events. The results are divided
into three key sections. In section (A), the dynamic properties
of each TMD estimated by each optimization algorithm based
on the El Centro ground motion record are presented, offering
a comparative assessment of accuracy, convergence behavior, and
computational efficiency. In section (B), the effectiveness of the
optimized TMDs is assessed by comparing the seismic response of
the building with and without dampers under identical earthquake
conditions, using the El Centro ground motion record. In section
(C), the dynamic characteristics of the TMDs are evaluated
using seven scaled far-field earthquake ground motion records.
Additionally, the structural responses with and without dampers are
determined for each of these records. This comparison illustrates
the extent to which the optimized TMDs improve structural
resilience and reduce dynamic responses such as displacement and
acceleration.

In optimization algorithms, iterating with varying decision
variable values across multiple iterations is a common approach to
gradually achieving improved solutions. Typically, the final iteration
either yields a better solution or validates the trend observed in
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FIGURE 13
Response of frame under various scaled ground motion, (A) Displacement reduction, (B) Displacement.

FIGURE 14
Response of frame under various scaled ground motion, (A) Acceleration reduction, (B) Acceleration.

previous iterations. Various methods can be used to express the
optimal solution. In this study, to address uncertainties in the
optimization process, each algorithm was executed five times. For
each algorithm, the Pareto front was generated during the final
iteration of each run. For instance, Figure 8 displays the Pareto
fronts generated by the NSGA-II algorithm over independent runs,
while Figure 9 presents box plots of its competing objectives. The
final Pareto front of each algorithm was determined by calculating
the median front across the five Pareto fronts, providing a reliable
set of optimal solutions. The optimal set of DTMD characteristics
was then identified using a balanced weighting approach, a
50%–50% weighting scheme, to equally prioritize the minimization
of displacement and acceleration. This evaluated optimal set of
characteristics was considered the representative point on the final
Pareto front that achieved the best-balanced trade-off between the

two objectives. The details of the optimal DTMD characteristics are
presented in Table 6.

In another part of the results, to implicitly assess the effect of
DTMD and estimate their efficiency, particularly by utilizing their
optimal characteristics, the acceleration and displacement responses
of the frame are compared and evaluated under two conditions:
A) with the implementation of DTMD (controlled frame), and B)
without DTMD (uncontrolled frame). This comparison provides
insight into the impact of DTMD on the overall structural
performance.

The percentage decreases in the floor displacement and
acceleration responses across the frame are presented in Table 7, 8
for the controlled and uncontrolled cases, respectively. Although
the percentage decreases in displacement across different floors
are relatively similar for each algorithm, the percentage decreases
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in acceleration are greater in the upper stories. The data clearly
demonstrate significant reductions in both displacement and
acceleration across all floors when the TMDs are implemented.
Among the optimization algorithms, the NSGA-II achieved the
highest reduction in mean floor displacement (47.69%), while the
MOALO algorithm yielded the largest in mean floor acceleration
reduction (30.67%).

Figure 10 provides additional insights into the comparative
performance of the algorithms in reducing both floor displacement
and acceleration. The numbers within the circular markers on
each curve represent the floor levels of the structure, offering
a clear visualization of how the performance of each algorithm
varies across different structural heights. Notably, the greatest
acceleration reduction occurs consistently at the 8th floor across
all algorithms, while the floor with the highest displacement
reduction varies among algorithms. All algorithms exhibit similar
trends, clustering closely within a reduction range of 40%–50%
for floor displacement and reaching up to 40% reduction in
floor acceleration. However, while MOAVOA achieves the second-
highest displacement reduction percentage in the lower floors, its
effectiveness decreases in the upper floors. Among the algorithms,
NSGA-II attains the most significant displacement reduction,
ranging between 46% and 49%, while maintaining a consistent
acceleration reduction of up to 40%. Overall, NSGA-II provides
the best balance between displacement and acceleration reduction
across all stories.

Figure 11 illustrates the global Pareto front, derived by
combining and analyzing the Pareto fronts of all algorithms, serving
as a benchmark for evaluating algorithm performance. Local Pareto
fronts are generated by individual optimization algorithms, while
the global Pareto front is constructed by filtering out dominated
solutions, retaining only the globally optimal trade-offs among
competing objectives.

A more detailed analysis of the global Pareto front is
provided in Figure 12, which shows the number of solutions
contributed by each algorithm’s Pareto front to the global Pareto
front. As depicted, NSGA-II contributes the highest number
of optimal solutions, indicating its superior performance in
optimizing the problem compared to the other algorithms. This
dominance suggests that NSGA-II effectively balances competing
objectives, resulting in a higher presence on the global Pareto front.
Conversely, MOPSO has no contributions to the global Pareto front
and resulted in producing the least-optimized solutions for the
given problem.

Subsequently, a metaheuristic optimization algorithm was
applied to optimize the structural model under seismic excitations.
The objective of this work is to incorporate dynamic conditions
while accounting for the spectral characteristics of structure. Since
NSGA-II provided the most optimal solution in the previously
discussed problem, the optimization process was conducted on
seven distinct scale earthquake ground motion records to identify
the best-performing design. The optimal solution was selected
based on its ability to achieve the most balanced minimization
of both roof acceleration and displacement. Table 9 presents the
characteristics of the optimized DTMD, which achieved a well-
balanced minimization of roof displacement and acceleration.
After implementing these parameters in the DTMD, which was
installed at the top of the frame, Figures 13B, 14B illustrate

the distribution of maximum displacement and acceleration
across the frame’s floors. Additionally, Figures 13A, 14A depict
the percentage reduction in maximum floor displacement and
acceleration achieved by equipping the frame with the DTMD
compared to the unequipped frame.

7 Conclusion

This study investigated the optimization of DTMDs using
seven metaheuristic algorithms to enhance seismic performance
in a 10-floor shear frame structure, focusing on minimizing
both displacement and acceleration responses under the seismic
excitation of the El Centro earthquake and seven far-field ground
motion records scaled to the design spectrum to account for the
seismic conditions of the structural model. The study began with
a detailed description of the modeling process and proceeded to
estimate the dynamic characteristics of the DTMDs, providing
a comprehensive framework for the optimization process. This
study uses the global Pareto front as a benchmark for comparing
the performance of the optimization algorithms. The global
Pareto front is constructed by aggregating the Pareto fronts
generated by individual algorithms and filtering out dominated
solutions, thereby identifying the most optimal solutions across
all methods. This approach provides a robust basis for evaluating
and ranking algorithmic effectiveness in addressing multi-objective
optimization problems.

Key findings demonstrate that optimally tuned DTMDs
significantly enhance structural performance, achieving reductions
in floor displacement by 40%–50% and floor acceleration by
2%–40%. These results underscore the effectiveness of DTMDs in
mitigating seismic-induced vibrations and improving the safety
and resilience of structures. Among the evaluated algorithms,
NSGA-II consistently dominates other solutions, reaching the
highest reduction in both story displacement and acceleration,
demonstrating its ability to optimize displacement objectives
effectively. Additionally, NSGA-II contributed the most solutions
to the global Pareto front, indicating its superior capacity to balance
competing objectives of displacement and acceleration reduction.
In contrast, while MOSPO effectively reduced acceleration, it
demonstrated limitations in minimizing displacement, resulting
in a less balanced trade-off. MOAVOA performed well in the
lower floors but showed a decline in displacement reduction
efficiency in the upper floors compared to other algorithms.
The clustering performance of MOALO, MOGOA, MOGWO,
and MOPSO further demonstrated their robustness, consistently
delivering solutions that achieve significant reductions in
both objectives.

This study has certain limitations that should be acknowledged.
All results are based on a single natural seismic ground motion
record, which is a limitation of this study. In addition, the
nonlinear behavior that causes changes in the stiffness of
the structure against earthquakes has not been considered.
Accordingly, for future research, it is suggested to evaluate
the changes in the TMD to structure mass ratio and utilize
nonlinear behavior for structure. This limitation may reduce the
effectiveness of TMDs.
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