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Train wheel wear significantly impacts wheel-rail interaction forces and is
an unavoidable issue in the railway industry. This study focuses on regular
wear, specifically changes in wheel profiles such as tread wear, flange
height, and flange thickness. Effective wheel wear management is crucial for
maintaining the reliability, safety, and efficiency of rail systems. However, regular
measurement of wheel profiles is often limited by constraints such as dense
traffic, budget, time, and remote assets, which reduces the effectiveness of
traditional maintenance approaches. This study proposes a hybrid learning
strategy combining supervised and reinforcement learning techniques to
optimize train wheel wear management under these constraints and achieve
predictive maintenance. The supervised learning model, developed from
validated simulations, predicts wear progression, while reinforcement learning
improves maintenance decision-making using basic operational data without
regular measurements. Various machine-learning techniques are explored
and fine-tuned to identify the best models for preventing faulty wheels
without the need for frequent inspections. By integrating these two learning
approaches, the framework enhances the accuracy of wear predictions and
optimizes maintenance schedules, reducing the risk of over-maintenance
or unexpected failures. This integrated model addresses challenges such
as system complexity, limited data, and cost-effectiveness in the industry.
In terms of supervised learning, the R2 for tread wear prediction improves
from 0.94 to 0.95 compared to previous studies, and the model, when
integrated with reinforcement learning, significantly reduces defects based
on wear and irregular wheel dimensions. This research is the first to
integrate supervised and reinforcement learning specifically for train wheel
wear management under limited measurement data constraints, offering a
breakthrough compared to traditional methods that rely on regular inspections.
The study provides significant benefits for the railway industry, including reduced
maintenance costs, improved maintenance efficiency, lower defect rates,
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reduced possession and inspection time, and enhanced passenger comfort
and safety.
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hybrid learning strategies, supervised learning, reinforcement learning, train wheel
wear, predictive maintenance, conditional monitoring

1 Introduction

Train wheel wear is unavoidable in the railway industry due
to the employment or the operation. Generally, there are two
types of wear critically affecting railway operations, rail wear
and wheel wear. This study will focus on wheel wear which
the measurement process seems to be more complicated. Train
wheel wear affects the overall efficiency of railway operations
in terms of safety, system performance, maintenance cost, and
passenger comfort (Gigante-Barrera et al., 2017). Commonly, wear
is a phenomenon when material loses its mass. In case of the
train wheel wear, wheels interact with tracks continuously. When
wheels keep losing their mass, the shape of the wheels is changed
and the wheels will no longer be in the desired condition for
application (Braghin et al., 2009).

Wheel wear is affected by different factors such as the weight
of rolling stocks, the speed of rolling stocks, track characteristics,
or types of wheels and rail material (Wang and Gao, 2015).
Train wheel wear is difficult to predict because the wear process
is complicated (Shebani and Iwnicki, 2018). To manage wheel
wear, railway wheels are inspected regularly to determine the
appropriation of maintenance (Grassie, 2009). This process requires
detailed measurements to compare the current condition of wheels
and compare with the defined standard which takes time and may
create disruptions to the regular operation of the railway system. In
some cases, this complicated and time-consuming process may lead
to insufficient inspection and maintenance which negatively affects
the overall performance of the railway system (Magel et al., 2016;
Montinaro et al., 2019).

In railway maintenance, two well-known approaches are
corrective and preventative maintenance. The transition between
both approaches can also be used in certain situations (such as for
assets on curved tracks). To improve maintenance effectiveness,
condition-based, risk-based, value-based, data-driven and/or
predictive maintenance techniques have been developed. Corrective
maintenance is performed when components fail or cannot
function as designed. This approach minimizes upfront costs since
maintenance is only done after failures occur, eliminating the
need for routine inspections. However, it is prone to unexpected
system unavailability, higher repair costs, and potential hazards
due to unforeseen failures. Preventive maintenance involves regular
inspections, measurements, and repairs, even when components
have not failed, to reduce the likelihood of unexpected breakdowns.
While this approach improves system availability and reduces failure
risks, it incurs additional costs for routine checks andmaynot always
be cost-efficient (Kaewunruen and Dindar, 2018). Lastly, Predictive
maintenance, on the other hand, is data-driven and performedwhen
a need is predicted based on the current condition of components.
It requires advanced technologies such as sensors, data analysis, and
machine learning (Zonta et al., 2020). By combining the benefits of

corrective and preventive maintenance, predictive maintenance
enables timely repairs, minimizes unnecessary maintenance,
and improves system performance while reducing costs and
possession time. However, its primary drawback is the need
for sophisticated technologies and processes to ensure reliability
and applicability.

Another issue about train wheel wear management is that it
requires some tools such as strain gauges (Johansson and Nielsen,
2003), fiber Bragg grating sensors (Filograno et al., 2013), ultrasonic
sensors (Brizuela et al., 2011), vibration sensors (Belotti et al.,
2006), acoustic sensors (Thakkar et al., 2006), or image processing
(Soleimani et al., 2021). These mentioned technologies require
additional costs for sensors and installation. In addition, they also
need time for inspection and measurement (Wei et al., 2011). A
new approach that can reduce the complexity of the inspection
and measurement processes will be beneficial for the railway
industry due to the saving time and cost spent on inspection and
measurement. In addition, this study aims to fill the research gaps
in the use of basic operational data to manage railway wheel wear
without the manual inspection and measurement of wheel profiles
which will save maintenance time and cost. The study also focuses
on different aspects of wear consisting of tread wear, flange height,
and flange thickness that previous studies have never investigated.
Variations in railway operation are also included in the machine
learning models to mimic the real situation in the railway system as
much as possible. More detail about the researcg gaps is presented
in the next section.

This study aims to develop a novel approach by combining
supervised learning and reinforcement learning which are two of
the main categories of machine learning techniques to manage
train wheel wear when the measurement data is limited. In
other words, the developed approach is expected to be a tool
to employ the basic operational data to monitor the condition
of railway wheels and prepare maintenance plans for reprofiling.
First, a validated model will be used to investigate the train wheel
wear behavior. Then, the supervised learning technique will be
used to develop a predictive machine-learning model to predict
wheel wear which will be integrated with the reinforcement
learning model to prepare maintenance plans for managing
train wheel wear using operational data. This study is the
world’s first integrating supervised and reinforcement learning for
railway wear management providing the contributions for railway
industry in terms of maintenance cost reduction, maintenance
efficiency improvement, defect reduction, possession and inspection
time reduction, passenger comfort improvement, and safety
improvement. The result of the study can be used as a guideline for
railway operators or academics to develop hybrid learning strategies
to manage railway wear which can improve the overall efficiency of
railway maintenance.
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2 Literature review

Railway wear is a fundamental issue in the railway system due
to it is unavoidable. Traditionally, railway maintenance focused on
preventive maintenance and corrective maintenance. At the same
time, railway engineering tried to improve design and maintenance
strategies to reduce wear and maintenance costs. Pascual and
Marcos (2004) focused on high-speed rail projects and tried to
improve preventive and corrective maintenance strategies. They
improved the design of the wheel aiming to reduce flange wear by
monitoring trains. They found that the design could significantly
reduce wheel wear and maintenance costs. Additionally, they added
that continuous monitoring could improve maintenance efficiency
and reliability. Besides regular operation, railway wheel wear also
occurs due to the turning or reprofiling process.Muhamedsalih et al.
(2019) developed mathematical models to predict railway wheel
wear according to the turning process.They suggested the economic
turning process as of every 100,000 miles. It can be seen that to
perform wheel wear management, measurement is a crucial process
because it is used as a guideline to acknowledge railway operators
to perform inspection, measurement, and maintenance at a specific
time or distance interval. A traditional measurement method is to
measure the dimension of wheels directly and compare the current
dimension with the original dimension. When the wear exceeds the
defined standard, maintenance will be conducted (Hu et al., 2021).
More advanced wear measurement methods were developed such
as laser (Zhu Y. et al., 2019; Fu et al., 2015; Asplund et al., 2014;
Cao et al., 2018), ultrasound or ultrasonic (Brizuela et al., 2011;
Zhou et al., 2019; Rovira et al., 2011; Alemi et al., 2017), acoustic
emission (Thakkar et al., 2006; Huang et al., 2023), computer vision
(Soleimani et al., 2021; Xing et al., 2022; Zhang et al., 2011), machine
learning (Shebani and Iwnicki, 2018; Du Plessis, 2019; Najeh et al.,
2021; Singh et al., 2023; Ye et al., 2022), or combined techniques
between laser and computer vision (Emoto et al., 2024).

It can be seen that the railway wheel wear measurement has
additional processes such as removing wheels from vehicles for
the measurement or installing additional sensors or measurement
devices to inspect wheel wear. Therefore, many scholars tried to
develop predictive models to forecast wear without these additional
processes. One of the popular techniques is the application of
machine learning. Shebani and Iwnicki (2018) mentioned that
the wheel wear prediction was complicated due to rolling contact
fatigue. They proposed the application of an artificial neural
network (ANN) for predicting wheel wear and used mean absolute
percentage error (MAPE) to evaluate the performance of the model.
They found that the developed model yielded MAPE of between
6.63% and 11.37% when the inputs were wheel and rail profiles,
load, speed, and yaw angle. Liu et al. (2024) applied ANN and
Long short-term memory (LSTM) models to predict railway wheel
wear. First, they applied ANN to preprocess historical data and
create time-series data. Then, they predict the average values of
wear before predicting the deviation of the wear using developed
models. They found that the developed models had a satisfying
performance in wheel wear prediction. Chen et al. (2024) employed
axle box acceleration (ABA) data as inputs to develop a regression
model. They used the developed model to predict tread wear and
evaluated the model’s performance by multiple indicators such as
MAPE, and R2. They found that the MAPE was about 10% while the

R2 was 0.9457. Wang et al. (2021a) applied SIMPACK to simulate
the dynamic and wear behavior of high-speed trains. Then, they
used ANN to predict the size of wear and the mean square error
(MSE) was 0.009. The inputs were wheel position and carriage
number. From the previous studies, it can be seen that machine
learning provided a satisfying outcome in predicting wheel wear.
This was also found in other previous studies (Najeh et al., 2021;
Wang M. et al., 2022; Zhu A. et al., 2019; Wang H. et al., 2022;
Deng et al., 2023; Wang et al., 2024).

When the wheel wear is measured or predicted, railway
operators will be able to prepare maintenance plans or schedules. As
mentioned, the three main maintenance approaches in the railway
system are corrective maintenance, preventive maintenance, and
predictive maintenance. In this study, predictive maintenance will
be focused and prioritized. Therefore, a tool making predictive
maintenance practical is significant. For corrective maintenance,
the measurement and inspection might not be important because
railway assets will be employed until something fails while
preventive maintenance can be referred to as routine or regular
maintenance. Therefore, measurement and inspection might not be
important for preventive maintenance as well. However, predictive
maintenance needs some tools for conditional monitoring and
planning maintenance schedules. Thanks to the development of
computational power andmachine learning, predictivemaintenance
in the railway system has a more solid possibility. Mohammadi and
He (2022) applied reinforcement learningwhich is one of threemain
categories of machine learning to prepare the maintenance plan for
rail. They considered the Track Quality Index (TQI) as the main
criterion to consider the need for maintenance. They found that
the application of reinforcement learning could improve the overall
TQI and extend the service life of rail. Then, Sresakoolchai and
Kaewunruen (2023) further developed deep reinforcement learning
integrated with digital twins to improve railway maintenance
efficiency. They considered multiple sources of data and included
different types of railwaymaintenance activities.They found that the
application of deep reinforcement learning could improve railway
maintenance efficiency by reducing the number of defects and
reducing maintenance costs. The same finding was also found by
Arcieri et al. (2024) who applied reinforcement learning to optimize
railway maintenance. However, the mentioned studies focused on
the railway track or rails rather than railway wheels. The only
study focusing on railway wheel wear was the study by Zeng et al.
(2021) who applied reinforcement learning to determine the wheel
reprofiling policy or limit of reprofiling to extend the service life of
railway wheels.

From the literature review, it can be seen that the application
of machine learning for railway wheel wear management has
been limited. In addition, the hybrid learning strategies integrating
supervised and reinforcement learning techniques have not been
explored. Therefore, this study tried to fill a research gap. Moreover,
this study also provides novelties in using basic operational data to
manage railway wheel wear without the need for manual inspection
and measurement of wheel profiles. This will save a lot of cost
and time for railway operators when they employ the developed
approach in this study. The study also considers different aspects
of wear including tread wear, flange height, and flange thickness
which represent wheel wear comprehensively. To ensure that the
developed approach can be applied in different situations, various
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FIGURE 1
C80 freight car MBS model.

and comprehensive data are used to develop hybrid learning
strategies so the size of the dataset is bigger than 44,000. The
variation of data includes the variation in weights of rolling
stock, speed of rolling stock, and track characteristics (straight,
curve, and spiral). The operational uncertainties are included in
the reinforcement learning model. Examples of these operational
uncertainties are distances of operation, weights of rolling stock, and
wear of different aspects. This is to mimic the real situation in the
railway system as much as possible. These novelties are expected
that they will be able to fill some research gaps in railway wear
management and improve the overall maintenance efficiency of the
railway system.

3 Materials and methods

3.1 Railway wheel wear model and
validation

Nowadays, multibody simulation (MBS) has become popular
in dynamic systems and the railway system is no exception.
Examples of popular commercial software are Vehicle Dynamic
Modeling Package in a Railway Environment (VAMPIRE), New and
Untried Car Analytical Region Simulation (NUCARS), Automatic
Dynamic Analysis of Mechanical Systems (ADAMS), and Universal
Mechanism (UM). In this study, UM is mainly used to model the
railway wheel wear behavior because the wear model is particularly
available and it is proven that the reliability is satisfying. In
addition, UM provides accurate results and, at the same time,
the calculation is efficient. One of the main benefits of UM is
it supports parallel processing so the computation is conducted
efficiently. In addition, the wear module in UM is developed
further than other software. In this study, the C80 freight car
is used as the case study for further modeling, validation, and
machine learning model development as shown in Figure 1.
From the figure, every component of the vehicle car is modeled
and assembled together to create the MBS model of the
freight car. Examples of the assembled components are wheels,
suspension systems, bogies, car bodies, tracks, track structures, and
track irregularities.

In UM, available wear models are the Archard model, the
Archard model with wear coefficient map, and the Specht model.
In this study, the Archard model is used due to its advantages. The
simulation using the Archard model has excellent performance. At
the same time, the volume and depth of wear can be obtained along
the simulations (Wang M. et al., 2022). The wear according to the

Archard model can be mathematically modeled as Equations 1–3
whereW is wear, kv is wear coefficient,A is friction work, P is power
of frictional forces, τ is tangential traction, s is sliding velocity, and f
is contact patch area.

W = kvA (1)

A = ∫
t

0
Pdt (2)

P = ∫
F
τsd f (3)

To validate the models generated by using UM, the calibrated
data is compared. The data from Dos Santos et al. (2014) developed
by NUCARS is calibrated using field data. The study according to
Silva e Silva et al. (2023) compared lateral and vertical forces from
the benchmark and the results from UM. The results can be shown
in Figure 2. From the figure, it can be seen that the differences
between the results from UM and the benchmarks are small. From
the validation, lateral forces and vertical forces are used to compare.
Two types of curves are used to validate the MBS models. From
the figure, the trends of the lateral and vertical forces are the same
although there are some small differences. However, the differences
are less than 10%. UM is also validated for reliability by different
previous studies (Qi et al., 2023; Kisilowski, 2021; Lu et al., 2020;
Sakalo et al., 2019; Olshevskiy et al., 2015; Wang et al., 2021b;
Xiao et al., 2017).

3.2 Railway wheel wear simulation

To predict andmanage railwaywheel wear using hybrid learning
strategies, UM is employed to observe the dynamic and wear
behaviors. Different scenarios are considered to make the strategies
comprehensive and practical. For example, tangent tracks and tracks
with different radius of curvature are explored. Different weights of
rolling stocks and other uncertainties are also considered. First of all,
rail vehicles in perfect condition or railway wheels without wear are
modeled. Then, along the operation, the rolling stock is employed
and the mass of the wheel loses causing wear. Figure 3 demonstrates
the wheel profile in perfect condition and after 999,000 km of
operation when the weight of the rolling stock is 14.5 tonnes. From
the figure, the wheel with the perfect condition has the original
dimensions as the original design. However, when the wheels are
employed for a certain period of time and distance, the dimensions
of the wheels are changed resulting in wear and critical changes in
thewheels’ dimensions. In this study, the rolling stock has four sets of
wheelsets. Therefore, the figure demonstrates one of the eight-wheel
wear of the rolling stock.

From the figure, it can be seen that the operation causes wear to
the wheel in different aspects, namely, tread wear, flange height, and
flange thickness. First, tread wear is the wear at the contact surface
of the wheel contacting the rail which is the most critical wear for
the wheel. Second, flange height is the measurement from the base
of the wheel to the top of the flange. Last, flange thickness is the
horizontal measurement of the wheel flange. When the rolling stock
is used, these dimensions are changed according to the quantity
of the operation. The summarized figure is presented in Figure 4.
From the figure, wear and changes in wheels’ dimensions occur at
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FIGURE 2
Comparison of lateral and vertical forces between the benchmark results from NUCARS and UM (Silva e Silva et al., 2023). (A) Lateral Force and (B)
Vertical Force.

the contact area between the wheel and rail caused by the loss of
material.The wear causes changes in wheels’ dimensions in different
aspects resulting in tread wear, changes in flange height, and flange
thickness. The remarkable point is tread wear and flange height will
be increased along the operation while the flange thickness will be
decreased along the operation. Therefore, these dimensions will not
be varied in the same way.

To train machine learning models developed by using
supervised learning techniques, wear and wheel dimensions in
different aspects are used as labeled for supervisedmachine learning
models to predict. Simulations with different scenarios from UM

are conducted to provide numerical data. Parameters are varied to
create data variation and diversity. The list of varied parameters for
wear simulation consists of the characteristics of tracks, the track’s
radius of curvature, the weight of rolling stock, and mileage or the
operation quantity.The data variation is shown in Table 1. It is worth
noting that different wheelsets are also considered for wear. From
the models, the railway wheel’s dimensions are measured regularly
to monitor the change in dimensions under different operational
quantities. In total, the number of samples for training the machine
learning models is more than 44,000 samples which is sufficient
in the machine learning field.

Frontiers in Built Environment 05 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1546957
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Sresakoolchai et al. 10.3389/fbuil.2025.1546957

FIGURE 3
Wheel profile in perfect condition and after 999,000 km, with a rolling
stock weight of 14.5 tonnes.

FIGURE 4
Train wheel wear in different aspects.

TABLE 1 Variations in data used for wear simulations.

Parameters Variation Units

Track characteristic Tangent/curve N/A

Track’s radii of curvature 0–650 m

Weight of rolling stock 14.5–84.5 Tonnes

Mileage 0–999,000 km

Operational quantity 0–69 Million Tonne-km

TABLE 2 Performance of the DNNmodel in predicting tread wear,
flange height, and flange thickness.

Label MAE (mm) R2

Tread wear 1.33 0.95

Flange height 1.02 0.96

Flange thickness 1.15 0.84

3.3 Wear predictive model using
supervised learning techniques

As mentioned, this study proposes hybrid learning strategies
integrating supervised and reinforcement learning to manage
railway wheel wear. The first part of machine learning model

development is to develop a predictive model to forecast wear and
related dimensions of railway wheels. In this case, the developed
machine learning model is used to forecast tread wear, flange
height, and flange thickness. Therefore, there are three labels for the
supervised learning model to predict. The inputs or features used to
develop the machine learning model are basic operational data as
mentioned due to the limited measurement data which is the aim
of this study. The features used in this study are the characteristics
of a track consisting of two categories, tangent and curved tracks,
track radius of curvature, the weight of rolling stock, mileage of
operation, and operation quantity which is the multiple between the
weight of rolling stock and mileage. It can be seen that these features
are basic operational data that railway operators acknowledge
from operational schedules or acquire easily from measurements
such as the weight of rolling stock. Therefore, the use of these
features can fulfill the aim of using limited measurement data
in this study.

To develop the machine learning model, from more than 44,000
samples, 70% of the samples are used to train the model while
another 30% of the samples are used to test the performance of
the model. Different supervised learning techniques are explored in
this part to predict tread wear, flange height, and flange thickness.
Therefore, the problem in this part is the regression problem when
the labeled values are continuous. From the characteristics of labels,
the appropriate performance indicators are Mean Absolute Error
(MEA) and R2 because they are straightforward, easy to interpret,
and suitable for identifying the performance of the developed
machine learning model in this study. Explored algorithms are
Convolutional Neural Network (CNN), Deep Neural Network
(DNN), LSTM, Linear Regression, Support Vector Machine (SVM),
and Random Forest (RF). To acquire the best version of each
predictive model from different techniques, hyperparameter tuning
is conducted. Hyperparameters of each machine learning model
are different based on the used techniques. For example, tuned
CNN’s hyperparameters can be the number of filters, the number
of kernels, the number of pooling layers, etc., while tuned DNN’s
hyperparameters can be the number of hidden layers, the number of
hidden nodes, activation function, learning rate, etc. Two different
methods can be used to performhyperparameter tuning: grid search
and random search. Grid search is the way that the alternatives
of each hyperparameter are manually defined in the first place.
On the other hand, random search is the way that the ranges of
hyperparameters are defined but the exact alternatives are tried
randomly by the machine. In this study, grid search is used because
it is more predictable than random search.

From the machine learning model development and
hyperparameter tuning, DNN provides the best performance
in terms of MAE and R2 which can be shown in Table 2. The
relationships between actual values and prediction are shown
in Figure 5. From the figure, the relationships between actual
values and predictions from the DNN model have a strong trend
representing the satisfying performance of the DNN model.
The range of R2 is between 0.84 and 0.96 presenting the good
performance of the predictive model. The prediction of the flange
height has the highest R2 while the prediction of the flange thickness
has the lowest R2. However, the overall R2 is satisfying based on
their high values. The optimal architecture of the DNN model
is shown in Figure 6. From the figure, the architecture of the DNN
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FIGURE 5
Relationships between actual values and predictions for (A) tread wear, (B) flange height, and (C) flange thickness.

FIGURE 6
Optimal architecture of the Deep Neural Network (DNN) model.

model consists of two hidden layers. The number of the nodes
in the input layer is five which equals the number of features.
The numbers of nodes in the two hidden layers are ten and five
respectively. Lastly, the number of nodes in the output layer is
three because there are three predictions in this case, tread wear,
flange height, and flange thickness. The activation functions used
in each layer are ReLU (Rectified Linear Unit) except in the output
layer where Linear is used. This combination is suitable when the
prediction is linear or continuous. Dropout is used between the
second hidden layer and the output layer. The value of dropout is
set to 0.2. Dropout is the component of the DNN model used to
prevent overfitting and improve the performance of the machine
learning model. The function of the dropout is it will disable nodes
in the adjacent layer randomly with the defined proportion. This
process will repeat in every training cycle or epoch. Therefore,

FIGURE 7
Defined thresholds for wear and corresponding wheel dimensions.

no particular nodes have higher significance than other nodes
and the overall performance tends to be improved due to the
prevention of overfitting when the model tends to remember
the prediction.

From the model performance, it can be seen that the model
provides a satisfying outcome. The R2 of tread wear, flange height,
and flange thickness predictions are higher than 0.84. At the same
time, theMAEs of every prediction is about 1 mmwhich is satisfying
as well for predicting the railway wheel wear. Considering each
prediction, flange thickness prediction has the highest variance
compared to tread wear and flange height showing that the dynamic
behavior is more complicated to predict. However, flange height has
the highest R2 showing the strongest trend between the actual values
and predictions. For tread wear, the trend seems to be stronger than
flange height prediction but the R2 is slightly lower. This can be
inferred that the reason is the scale range of treadwear is significantly
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FIGURE 8
Workflow of the reinforcement learning model.

lower than the flange height. Compared to the result from the
previous study in Chen et al. (2024), that study predicted tread wear
only while this study considers three-dimensional parameters of
railway wheel wear. In addition, the result of this study is slightly
better when compared to the tread wear prediction which was
investigated in the previous study.

From the machine learning model development using
supervised learning techniques, the developed predictive model
provides a good outcome that can be integrated with the
reinforcement learning model to create hybrid learning strategies.
In the next stage, a reinforcement learning model will be developed
to prepare the maintenance schedule to manage railway wheel wear.
In this study, the railway wheel wear is maintained by wheel turning
or reprofiling. The details of the reinforcement learning model
development will be discussed in the following section.

3.4 Reinforcement learning and deep
Q-learning

This study applies the reinforcement learning technique for
railway wheel wear management. Reinforcement learning is one
of the three main categories of machine learning. The workflow
of it is different from other types of machine learning. Due to its
capability, reinforcement learning attracts more attention nowadays
and its capability is explored inmany fields, railway transportation is
one of them. Reinforcement learning has higher variation compared
to supervised and unsupervised learning because it is used to
solve particular problems under different situations and scenarios.
Therefore, there is no fixed form of themodel. For example, it can be
used to manage the traffic or for trading. The main difference is the
rule for the machine to learn and react. There are some important
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FIGURE 9
Comparison of results between the reinforcement learning model and
routine maintenance strategies.

terminologies in the field. First, the environment is the rule in the
reinforcement learning model. Each reinforcement learning model
will have different rules depending on the problem that the machine
is used to solve. In this case, the machine called the agent, will
interact with the environment to learn about the rules of the model.
The environment will provide information to the agent, called states
(st) when t is the discrete timestep (t = 1,2,3,…,n) or stage. After
the agent receives information from the environment, the agent has
to choose an action (at). At the beginning of the training process, the
agent will not definitely know whether the performed action is good
or bad. To inform the agent, the environment will provide another
kind of informationwhich is rewards or punishments (Rt).The agent
aims to maximize the rewards or minimize the punishments. If the
current stage has not been the last, the environment will provide
new information or the state of the next stage to the agent, and the
agent will choose the action again.This process will be repeated until
the end of the training or the last stage. This makes reinforcement
learning outstanding from other kinds of machine learning because
reinforcement learning can be used to solve complex problems and
learn from the experience which other machine learning techniques
do not have this capability.

In this study, Deep Q-learning (DQN) is used to develop the
reinforcement learning model. The benefits of DQN are it is flexible
and scalable. In addition, it can deal with complicated data with
the use of DNN. It is worth noting that this DNN is different from
the DNN model developed in this study because DNN in DQN is
used for training the agent while the DNN model developed in this
study is used to predict wear and changes of wheel dimensionswhich
will be used as states for the reinforcement learning model. More
details will be discussed further in the following section. DQN is
the developed version of Q-learning. Therefore, some fundamentals
are the same. For Q-learning, the agent will learn by choosing an

action under the different states and stages and the agent will get
the reward and punishment from the environment as mentioned.
The maximum expected reward will be memorized in the Q-table
showing the relationship between states and actions. Therefore, the
agent will learn about the best action under different states. The
Q-table will be more complicated when the number of states and
actions is increasing. Values stored in the Q-table are called Q-
values. Along the training process, the agent will explore the possible
actions under different states and update the Q-table if the new
actions provide higher rewards. Q-values are updated using the
Bellman equation as shown in Equation 4 whenQnew(s,a) is the new
Q-value,Q(s,a) is the currentQ-value, α is the learning rate,R(s,a) is
the reward or punishment, γ is the discount rate, and maxQ′(s′,a′)
is themaximumQ-value. After the training process, the result will be
a Q-table which the agent can use to choose actions under different
situations based on Q-value. From this, it can be seen that the
disadvantage of Q-learning is the Q-table will be very large when the
states and actions are complicated. In addition, the performance of
the agent will significantly drop when it faces states that it has never
been trained for.

Qnew(s,a) = Q(s,a) + α[R(s,a) + γ ⋅maxQ′(s′,a′) −Q(s,a)] (4)

DQN is further developed to eliminate the limitation of Q-
learning. Q-values will not be determined from the Q-tables but
from the built-in DNN in the DQN model. In this context,
DNN will receive states as features to predict Q-values. Along the
training process, weights and biases of the DNN model will be
updated instead of Q-tables. Therefore, DQN is more appropriate
for complicated and nonlinear problems which is proper for the
problem in this study.

3.5 Data characteristics and problem
description for reinforcement learning

Data used to train the reinforcement learning model consists
of data for the states, actions, and rewards. States in this study
are calculated based on the developed DNN model consisting of
the characteristics of a track consisting of two categories, tangent
and curved tracks, track radius of curvature, the weight of rolling
stock, mileage of operation, operation quantity which is themultiple
between the weight of rolling stock and mileage, tread wear from
the previous stage, flange height from the previous stages, flange
thickness from the previous stage, and the action from the previous
stage. In the first stage, states related to wear and wheel dimensions
will be set at the perfect condition to simulate that the wheel
has not been used. Because this study focuses on railway wheel
wear, therefore, the parameters related to tracks can be varied to
simulate the real situation. Characteristics of track and radius of
curvature are varied along the training process to mimic the real
situation. Weights of rolling stocks are random between 14.5 and
84.5 tonnes related to the simulations shown in Table 1. The mileage
of operation will be fixed as a specific interval to represent each
stage of the environment. In this case, each stage is set to 1,000 km.
In this study, the service life of wheels is set to 700,000 miles or
1,120,000 km (Maanshan Kingrail Technology Co. and Ltd, 2023).
Therefore, the total number of stages is 1,120. Then, the operation
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FIGURE 10
Relationship between the number of individual defects and wheel reprofiling events as a function of mileage.

quantity will be calculated based on the weights of rolling stocks and
the mileage. Wear and related wheel dimensions from the previous
stage are also used as states for the agent to decide on the next
action. This also applied to the action from the previous stage that
the agent chose. For tread wear, flange height, and flange thickness,
they are calculated by using the developed DNN model. MAEs of
each are also included as the uncertainty in the regular operation.
For the states that can be categorized, they are defined as Discrete
which is used for discrete values. On the other hand, the states
that are the continuous values such as weights of rolling stock or
wheel dimensions, they are defined as Box which are proper for the
real number.

For the action space or the available actions, the agent has two
options, to perform or not perform the maintenance, turning, or
reprofiling for thewheels.Theaction space isdefinedasDiscretewhere
the available options are not continuous values. After themaintenance
is performed, wear and related wheel dimensions will be reset to the
original values or the wheel will be in the perfect condition. The
rewards will be defined using negative values or punishments in this
study. There are two categories of punishments. The first one is the
punishment based on wheel defects. In this case, wheel defects can
take place based on three values, tread wear, flange height, and flange
thickness. The thresholds of each dimension are defined according
to GMRT2466 (Rail Safety and Standards Board Limited, 2023). The
thresholds are shown in Figure 7. From the figure, the reinforcement
learning model will try to maintain the different wear and wheels’
dimensions within the shown thresholds. If tread wear and flange
height arehigher than the thresholds, theywill beconsidereddefective.
For flange thickness, the change will be in the opposite way because
it will be decreased along the employment. Therefore, if the flange
thicknessis lessthanthethreshold, itwillbeconsidereddefective.These
three parameters are considered for the punishments separately. If any
threshold isexceeded, theagentwill receive thepunishment.Therefore,
the punishmentwill be scaled according to the number of defects.The
second kind of punishment is calculated based on themaintenance or
wheel turning or wheel reprofiling. This is to prevent the agent or the
machine from keep maintaining the wheel without the appropriate
consideration. However, the punishment based on the maintenance

performing will be relatively smaller than the punishments based on
defects. This is to constrain the agent to avoid defects by performing
the maintenance as necessary to save the maintenance cost. When
the model training is done, the number of defects will be considered
to evaluate the performance of the agent or reinforcement learning
model. To compare the performance of the reinforcement learning
model, two scenarios are compared, the first one is the result of the
application of the reinforcement learningmodel and another scenario
is the result of routine maintenance or preventive maintenance. For
routine maintenance, the inspection and measurement of railway
wheels are done every 50,000 km (Hou et al., 2022; Shi et al., 2018;
Xie et al., 2024). The workflow of the reinforcement learning model
is shown in Figure 8. The figure also demonstrates the workflow from
the development of the supervised learning model consisting of data
gathering and data processing.Then, the supervised learningmodel is
combined with the reinforcement learningmodel to create the hybrid
learning strategies approach.

To integrate supervised learning and reinforcement learning,
the supervised learning models developed in Section 3.3 will
be evaluated by using MAE and R2 to select the supervised
learning model with the best performance after hyperparameter
tuning. Then, the supervised learning model will be embedded
in the reinforcement learning model to predict the railway
wheel wear and related dimensions for the agent to take action
and receive defined rewards. The agent will learn from the
states provided by the environment which partially resulted from
the supervised learning model embedded in the reinforcement
learning model making the hybrid learning strategies. In real-
world situations, railway operators can feed the developed approach
with operational data consisting of the weight and speed of
rolling stocks and track characteristics as shown in Figure 8
regularly and obtain the result from the reinforcement learning
model whether it is the time for wheel reprofiling. To test the
performance of the developed approach, the result from the
reinforcement learning will be compared with the result from
routine maintenance when the assumption is the inspection and
measurement will be done every 50,000 km as mentioned in the
previous paragraph.
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FIGURE 11
Examples of wear and corresponding wheel dimensions under two
maintenance strategies: reinforcement learning-based reprofiling and
routine maintenance. (A) Tread wear, (B) Flange height, and (C) Flange
thickness.

4 Results and discussion

As mentioned, the prediction of wear is done by using the DNN
model. The performance of the DNN model is shown in Table 2.
MAE and R2 are used to evaluate the performance of the supervised
learning model and model selection. From the evaluation, the DNN
model provides the best performance when the MAEs of tread wear,
flange height, and flange thickness are about 1 mm and the range of
R2 is between 0.84 and 0.96 which is satisfying in terms of the model

performance. Therefore, the DNN model will be integrated with the
reinforcement learning model to prepare the maintenance schedule.
For the reinforcement learning model, the model evaluation is
not as straightforward as the supervised learning model. The
model’s metric cannot be used to evaluate the performance of
the model directly because there is no comparable metric in this
case. Therefore, to evaluate the performance of the reinforcement
learning model, the result from the model will be compared to
the result from the routine maintenance when the inspection and
measurement are done every 50,000 km of operation as mentioned.
The indicators used to evaluate are the number of defects and
maintenance. The reinforcement learning model is developed using
DQN.The iteration or the number of training cycles is set to 100,000
to make sure that the model is trained until it converges to the
optimal solution. To evaluate the performance of the reinforcement
learning model, the results from the developed reinforcement
learning model and the results from the routine maintenance are
compared. As mentioned, routine inspection and measurement are
done every 50,000 km.When thewear and relatedwheel dimensions
exceed the threshold, wheel reprofiling will be performed. Then, the
dimensions of the wheel will be reset. To compare the results, the
number of defects and the number of performed maintenance are
compared. The outcomes are shown in Figure 9. From the figure,
the number of defects and performed maintenance are compared.
The number of defects is categorized into two groups, individual
defects and combined defects. Individual defects are considered
when any defects occur. In other words, defects are taken into
account when tread wear, flange height, or flange thickness exceed
the thresholds although more than one of them occurs together
at the same stage in the reinforcement learning. Different from
individual defects, combined defects are considered based on the
overall condition of the wheel. If at least one of the wear or related
wheel dimensions exceeds the thresholds, the wheel is considered
combinedly defective regardless of how many defects take place
in the same stage in the reinforcement learning model. From the
figure, the number of defects both individual and combined defects
when the reprofiling is scheduled using reinforcement learning
is zero or defect-free. However, the use of routine inspection,
measurement, and maintenance has significantly higher numbers
when the number of individual and combined defects are 1,745 and
715 respectively.

For the number of performed maintenance, the number from
the reinforcement learning is 71 while the number of the routine
maintenance is 22 or 69% higher. This is because the agent of the
reinforcement learning model is trained to perform wheel profiling
as necessary to avoid defects in terms of tread wear, flange height,
and flange thickness. The agent can predict the appropriate period
to perform wheel reprofiling based on the operational data while
the routine maintenance does not have the potential to detect the
essentiality of maintenance on time. That is why the number of
performed maintenance from the routine maintenance is lower
than the results from the reinforcement learning while the number
of defects is significantly higher. In addition, the use of routine
maintenance makes railway wheels to be employed although they
are defectives that spoil the safety, passenger comfort, and overall
efficiency of the railway operation. For more detail, Figure 10
demonstrates the number of individual defects andwheel reprofiling
based on mileage from the reinforcement learning model and
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routine maintenance. The figure presents the results from the first
50,000 km of operation. It is worth repeating that the weight of
the rolling stock of every stage or 1,000 km varied during the
reinforcement learning model development. From the figure, there
are no individual defects when the reprofiling schedule based on the
reinforcement learning model is used as mentioned. However, the
individual defects when routine maintenance is used start emerging
after the rolling stock is operated for 21,000 km. Then, the number
of individual defects becomes two after the 23,000 km operation and
three after the 29,000 km operation. The order of emerging defects
is flange thickness, tread wear, and flange height respectively. In
other words, the rolling stock is operated with a defective wheel
for 29,000 km before the wheel is reprofiled after the inspection
and maintenance are done when the rolling stock is employed
for 50,000 km in case of routine maintenance. For reinforcement
learning, the wheel reprofiling is done four times during the first
50,000 km of operation at 12,000, 26,000, 41,000, and 46,000 km of
operation.

To demonstrate a clearer view of the performance of
reinforcement learning, Figure 11 presents examples of wear
and related wheel dimensions consisting of tread wear, flange
height, and flange thickness when reprofiling is done based on
reinforcement learning and routine maintenance for the first
50,000 km of operation. It can be seen that the results from
the reinforcement learning model can maintain the wear and
related wheel dimensions in the defect-free zone. However, routine
maintenance does not respond well enough to eliminate defects
from railway wheels because the inspection and measurement
cannot be done all the time especially when the wear and related
wheel dimensions reach the defined thresholds. Therefore, the
rolling stock is employed while the wheels are defective for more
than 50% of the operation period before defects are inspected.
The thresholds of tread wear, flange height, and flange thickness
are 10, 36, and 28 mm respectively. From the figures, it can be
seen that the reprofiling schedule prepared by the reinforcement
learning model outperforms the reprofiling schedule prepared
by routine maintenance based on the number of defects found
during the operation.

It can be concluded that the developed hybrid learning strategies
in this study can meet the aim of using limited measurement data
of wheel profiles to manage railway wheel wear efficiently. The
contributions of the study are railway operators can use the concept
proposed in this study to manage wear when the number of wheel
inspections and measurements can be reduced. In addition, the
inputs of the developed approaches are basic operational data which
already available or easy to obtain. Therefore, railway operators
can reduce maintenance costs, improve maintenance efficiency,
reduce the number of defects, reduce possession and inspection
times, improve passenger comfort, and improve safety. The overall
efficiency of the railway operation and railway system will be
improved and the data-driven scheme is more practical when
applying the developed approach. The contributions of the study
to the existing research area are this study introduces a novel
integration of supervised and reinforcement learning specifically
tailored for railway wheel wear management. By leveraging the
strengths of both approaches, it addresses the limitations of
traditional predictive maintenance models that rely solely on either

historical data or human experience. In other words, this study
demonstrates the potential of hybrid learning strategies in which
researchers can further develop and apply the concept to suit
their problems. The study also proposes the approach requiring
operational data only without complex data or installed sensors
for data gathering. In real-world situations, railway operators can
feed the developed approach with operational data as mentioned
as shown in Figure 8, or other data that railway operators use to
further train the reinforcement learning model regularly and obtain
the result from the reinforcement learning model whether it is the
time for wheel reprofiling or the wheels’ dimensions. Although the
research in this field is new and railway operators have not employed
this approach, the result of this study proves that the developed
approach has the potential to be applied in real-world situations.
Railway operators might not fully rely on the developed approach
for maintenance but they can employ the developed approach as
a guideline or decision-making support tool for the maintenance.
When the model has been trained assuredly and the data is rich
enough under particular circumstances, railway operators can rely
on the developed approach more and use it as the decision-making
tool to drive their organizations to data-driven organizations
which is the ultimate goal of different global organizations
in the present.

5 Conclusion

This study is the world’s first attempt to develop hybrid learning
strategies integrating supervised and reinforcement techniques
to manage railway wheel wear with limited measurement data.
The supervised learning technique is used to predict wear and
related wheel dimensions using basic operational data such as
characteristics of tracks, radius of curvature, weights of rolling
stock, travel distance, and operational quantity. The MBS using
UM is used to explore the dynamic and wear behavior of railway
wheels. The total number of samples used to train the machine
learning model is higher than 44,000 samples which is big
and comprehensive enough to mimic the real-world situations.
From the predictive model development, DNN provides the best
outcome in predicting wear and related wheel dimensions when
R2 is higher than 0.84 in every prediction. In addition, the
MAE is about 1 mm presenting the satisfying performance of the
predictive model.

Then, the developed supervised learning model is integrated
with the reinforcement learning model. In this study, the DQN
technique is used to develop the reinforcement learning model.
Different states based on the supervised learning model are fed
into the model to inform the agent about the current conditions
of railway wheels. Then, the agent has to choose the actions to
reprofile or not perform any maintenance after receiving states from
the environment. The rewards or punishments in this study are set
based on the found defects andmaintenance costs. In other words, if
any wear or related wheel dimensions exceed the threshold, they are
considered defective and the punishment is provided to the agent.
At the same time, if the agent chooses to do the wheel reprofiling,
a relatively small punishment is also provided to the agent to make
sure that the agent will not keep maintaining the wheels to avoid
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defects. The highest rewards or lowest punishment occur when
there is no defect and the agent does not perform the maintenance.
However, it has the possibility that the defect will take place in
the next stage. Therefore, the agent has to learn how to optimize
the reprofiling at the minimum number while keeping wheels free
from defects. This is a challenge that is complicated and almost
impossible when the maintenance schedule is planned by humans.
From the reinforcement learningmodel, the results show that the use
of reinforcement learning to schedule the reprofiling can eliminate
the defects from railway wheels by optimal reprofiling to be done
at the appropriate time and as low as necessary. Therefore, railway
operators will obtain advantages from applying the developed
approach proposed in this study in terms of maintenance cost
reduction, maintenance efficiency improvement, defect reduction,
possession and inspection time reduction, passenger comfort
improvement, and safety improvement. Overall, the efficiency of
railway maintenance will be improved.

To apply the developed approach in a real-world situation,
railway operators can use the framework proposed in this study to
develop hybrid learning strategies and use their data to train the
supervised learning and reinforcement learning model to tune the
models based on their conditions. Railway operators can achieve
the data-driven approach by using the developed framework to
support decision-making rather than human past experience which
can be biased. The limitations of this study are the investigation has
been done using the freight train only. Passenger trains might have
different conditions and behaviors. In addition, the speeds of rolling
stock are limited to the speed of freight trains so additional variations
should be further investigated. Some complexity can be added to
the machine learning models to mimic different requirements of
each railway operator such as limited resources or possession time.
Other maintenance activities can be added to improve the degree of
complexity. These complexities can be explored in future studies.
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