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Determining the failure probabilities of submarine slopes over long distances is
crucial for assessing slope stability, given the randomness of soil parameters.
Based on the theory of stochastic fields and the method of limit equilibrium, this
study introduces a quantitative method that incorporates spatial variability of
soil parameters to evaluate submarine slope stability. Assuming a linear increase
in undrained strength with depth, the slope stability is estimated under static
loading derived from nonstationary random fields, and the effect of a weak layer
on the slope stability is also analyzed. This study show that ignores the spatial
variability of the soil parameters significantly overestimate the performance for
the slope stability. In conclusion, the lower and upper ends of the probability
index range are found to have great significance in practical engineering design.
The combination of traditional deterministic slope analysis and probabilistic
assessments will be beneficial to slope engineering practice and will improve
the decision-making process.
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1 Introduction

With the increasing number of projects involving deep-sea oil and gas exploration
and deep-water engineering, the instances of submarine landslides and marine geological
hazards have also increased, thereby seriously endangering the safety of deep-water oil
and gas drilling platforms, submarine pipelines, submarine cables, and other engineering
facilities (Liu, 2010). Rui et al. (2024) have enhanced the understanding of marine
engineering geological characteristics by analyzing the formation mechanism of seabed
trenches. They have demonstrated that understanding the properties of seabed soils and
potential geological hazards can help engineers design safer and more economical marine
structures (Rui et al., 2024). The evaluation of the submarine slopes’ stability has become
a crucial yet difficult problem in the field of international marine engineering geology
recently. Traditional deterministic slope stability assessments (Junbu, 1957; Bishop, 1955;
Morgenstern and Price, 1965; Spencer, 1967) often overlook the explicit quantification
of uncertainties, instead relying heavily on conservative parameter estimates and designs
to address ambiguous scenarios. This approach, however, poses significant challenges
in meeting the intricate demands of resolving real-world problems, where the need for
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FIGURE 1
Nominal probability of failure for normally distributed F as function of
reliability index.

FIGURE 2
Realization of one-dimensional random field X(z) showing local
averages over intervals Z and Z′.

precision and adaptability to uncertain conditions grows
increasingly paramount. Phoon and Kulhawy (1999) noted that
there are three primary sources of geotechnical uncertainty,
i.e., inherent variability, measurement error, and transformation
uncertainty. Consequently, approaches that integrate reliability
assessments and probabilistic techniques to account for the
variability in soil properties have been introduced for the stability
evaluation of slopes.

Initial probabilistic slope stability analysis appeared in the
1970s (Matsuo and Kuroda, 1974; Alonso, 1976; Tang et al., 1976;
Vanmarcke, 1977a) and studies continued to increase. Various
methods have been developed for evaluating the reliability of
geotechnical structures, for example, first-order second moment
(FOSM) method (Shinozuka, 1983), first-order reliability method

(FORM) (Juang et al., 2006), Monte Carlo simulation method
(MCSM) (Juang et al., 1991; Wang et al., 2010), response
surface method (RSM) (Wong, 1985). For example, Rodríguez-
Ochoa et al. (2015) proposed a probabilistic framework to calculate
the probability of submarine slope collapse triggered by earthquakes
using FORM, MCSM and Bayesian updating. Zhu et al. (2018)
analyzed the failure probability of a typical slope section in the
norther South China Sea by using RSM and Advanced First Order
Second Moment method. Yang et al. (2007) used the FOSM, PEM
and FORM via RSM combined with the finite element method to
compute and compared the reliability index of submarine slopes,
and the applicable conditions of different methods are provided.
Nevertheless, the conventional reliability approaches utilized in
these investigations merely regard soil parameters as stochastic
variables, overlooking the spatial variability of the soil properties
in slope formation. Because the various geologic, environmental,
and physical–chemical processes, all soil properties in situ will
vary vertically and horizontally, it stands as a crucial element in
the field of reliability assessment (Phoon et al., 2016). Li et al.
(2024) conducted a study on the reliability and sensitivity analysis
of monopile-supported offshore wind turbines (OWTs) based on
the probability density evolution method and pre-screening of
control parameters.This approach can effectively reduce the number
of samples required for probability density evolution calculations,
providing reasonably accurate results for reliability analysis. Fenton
and Vanmarcke (1990) developed the Local Averaging Subdivision
(LAS) method which fully accounts for spatial variability of
geotechnical random field parameters such as soil weight, elastic
modulus, friction angle, cohesion etc., And it is widely used in
random finite–element method (RFEM). For example, Griffiths
and Fenton (2000), Griffiths and Fenton (2004), Griffiths et al.
(2009) studied slope stabilities using RFEM, which considers the
spatial variability, and results indicate that it could result in
overly optimistic assessments of the probability of slope failure,
disregarding the spatial distribution. Dyson and Tolooiyan (2019)
proposed a comparative and predictive random field methodology
for finite element analysis of slope stability through three case
studies, significantly diminishing the computational demands
associated with Monte Carlo simulations. Zhu et al. (2017) explore
the impact of spatial variability on the undrained stability of
normally consolidated random slopes by utilizing RFEM, and the
results can help engineers obtain a preliminarily evaluation of the
probability of failure for slopes composed of normally consolidated
clay. Various reliability methods have been implemented in the
realm of slope engineering, yet their use in the context of submarine
slopes remains comparatively scarce. In fact, analysis that considers
the spatial variability of marine sediments is rarely reported.
Although numerous studies have reported the influence that spatial
variability exerts on slope stability, they only consider the vertical
correlation of soil parameters and the slope is short. It is observed
that the horizontal correlation of soil parameters can be much
more crucial to the analysis when the potential slip surface is
relatively extensive (El-Ramly et al., 2002), and studies on this are
relatively limited.

It is difficult to obtain high-quality undisturbed soil from the
seabed, and hence, reports on the parameters of marine sediments
that consider spatial variability are rare. Wang B. et al. (2024)
have provided an in-depth understanding of the behavior of
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FIGURE 3
The stratigraphic composition and sectional view of the James Bay dykes (Jaksa, 1995).

TABLE 1 Input variables and their statistical parameters.

Input variable Mean Standard deviation

Unit weight of sand (kN/m3) 20.0 1.414

Friction angle of sand 30.0 2

Strength of marine clay (kPa) 34.5 8.20

Strength of lacustrine clay (kPa) 31.2 8.22

Scale of fluctuation 2 × 15 m

FIGURE 4
Variation in strength for specified sampling distance of 30 m.

marine piles under different soil conditions through the analysis
of marine soil parameters such as soil shear modulus and soil
permeability coefficient. Consequently, there is a demand for more
efficient reliabilitymethodologies to assess the stability of submarine
slopes. In addition, the failure mechanics of submarine slopes are
extremely intricate, and many factors affect the stability of these
slopes. Recent research into the causative factors of submarine

FIGURE 5
Variation in reliability index with sampling distance.

TABLE 2 Comparison of different analysis methods for sampling
distance of 30 m.

Analysis method Reliability index β

Method proposed in this study 2.496

El-Ramly’s analysis method 2.32

Ladd and Christian’s analysis method 2.66

landslides indicates that the presence of a weak layer within the
soil is a significant contributor to such events. In this study,
the impact of a weak layer on the probability of occurrence of
a submarine slope landslide has been examined using a weak
layer model.

In this research, the spatial heterogeneity of the submarine
slope’s strength is characterized through the use of nonstationary
random fields. First, the effectiveness of the method considered
in this study is verified by using the classical case study of James
Bay. Then, the stability of the submarine slope is assessed using

Frontiers in Built Environment 03 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1545900
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Yu et al. 10.3389/fbuil.2025.1545900

FIGURE 6
Variation trend diagram of undrained strength with depth.

FIGURE 7
Probability distribution of critical random variables: (A) Probability distribution for su0; (B) Probability distribution for k.

the limit equilibrium method in conjunction with random fields,
considering the undrained shear strength that increases linearlywith
depth. In addition, a local average method that samples the soil
properties at a specified distance along the slip surface is applied to
consider spatial variability. Finally, the influence of the variation in
important parameters on the reliability of a submarine slope with
different sample distances is quantitatively analyzed. The subject
slope is situated in the northern region of the South China Sea,
positioned on the continental slope with a depth of 300 m beneath
the water surface.

2 Framework of slope reliability
analysis

Broadly speaking, both the probabilistic slope stability analysis
approach and the deterministic analysis method share foundational
concepts (e.g., failure modes and the limiting equilibrium).
However, the probabilistic method has the advantage of being
able to quantitatively interpret the sources of various uncertainties.
As follows is the concept of probabilistic analysis into the
design of slopes. The data on hand are examined to obtain a

probability distribution that accurately represents each variable
involved. Only those parameters, deemed to significantly influence
the analysis due to their variability, necessitate being modeled
as variables, such as the undrained shear strength, friction
angle, and unit weight (Matsuo and Kuroda, 1974; Alonso,
1976). Then, the failure mode is evaluated, and the suitable
slope model and analysis methods are selected. Finally, the
probability distribution of the safety factor is estimated by
using integrated input distributions with stability analysis. The
reliability index and failure probability are obtained and are
valuable supplements to the results obtained using conventional
deterministic slope analysis.

In the last 30 years, various efforts have been undertaken
to develop probabilistic approaches for analyzing slope stability
(Nguyen and Chowdhury, 1984; Li and Lumb, 1987; Li, 1992; Low
and Tang, 1997). These approaches differ in the level of
assurances, constraints, capacity to address intricate problems, and
mathematical complexity. However, the majority of these methods
can be categorized into one of three categories: analytical methods,
approximation techniques, or Monte Carlo simulations. Monte
Carlo simulation has become the first choice in reliability analysis
because of its unique advantages, and when it is combined with the
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FIGURE 8
Estimating the ideal iteration count for Monte Carlo simulation.

random field theory, results that are closer to the practical situations
are obtained.

Durap et al. (2023) have proposed an integrated Bayesian risk
model that combines 3D hydrodynamic transport with Monte
Carlo simulation to assess coastal landslide risk. This approach
offers a more accurate method for evaluating coastal landslide
risks, providing a safer and more reliable risk assessment tool
for global coastal regions. Wang Z. et al. (2024) has developed a
methodology for real-time assessment of seafloor slope stability
under rapid sedimentation conditions. This method employs a
calibrated finite element model to simulate the rapid sedimentation
processes and offers an approach for computing the safety factor for
the stability of the sedimented seafloor slopes. Tan et al. (2023) have
proposed a probabilistic framework to evaluate the susceptibility of
submarine landslides occurring on continental slopes that are rich
in gas hydrates.This framework integrates multiple steps: initially, it
constructs a comprehensive database, then expeditiously develops
predictive models, and finally assesses landslide susceptibility to
anticipate the potential hazards posed by submarine landslides.
Monte Carlo simulations, by introducing reasonable error ranges
and generating extensive simulated data, provide error analysis and
probability distribution of the assessment results. This approach is
particularly effective for conducting rational risk assessments in
contexts with limited data availability.The basic theory on which the
simulation is based is discussed below.

2.1 Monte Carlo simulation

Monte Carlo simulation serves as a potent tool for tackling
mathematically intricate problems, providing a comparatively
precise approach for current reliability computations. Monte Carlo
simulation employs a random number generator to assign a
stochastic value to each input variable, adhering to its corresponding
probability distribution. This chosen value is subsequently applied
to resolve the performance function and to determine the safety
factor. For a slope, the limit state equation function Equation 1 is

first established according to its failure mechanism, stress, and rock
mass structure:

Z = g(X1,X2,X3,⋯,Xn) (1)

where X1, X2, X3, … , Xn are random variables with independent
distribution. N groups of random numbers satisfying their
probability distributions are generated by the random number
generator and are expressed as X i = (xi1, xi2, xi3, … , xin). Zi is a
random sample with a safety factor that can be obtained for each
sampling. If there are M random samples whose value is less than
1 and if N is sufficiently large, the frequency of the slope aligns
closely with the probability dictated by Bernoulli’s law. Therefore,
the probability of slope failure can be estimated as Equation 2

Pf = P(g(Xi) ≤ 1) =
M
N

(2)

However, the most effective applications of probability theory
in slope stability analysis have expressed uncertainties through a
reliability index, defined as Equation 3

β =
E[F] − 1.0

σ[F]
(3)

where β is the reliability index, with the target reliability of slope
engineering being approximately 2.321–2.748 (Zhu, 1993), and F is
the computed safety factor, which is assumed to follow a normal
distribution. The reliability index describes safety in terms of the
number of standard deviations separating the best estimate ofF from
its defined failure value of 1.0. When the shape of the probability
distribution of the safety factor is known, the reliability index can be
related to the probability of failure. Figure 1 shows this relationship
for a normally distributed safety factor.

2.2 Spatial variability

2.2.1 Random fields
In most cases, studies on the spatial variability of geotechnical

data are grounded in randomfield theory, which similarly underpins
the proposed research methodologies. The physical aspects of
geotechnical parameters (including the elastic modulus, cohesion,
angle of internal friction of rock or soil, and soft intercalation)
and the elastic modulus of mass concrete materials have obvious
spatial variability, which can be decomposed conveniently into a
smoothly varying trend function [t(z)] and a fluctuating component
[w(z)] as follows:

x(z) = t(z) +w(z) (4)

where x is the in situ soil property and z is the depth. The
fluctuating component defined inEquation 4 represents the inherent
soil variability. In a spatial domain inwhich the position parameter is
regarded as the independent variable, the parameter at any position
in the space satisfies a certain probability distribution. A set of
these random variables is called the random field. The random
field theory is a mathematical approach designed to represent
intricate spatial and/or temporal variations and correlations of a
characteristic.The practical application of this theory in engineering
was initially developed by Vanmarcke (1977b); this research has
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FIGURE 9
Influence of COVs on reliability index without spatial variability consideration: (A) Influence of COV su0 on reliability index; (B) Influence of COV k on
reliability index.

FIGURE 10
Influence of sampling distance on reliability index: (A) su0 = 2 kPa, COV k = 0.1–0.5; (B) COV k = 0.184, su0 = 2–5 kPa.

become the primary benchmark for the majority of investigations
considering the geotechnical properties’ spatial variability. In this
study, the inherent soil variability is modeled as a random field,
characterized succinctly through the coefficient of variation (COV)
and the fluctuation scale.

Vanmarcke’s central thesis regarding random fields is that the
local point-to-point variation within the field is challenging (or even
impossible) to obtain in practice and may lack significant practical
relevance. Indeed, local averages over a spatial or temporal domain
are considered to have much greater practical value. Figure 2 shows
a one-dimensional random field x with amean E[x] and variance σ2.
The local average of the random field on a discrete element [z-Z/2, z
+ Z/2] is defined as Equation 5

SZ(z) =
1
Z
∫
z+ Z

2

z− Z
2

S(x)dx (5)

where Z is the length of the local average element, SZ(z) is a local
average random field, and S(x) is a one-dimensional continuous
parameter uniform random field. If SZ and SZ’ are two locally
average random fields, the covariance is as follows (Equation 6):

Cov(SZ,SZ′) =
σ2

2ZZ′
3

∑
K=0
(−1)KZ2

KΓ
2(ZK) (6)

where Γ2(Z) is a dimensionless variance function. For the majority
of commonly used correlation functions, Vanmarcke and Grigoriu
(1983) showed that Γ2(Z) can be approximated as Equation 7

Γ2(Z) =
{{
{{
{

1,Z ≤ δ
δ
Z
,Z ≥ δ

(7)

where δ is the scale of fluctuation. The model suggests no reduction
in variance, i.e., Γ2(Z) = 1, due to local averaging until the averaging
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FIGURE 11
Influence of sampling distance on reliability index: (A) No spatial variability; (B) Sampling distance of 500 m; (C) Sampling distance of 300 m; (D)
Sampling distance of 80 m; (E) Sampling distance of 60 m; (F) Sampling distance of 40 m.

interval Z is equal to δ. The local averages of the variable x over
intervals Z and Z′ (see Figure 2) and X(Z) and X′(Z′) are spatially
correlated.The correlation coefficient ρ(XZ ,X′Z′) betweenX(Z) and
X′(Z′) is given by (Equation 8)

ρ(XZ,X
′
Z′) =

Z2
0Γ(Z0) −Z

2
1Γ(Z1) +Z

2
2Γ(Z2) −Z

2
3Γ(Z3)

2ZZ′[Γ(Z)Γ(Z′)]0.5
(8)

where Z0 is the separation of the two intervals, Z1 represents the
distance from the start of the first interval to the start of the second
interval, Z2 represents the distance from the start of the first interval
to the end of the second interval, andZ3 represents the distance from
the end of the first interval to the end of the second interval.

2.2.2 Scale of fluctuation
The characteristics of soil at any two spatial locations may

vary, yet they exhibit a correlation. The autocorrelation of the soil
parameters generally decreases with an increase in the distance
between the two points, and it is almost negligible when the
distance is greater than a specific value; this particular value is
defined as the scale of fluctuation. Li (1994) used the autocorrelation
distance to characterize the degree of spatial autocorrelation of
soil parameters. Conceptually, the scale of fluctuation shares
the same physical significance as the autocorrelation distance,
although they differ in their numerical values. For the typical
exponential autocorrelation models, δ is equivalent to twice the

autocorrelation distance. The scale of fluctuation is a crucial
component of the autocorrelation function and plays a significant
role in characterizing the spatial autocorrelation of soil parameters.
Therefore, before carrying out conducting reliability analysis, it is
essential to ascertain the scale of fluctuation of soil characteristics at
the geotechnical site.

So far, numerous studies have estimated the scale of fluctuation
of soil parameters utilizing field measurement data (Cafaro and
Cherubini, 2002; Uzielli et al., 2005; Cao and Wang, 2014). At
present, most of the in-situ tests are limited to the vertical scale
of fluctuation (δv) of soil parameters, and it is difficult to measure
the horizontal scale of fluctuation (δh) of soil parameters directly.
In addition, for a particular geotechnical site, especially deep-sea
sites, the onsite data are usually very limited. It usually requires
considerable labor force and material resources to obtain a large
amount of field-measured data. Uzielli et al. (2005) suggested that
the scale of fluctuation is associated with the deposition process of
the soil layer, yet it remains independent of the soil type. Therefore,
different types of soil may have a similar scale of fluctuation.

In this study, the relevant literature is examined to collect the
range of the scale of fluctuation for the undrained shear strength
(Phoon and Kulhawy, 1999; Salgado and Kim, 2014; Jaksa, 1995).
The vertical scale of fluctuation for the undrained shear strength
of clay falls within the range of 1–8 m, while the horizontal scale
of fluctuation lies within the range of 40–62 m. Given that stability
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FIGURE 12
Comparison of position of slip surface and safety factor, suw = 60%sun: (A) Without optimization; (B) With optimization.

FIGURE 13
Theoretical analysis of slope with soft layer.

is governed by the average shear strength along the failure surface,
the horizontal spatial configuration may exert a more substantial
influence on the analysis (El-Ramly et al., 2002). When vertical and
horizontal spatial structures are deemed to have equal significance,

FIGURE 14
Influence of sampling distance on reliability index.

the soil variability can be roughlymodeled as an isotropic entity with
an equivalent isotropic scale of fluctuation (Salgado and Kim, 2014).

δeq = √δvδh (9)
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FIGURE 15
Influence of COV suw on reliability index.

The maximum values of δv and δh of su are 8 and 62 m,
respectively. Therefore, δeq of su is equal to approximately
23 m (using Equation 9). For a long submarine slope with a long
distance, the scale of fluctuation will be considered to be close to the
horizontal scale of fluctuation. The impact of the value of δ on the
reliability results is analyzed in detail below.

3 Case study

3.1 Probabilistic analysis of James Bay
Dykes

The James Bay hydroelectric project (Luo et al., 2012), located
in the northern region of Quebec, Canada, necessitated the
establishment of roughly 50 km of dykes over soft and sensitive
clay. The design proposal, often referenced in scholarly works,
is presented in Figure 3. This embankment features a height
of 12 m, with 3:1 side slopes and a 56-m-wide berm at mid-
height. Typically, the initial 4 m beneath the surface consists of
a clay crust. Beneath it lies a 9.5-m-thick marine clay stratum,
which is underlain by a layer of lacustrine clay. The thickness
of the lacustrine clay fluctuates based on the depth to the till.
With an average till depth of 21.5 m, the lacustrine clay is
estimated to be approximately 9.5 m thick. The dispersion in the
relevant data has been quantified by Uzielli et al. (2005). Table 1
provides a summary of the means and variances for all the
variables involved.

The limit equilibrium Morgenstern–Price method is applied
to the slope stability analysis. It is presumed that the slip
circles are tangential to the till layer, with the daylight falling
at a fixed point at the crest of the embankment (X1 = 4.9,
Y1 = 36.0), and the centers are assumed to have a common
X coordinate (X0 = 85.9) (El-Ramly et al., 2002). Under the
assumption of exponential autocovariance functions, the spatial
variabilities of soil parameters are modeled as one-dimensional
random fields. The slip surface within every stratum of soil

is divided into sections of length not exceeding δ = 30 m.
The length of the slip surface within the lacustrine clay is
approximately 80 m.Consequently, the 30-m sampling interval leads
to three distinct strength zones along the slip surface within this
particular soil type, as is evident in Figure 4. Figure 5 presents
the reliability index relative to the spatial variability for a seed
number of 38,000.

An index of reliability as low as 1.414 is observed when spatial
variability is not taken into account. When the sampling distance
is 30 m, the reliability index is 2.496, which is an increase of
76.5%. Therefore, the spatial variability obtained by considering
the parameters has a significant effect on the reliability index of
the dam, which changes the state of the dam from dangerous to
safe. When the sampling distance is reduced, the reliability index
gradually increases and finally stabilizes at around 5.38, which
is 3.8 times the result obtained when spatial variability is not
taken into account. Christian et al. (1994) illustrated in 1994 how
the uncertainty of different parameters affects the reliability of
embankments, and pointed out that reliability analysis is particularly
useful in determining consistent risk safety factor design values
for different types of failure. El-Ramly proposed a probabilistic
slope stability analysis method based on Monte Carlo simulation,
emphasizing the importance of considering uncertainty in slope
design and performance assessment (El-Ramly et al., 2002). Table 2
indicates that the calculated results are in good agreement with the
results found in the existing literature, thereby validating the efficacy
of this research.

3.2 Static reliability analysis of submarine
slope in typical canyon area in South China
sea

3.2.1 Initial slope model
Based on inferences from existing research results of

slope stability and the characteristics of submarine slopes, the
complicated submarine slope used in practice is simplified
to the computational model. The length of the suggested
slope is 2000 m, and the total height is 428 m. The model’s
dimensions are such that the distance from the base of the
slope to its right boundary is 500 m, and similarly, the distance
from the top of the slope to its left boundary also measures
500 m. According to actual geological data, the largest angle
of the submarine slope is 6.5°. The relationship between soil
undrained strength and depth is described as a linearly increasing
relationship. This phenomenon is common in many engineering
geological conditions (Wang et al., 2020). The undrained
strength exhibits a linear increase with depth, that is, su = 2 +
1.18z (see Figure 6.)

The soil parameters at different positions exhibit
autocorrelation, mutual correlation, and spatial variability. Phoon
and Kulhawy (1999) suggested that the COV of inherent variability
of the undrained shear strength (su) in clay is 0.1–0.4. Lumb (1966)
proposed that COV su of marine clay is 0.184. In the present
study, the impact of the strength parameter’s variability of the
top layer (su0) and the rate (k) of increase with depth on the
reliability of the submarine slope stability is analyzed quantitatively.
To explore the influence of high-variability parameters on the
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reliability results, the COVs are varied from 0.1 to 0.5. Figure 7
shows the probability distributions obtained with the standard
deviations truncated at ±3. Truncation is essential to prevent
the occurrence of negative values and to ensure that soil layers
do not overlap or eliminate. The outcomes of the convergence
assessment from the Monte Carlo simulation iterations are
illustrated in Figure 8; here, a run number of 100,000 is used to
obtain more precise results.

Figure 9 shows the influence of the COV of the parameters on
the reliability results in the random variable model (without spatial
variability). With an increase in the COV of su0, the reliability index
remains almost unchanged, as shown in Figure 9A. This suggests
that the slope’s reliability index β of the slope is insensitive to
the variability of su0. Figure 9B shows that the reliability index
β is significantly affected by the variability of k. As the COV
k ranges between 0.1 and 0.3, the reliability index is the most
sensitive, showing a steep downward trend. When COV k is
greater than 0.3, the attenuation of the reliability index is relatively
slow. Consequently, when the variation in the slope parameters
is large, the results of the reliability analysis tend to be stable,
which is beneficial to slope engineering analysis and evaluation.
Nevertheless, the mean strength of the top layer exerts a minor
influence on the reliability outcomes.

The scale of fluctuation of each property within the field
displays anisotropic characteristics; however, to keep the analysis
conditions tractable, realistic, and close to the practical conditions
of slope stability, this study assumes isotropy. Based on the
discussion in Section 2.2, 13 sampling distances are selected to
investigate the impact of spatial variability on the reliability results,
as shown in Figure 10. With a decrease in the sampling distance, the
reliability index increases slowly, then increases rapidly, and finally
reaches a peak value when the sampling distance is approximately
40 m which is close to the lower bound of the horizontal scale of
fluctuation. Similar to the scenario involving the random variable
model, when COV k is less than 0.3, the reliability index is sensitive
to the COV, and when COV k is greater than 0.3, the reliability
index is insensitive to the COV. Meanwhile, it is found that the
reliability index at its peak value is approximately nine times that
when no spatial variability is considered (COV k = 0.184). Even
if the sampling distance is only 1/4rd of the slope length, the
reliability index is magnified by nearly 1.9 times. It is further
explained that the consideration of the parameter spatial variability
has great influence on the reliability index. This is critical to the
safety design in slope engineering. However, the mean value of the
strength of the top layer has little effect on the reliability index,
and hence, this parameter can be disregarded for submarine slope
reliability analysis.

Most importantly, when accounting for the spatial variability
of the parameters, the reliability index is closely related to the
sampling distance, and the reliability index remains stable with
a decrease in the sampling distance. This can be reasonably
explained by the frequency distribution histogram of the safety
factor (see Figure 11). When accounting for the spatial variability
of the parameters, the average value of the safety factor is
not sensitive to the size of the sampling distance, and as
the sampling distance decreases, the maximum and minimum
values of the safety factor become increasingly closer to the

mean value. That is, the safety factor frequency histogram
becomes narrower gradually, which is also the main reason why
the reliability index rises as the sampling distance diminishes.
Although the sampling distance’s value in the actual project is
not too small, the maximum value of the reliability index of
the project can be determined by a small sampling distance,
thus providing an effective reference to the safety design of the
submarine slope.

In conclusion, the research results provide important reference
for the safe design of submarine slope engineering. By identifying
the parameters that have a significant impact on reliability and their
range of variability, engineers can conduct slope stability analysis
and design more targetedly, thereby enhancing the safety and cost-
effectiveness of the project.

3.2.2 Weak layer slope model
A weak layer is one of the key factors affecting the stability

of submarine slopes. This paper explains the importance of the
surface optimization method of sliding in the stability analysis of
submarine slopes with aweak layer. In addition, this article discusses
how the presence of a horizontal weak layer affects the reliability
of submarine slopes. In this paper, a weak layer of 1 m is set up
at a depth of 30 m, the undrained shear strength is set to 60%,
70%, and 80% of the values of the neighboring layers, and the
COVs of the parameters are in the range of 0.1–0.5. The position
of the sliding surface at 30 m from the top of the slope is shown in
Figure 12. When the slip surface is not optimized, the slip surface is
circular and passes through the weak layer; on the contrary, the slip
surface glides along the weak layer. According to the results of the
theoretical analysis illustrated in Figure 13, the result of the optimal
slip surface (Fs = 1.057) is close to the theoretical solution (Fs =
1.002). Therefore, when there is a weak layer, the slip surface should
be optimized.

The strength of the weak layer is not fixed, and the value will
impact the stability of the submarine slope. Figure 14 shows the
influence of the sampling distance on the reliability index under
different strengths of the weak layer taking into account the spatial
variability of the parameters. When the strength of the weak layer
is higher, the rise in the reliability index is not pronounced. The
reliability index reaches a stable value of 9.71 (suw = 0.7sun) at a
sampling distance of 30 m.This is a reduction of 53% comparedwith
the stable value of the reliability index in the initial slope model.
Therefore, the scale of fluctuation is approximately 30–50 m, which
aligns with the findings of the prior study. Hence, the influence of
COV suw on the reliability index is investigated by selecting five
conditions: sampling distances of 30, 40, 50, and 60 m and no spatial
variability.

Figure 15 demonstrates the correlation between the reliability
index and COV suw. The target reliability index is shown
as the dotted line, and the result of the random variable
model (with no spatial variability) is nearly less than the target
reliability index. The consideration of the spatial variability of
the parameters will greatly improve the safety of the submarine
slope, and the reliability index decreases with an increase in
COV suw. Consistent with the findings from the aforementioned
analysis, the reliability index is not sensitive to the COV when
the soil has high variability.
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4 Conclusion

The traditional deterministic analysis method of slope stability
with the safety factor as the evaluation index has some limitations.
Without the proper consideration of parameter uncertainty, the
safety factor will produce an erroneous sense of safety rather than
being a efficient indicator. Probabilistic analysis of slope stability
is a rational approach for integrating quantitative uncertainties
into the design phase. SLOPE/W is a practical software for slope
stability analysis; the procedures and principles are straightforward
and clear, necessitating only basic understanding of statistical
concepts and the principles of probability. The approach exhibits
flexibility in addressing real slope problems, encompassing scenarios
with varying loading conditions, complex stratigraphic conditions,
c-φ soils, as well as circular and noncircular slip surfaces.
Utilizing Monte Carlo simulations coupled with limit equilibrium
methodologies, this paper proposed a quantitative assessment
method of slope instability risk considering the spatial variability of
soil parameters. The main conclusions are as follows:

• Under the normal consolidation soil model which the strength
exhibits a linear increase with depth, the variability of su0 and
the average value of su0 have little effect on the reliability index.
It is suggested that the influence of the strength of the top
layer should be neglected when calculating the reliability of
submarine slopes.

• The variability of k has a substantial impact on the reliability
index; with an increase in COV k, the reliability index gradually
reduces. When COV k varies from 0.1 to 0.3, the reliability
index is sensitive and the curve of the reliability indexwithCOV
k is steep.WhenCOV k is greater than 0.3, the reliability index is
insensitive to COV k and the curve of the reliability index with
COV k becomes gentle gradually. This provides a theoretical
basis for the reliability analysis of slopes with high parameter
variability.

• The spatial variability of the important parameters is taken into
account according to the local average theory. When we ignore
the true parameters or cannot obtain the fluctuation’s scale,
the sensitivity analysis of the sampling distance is a convenient
method. By setting different sampling distances, we find that
with a decrease in the sampling distance, the reliability index
always reaches a more stable value in both the initial model and
weak layer model. Thus, a range of reliability index values is
provided for slope engineering, offering guidance in practical
applications.

Finally, it is believed that merging traditional deterministic
slope analysis with probabilistic analysis will elevate the
standards of slope engineering and enhance the precision of
the decision-making process. However, it should be highlighted
that simplified probabilistic analysis may lead to inaccuracies
and misinterpretations. For example, in the simplified analysis
that neglects the spatial variability of the soil properties and
assumes perfect autocorrelation, the possibility of unsatisfactory
performance can be greatly overestimated.
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