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Critical response of a
single-degree-of-freedom
system with bilinear hysteresis
and viscous damping under triple
impulse

Kotaro Kojima1* and Izuru Takewaki2

1Faculty of Design and Architecture, Kyoto Institute of Technology, Kyoto, Japan, 2Department of
Architecture, Kyoto Arts and Crafts University, Kyoto, Japan

A triple impulse is used as a mathematical model of forward-directivity inputs,
which are fault-normal components of near-fault earthquake ground motions.
In this paper, two types of the triple impulse input are employed. One is
the triple impulse with the same time interval. The critical triple impulse of
this sequence is defined as the triple impulse with the critical time intervals
maximizing the displacement response, and the critical time intervals are
necessary to be captured by changing the time intervals. The other is the
triple impulse, with second and third impulses acting at zero-restoring force
points. The elastic–plastic responses of single-degree-of-freedom (SDOF)
systems with bilinear hysteresis and viscous damping under the two types of
triple impulses are obtained by time-history response analysis and compared.
Furthermore, approximate expressions are derived for the responses of the
damped bilinear hysteretic SDOF system under the triple impulse (the latter
triple impulse stated above), with impulses acting at the zero-restoring force
timing. In response derivation, a quadratic function approximation of the
damping force–displacement relationship and an energy balance approach
are employed. The validity of the triple impulse as the model of the forward-
directivity input and the accuracy of approximate expressions to the triple
impulse (the latter triple impulse stated above) are checked by comparing them
with responses under the equivalent three wavelets of sinusoidal waves and the
Ricker wavelet.

KEYWORDS

critical earthquake response, triple impulse, forward-directivity input, single-degree-
of-freedom system, bilinear hysteresis, viscous damping

1 Introduction

Long-period and pulse-like earthquake ground motions with large amplitudes, called
near-fault pulse-like ground motions, were recorded near earthquake source faults. The
characteristics of these types of ground motions and their effect on damage to building
structures have been studied in the previous works (for example, Bertero et al., 1978;
Sasani and Bertero, 2000; Sakai et al., 2000; Alavi and Krawinkler, 2001; Alavi and
Krawinkler, 2004; Mavroeidis and Papageorgiou, 2003; Mavroeidis et al., 2004; Makris and
Black, 2004; Kalkan and Kunnath, 2006; Xu et al., 2007; Takewaki and Tsujimoto, 2011;

Frontiers in Built Environment 01 frontiersin.org

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/journals/built-environment#editorial-board
https://doi.org/10.3389/fbuil.2025.1539299
https://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2025.1539299&domain=pdf&date_stamp=2025-03-04
mailto:kojima61@kit.ac.jp
mailto:kojima61@kit.ac.jp
https://doi.org/10.3389/fbuil.2025.1539299
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fbuil.2025.1539299/full
https://www.frontiersin.org/articles/10.3389/fbuil.2025.1539299/full
https://www.frontiersin.org/articles/10.3389/fbuil.2025.1539299/full
https://www.frontiersin.org/articles/10.3389/fbuil.2025.1539299/full
https://www.frontiersin.org/articles/10.3389/fbuil.2025.1539299/full
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Kojima and Takewaki 10.3389/fbuil.2025.1539299

Minami and Hayashi, 2013; Khaloo et al., 2015; Okazawa et al.,
2018). Such near-fault pulse-like ground motions are broadly
classified into two types depending on their input directions (Sasani
and Bertero, 2000). One is the fling-step input with a fault-
parallel component of the near-fault pulse-like ground motion, and
the second is the forward-directivity input with a fault-normal
component. The main part of these inputs can be represented by
a few series of wavelets, and their mathematical models have been
proposed to evaluate seismic responses of building structures to
these inputs in many papers (Sasani and Bertero, 2000; Sakai et al.,
2000; Alavi and Krawinkler, 2001; Alavi and Krawinkler, 2004;
Mavroeidis and Papageorgiou, 2003; Makris and Black, 2004;
Xu et al., 2007; Takewaki and Tsujimoto, 2011; Minami and
Hayashi, 2013; Okazawa et al., 2018).The one-cycle sinusoidal wave
and three sinusoidal wavelets were employed as the mathematical
models of the near-fault ground motions (Sasani and Bertero, 2000;
Sakai et al., 2000; Makris and Black, 2004; Kalkan and Kunnath,
2006; Khaloo et al., 2015). Sakai et al. (2000) proposed a theory
for predicting the acceleration amplitude and the period of one-
cycle sinusoidal wave, which is regarded to be equivalent to actual
recorded ground motions. Alavi and Krawinkler (2001) and Alavi
and Krawinkler (2004) used the combination of square waves as
a ground acceleration input to evaluate the buildings’ responses
under the directivity pulse. Mavroeidis and Papageorgious (2003)
compared various wavelets, for example, the Gabor wavelet, Berlage
wavelet, andRickerwavelet, in themodeling of the near-fault ground
motions. Mavroeidis and Papageorgious (2003) also proposed a
simplemodel of the near-fault groundmotions, andMavroeidis et al.
(2004) evaluated the effects of its parameters on elastic and inelastic
responses of single-degree-of-freedom (SDOF) systems. Xu et al.
(2007) evaluated the performance of passive energy dissipation
systems under near-fault groundmotions using the Berlage wavelet.
Takewaki and Tsujimoto (2011) employed Xu’s model as the near-
fault ground motion and proposed its scaling method based on
deformation and input energy. The Ricker wavelet has also been
used as a simple model of the forward-directivity input (Minami
and Hayashi, 2013; Okazawa et al., 2018). Okazawa et al. (2018)
investigated the damage to super high-rise buildings under the
Ricker wavelet, representing pulse-like ground motions.

Kojima and Takewaki (2015a) and Kojima and Takewaki
(2015b) introduced the double and triple impulse inputs to model
ground accelerations of the fling-step and forward-directivity inputs.
These simple models enable the easy derivation of the critical
elastic–plastic response under the near-fault ground motions.
Actually, Kojima and Takewaki (2015a) and Kojima and Takewaki
(2015b) derived the critical double-impulse and triple-impulse
responses of undamped elastic–perfectly plastic SDOF systems in
a closed form using the energy balance approach in terms of free
vibration after each impulse. This innovative approach is based
on the input model transformation rather than the structural
model transformation, like an equivalent linearization (Takewaki
and Kojima, 2021). The double impulse has one time interval, and
the zero-restoring force timing characterized the critical timing of
the second impulse for the SDOF system, which is equal to half
of the resonant pulse period (Kojima and Takewaki, 2015a). It
was shown that, by extending this theory, the critical response to
the double impulse can be formulated for the SDOF system with
bilinear hysteresis (Kojima and Takewaki, 2016). The approximate

closed-form solutions of the critical double-impulse responses of the
elastic–plastic SDOF systemwith viscous dampingwere also derived
(Kojima et al., 2018; Akehashi et al., 2018a). In the derivation, both
the approximation of the damping force–displacement relationship
by a quadratic function and the assumption that the critical timing
of the second impulse is the zero-restoring force timing even in
the damping SDOF system played crucial roles in addition to an
energy balance law. Furthermore, Akehashi and Takewaki (2019),
Akehashi and Takewaki (2021), Akehashi and Takewaki (2022a),
and Akehashi and Takewaki (2022b) extended these theories to
elastic–plasticmulti-degree-of-freedom (MDOF) systems under the
critical double impulse. They proved that the critical timing of the
second impulse is the timing when the sum of inertial forces at
all floors becomes zero (Akehashi and Takewaki, 2019). They also
proposed a pseudo-double impulse input, which can be expressed
by external impulsive forces with a first-mode distribution, to
simulate rather accurately the elastic–plastic response under the
one-cycle sinusoidal wave (Akehashi and Takewaki, 2021) and
derived approximate expressions in the closed form for the
elastic–plastic responses of MDOF systems to the critical double
impulse (Akehashi and Takewaki, 2022a; Akehashi and Takewaki,
2022b). Fujii (2024a) and Fujii (2024b) applied the theory of the
pseudo-double impulse and pseudo-multiple impulse to analyze the
critical response of reinforced concrete structures.

Furthermore, Kojima and Takewaki (2015c) proposed the
multiple-impulse input to derive the critical steady-state responses
of an elastic–plastic system. Previous studies provided the critical
steady-state responses of undamped and damped bilinear hysteretic
SDOF systems to themultiple-impulse input (Kojima and Takewaki,
2017; Akehashi et al., 2018b). Tamura et al. (2019) derived
approximate expressions for the inelastic resonant responses of an
elastic–perfectly plastic SDOF system with a nonlinear damper
under the multiple-impulse input.

In contrast to the double impulse, it seems difficult to define
the critical triple impulse for the elastic–plastic system because of
the existence of two time intervals between the three consecutive
impulses. Kojima and Takewaki (2015b) defined the critical triple
impulse for an “undamped elastic–perfectly plastic system” as the
triple impulse, in which the second impulse acts at the zero-
restoring force timing, and the third impulse acts at the same
time interval, following the second impulse. In this critical triple
impulse, the two time intervals of the triple impulse have the
same value. Given the simulation of directivity pulses and the
capturing of the critical pulse period, this definition is reasonable
phenomenologically. On the other hand, Kojima and Takewaki
(2015b) proposed another triple impulse, with the second and third
impulses acting at the zero-restoring force points. The derivation
of the elastic–plastic responses to this triple impulse seems simple.
Although this triple impulse has different time intervals among
three impulses for the case in which the system yields after the first
or second impulse, the elastic–plastic response of the undamped
system can be derived by the energy balance law and obtained
as a simple closed-form expression. Furthermore, this response is
larger than that under the critical triple impulse (the former triple
impulse) with the same time interval. Kojima and Hikita (2020)
also used the energy balance approach to derive the approximate
expressions of the critical responses of the SDOF “elastic–perfectly
plastic system” with viscous damping to the triple impulse (the
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latter triple impulse), as well as a similar approximation of the
damping force–displacement relationship in the previous works
(Kojima et al., 2018; Akehashi et al., 2018a). Kojima and Takewaki
(2024) named the triple impulse, in which the timings of the second
and third impulses are the zero-restoring force timings (the latter
triple impulse), Input Sequence 1 (IS1), and the triple impulse with
the same time interval (the former triple impulse) Input Sequence
2 (IS2) for “an undamped bilinear hysteretic system.” The triple
impulse (IS2) has the same time interval, and the critical triple
impulse (IS2) was defined as the triple impulse with the critical
time interval that maximizes the maximum displacement response
for the varied time interval with the same value. Furthermore,
they derived the elastic–plastic responses of the undamped SDOF
systems with bilinear hysteresis under the triple impulse (IS1) and
compared that with the critical elastic–plastic responses to the triple
impulse (IS2).

In this paper, a triple impulse input is introduced as one of
the mathematical models of forward-directivity inputs of near-
fault earthquake ground motions (Kojima and Takewaki, 2015a;
Kojima and Takewaki, 2015b; Kojima and Hikita, 2020; Kojima
and Takewaki, 2024), and the critical responses are evaluated for
the SDOF systems with bilinear hysteresis and viscous damping
under the triple impulse. Two sequences of the triple impulse
input are employed, as shown in the previous works (Kojima and
Takewaki, 2024): Input Sequence 1 (IS1), in which the timings
of the second and third impulses are the zero-restoring force
timings, and Input Sequence 2 (IS2) with the same time interval.
These two types of triple impulse and the SDOF system used
in this paper are defined in Sections 2, 3. Section 4 shows the
elastic–plastic responses under the triple impulse with IS1 and the
critical elastic–plastic responses under the triple impulse with IS2
calculated by the time-history response analysis and compared for
the SDOF system with bilinear hysteresis and viscous damping. It
is then showed that the response of the damped SDOF bilinear
system under the triple impulse (IS1) is the same or slightly larger
than the critical response under the triple impulse with IS2. It
should be remarked that, although Kojima and Takewaki (2015b)
defined the critical triple impulse as the triple impulse with the
same time interval, in which the second impulse acts at the zero-
restoring force timing, the critical triple impulse (IS2) is defined
in this paper as the triple impulse with the critical time interval
that maximizes the maximum displacement response for the varied
time interval with the same value. Section 5 shows the approximate
expressions derived for the elastic–plastic responses of the SDOF
system with bilinear hysteresis and viscous damping under the
triple impulse in IS1. In the derivation, the quadratic function
approximation of the damping force–displacement relationship and
the energy balance approach are employed. Section 6 shows the
validity of the triple impulse as themathematical forward-directivity
input model investigated by comparing the critical triple-impulse
responses in IS1 and IS2 with the responses under the equivalent
three wavelets of sinusoidal waves (TWSW) and the Ricker wavelet.
Then, it is confirmed that the elastic–plastic responses under
the equivalent TWSW and the Ricker wavelet can be estimated
by the approximate expression of the triple-impulse responses
in IS1 obtained in Section 5. The conclusions are summarized
in Section 7.

2 Triple-impulse inputs for modeling
forward-directivity input

The triple impulse was proposed recently to model the
forward-directivity input of near-fault groundmotions (Kojima and
Takewaki, 2015a; Kojima and Takewaki, 2015b; Kojima and Hikita,
2020; Kojima and Takewaki, 2024). Figure 1 shows the ground
acceleration, ground velocity, ground displacement, and the Fourier
amplitude of ground acceleration of the triple impulse (IS2); TWSW;
and the Ricker wavelet, which are commonly used as forward-
directivity pulse models (Sasani and Bertero, 2000; Kalkan and
Kunnath, 2006; Minami and Hayashi, 2013; Khaloo et al., 2015;
Okazawa et al., 2018). It was reported that the most remarkable
property of the forward-directivity input of near-fault ground
motions is the existence of the impulsive wave consisting of a
few sinusoidal components, and such input could cause a large
deformation at certain stories of buildings, especially at lower stories
depending on the relationship between their natural frequencies
and the input frequency (Kalkan and Kunnath, 2006; Minami and
Hayashi, 2013; Khaloo et al., 2015; Okazawa et al., 2018). Since it
is well-known in the past works that the most influential part of
the forward-directivity input of near-fault ground motions can be
modeled by TWSWor the Ricker wavelet, the triple impulse that can
represent these two models is used in this paper. The amplitudes of
ground accelerations of the TWSWand the Ricker wavelet are scaled
so that their maximum Fourier amplitudes are equal, as shown in
Figure 1D. As shown in Figures 1A–C, üg

TI(t), u̇TIg (t),ug
TI(t) denote

the ground acceleration, velocity, and displacement of the triple
impulse (IS2), respectively; ügTWSW(t), u̇TWSW

g (t),ugTWSW(t) indicate
those of the TWSW; and ̈ugRW(t), u̇RWg (t),ugRW(t) denote those of the
Ricker wavelet. t denotes the time, and a dot on the variable means
the time derivative. The starting time of the ground accelerations
̈ugTSWS(t) and ̈ugRW(t) shown in Figures 1A–C moves forward in

order to match the timing of their peak accelerations with the
second-impulse timing of the triple impulse (IS2). The ground
acceleration ̈ugTI(t), ügTWSW(t) of the triple impulse and TWSW is
explained in this section, and the ground acceleration ̈ugRW(t) of the
Ricker wavelet is explained in Section 6.

The ground acceleration of the triple impulse ̈ugTI(t) and TWSW
̈ugTWSW(t), which are simple forward-directivity input models as

shown in Figure 1A, can be expressed as follows:

üg
TI(t) = 0.5Vδ(t) −Vδ(t− t0) + 0.5Vδ(t− 2t0), (1)

üg
TWSW(t) =

{
{
{

0.5Ap sin(ωpt) (0 ≤ t ≤ 0.5Tp,Tp ≤ t ≤ 1.5Tp)

Ap sin(ωpt) (0.5Tp ≤ t ≤ Tp),
,

(2)

where δ(t) is the Dirac delta function; 0.5V and V are the given
initial velocities by the first and third impulses and the second
impulse; t0 is the time interval among three impulses; Ap and ωp
(=2π/Tp) are the acceleration amplitude and the circular frequency
of TWSW, respectively; and Tp = 2t0. As shown in Figure 1B, 0.5 V
is the peak ground velocity (PGV) of the triple impulse and V is
called the input velocity amplitude of the triple impulse in this
paper. The following equation expresses the relationship between
the input velocity amplitude V of the triple impulse and the velocity
amplitude Vp (= Ap/ωp) of the TWSW and was obtained with the
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FIGURE 1
Triple impulse, three wavelets of sinusoidal waves (TWSW), and Ricker wavelet as simple forward-directivity input models: (A) ground acceleration, (B)
ground velocity, (C) ground displacement, and (D) Fourier amplitude of ground acceleration.

aid of the equivalence of the peak Fourier amplitude of these two
ground acceleration values (Kojima and Takewaki, 2015b; Kojima
and Hikita, 2020).

Vp/V = (Ap/ωp)/V = 0.62235722... (3)

Equation 3 is used in Section 6 to adjust the input levels of these
two inputs.

The time intervals between the first and second impulses and
between the second and third impulses of the triple impulse shown
in Equation 1 are the same; the triple impulse with the same two
time intervals was called Input Sequence 2 (IS2) (Kojima and
Takewaki, 2024). Although the two time intervals need to be the
same for capturing the critical frequency of the forward-directivity
input, the triple impulse (IS1), in which the second and third
impulses act at zero-restoring force timing, is employed to drive an
approximate solution of the critical triple-impulse responses using
similar procedures in the previous works (Kojima and Takewaki,
2015b; Kojima and Hikita, 2020; Kojima and Takewaki, 2024).
Therefore, the triple impulse, which has different time intervals, is
defined as Equation 4:

̈ugIS1(t) = 0.5Vδ(t− t1) −Vδ(t− t2) + 0.5Vδ(t− t3), (4)

where t1 (= 0), t2, and t3 are the acting timings of the first, second,
and third impulses, respectively. The first and second time intervals
ΔT1 (= t2 − t1) and ΔT2 (= t3 − t2) are defined as the time intervals

between the first and second impulses and between the second and
third impulses, respectively.

Since the characteristics of the forward-directivity input of
near-fault ground motions are quite uncertain and the analysis of
their effects on the structural response is also versatile and time-
consuming, only the critical response producing the maximum
effect is taken into account in this paper from the viewpoint of the
reliability of the analysis.

3 SDOF systems with bilinear
hysteresis and viscous damping

A single-degree-of-freedom (SDOF) system with bilinear
hysteresis and linear viscous damping of mass m, initial stiffness
k, and damping coefficient c is considered, as shown in Figure 2.
The relative displacement response, restoring force, and damping
force are expressed by u, fR, and fD, respectively. dy, fy (= kdy), and
α indicate the yield deformation (limit deformation of the elastic
range), the yield force corresponding to the yield deformation, and
the ratio of the post-yield stiffness (second stiffness) to the elastic
stiffness of the bilinear hysteresis, respectively. Let ω1( = √k/m),
T1 (= 2π/ω1), and h ( = c/(2√mk)) denote the natural circular
frequency, natural period, and damping ratio, respectively.
Vy (= ω1dy) is the initial velocity of the undamped elastic SDOF
system to the single impulse, satisfying equation 0.5mVy

2 =
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FIGURE 2
Bilinear hysteretic restoring-force characteristic.

0.5kdy2, where 0.5mVy
2 represents the kinetic energy by the single

impulse and 0.5kdy2 represents the elastic strain energy at the yield
deformation. The parameter Vy is employed to normalize the input
velocity amplitude V.

4 Comparison of triple-impulse
responses in IS1 and IS2 by
time-history response analysis

In this section, the maximum elastic–plastic responses of the
damped bilinear hysteretic SDOF system under the triple impulse
in IS1 are compared with the critical triple impulse responses
in IS2. The exact solutions of the elastic–plastic responses of the
damped SDOF system to the triple impulse are difficult to derive.
Therefore, the triple-impulse responses are calculated by the time-
history response analysis (THRA) in this section. The critical triple
impulse in IS2 is defined as the triple impulse with the critical time
interval t0c, whichmaximizes themaximumdisplacement response,
and the critical time interval t0c is captured by changing the time
interval t0 from 0.1T1 to 1.0T1 in Equation 1 for the specific input
velocity amplitude V/Vy.

Figures 3–5 show the comparison of themaximumdisplacement
responses umax/dy normalized by the yield deformation under the
triple impulse in IS1 and that under the critical triple impulse in
IS2 for α = 0.01, 0.1, and 0.5 and h = 0, 0.01, 0.02, 0.05, 0.1,
and 0.2 with respect to the normalized input velocity amplitude
V/Vy. As can be seen from Figures 3, 5, when α = 0.01 and
0.5 and h = 0, 0.01, 0.02, and 0.05, the maximum triple-impulse
responses in IS1 are larger than the critical responses in IS2 in the
larger input level. On the other hand, as shown in Figures 3–5, in
cases except those mentioned above, the maximum triple-impulse
responses in IS1 can provide the critical response in IS2.The reasons

for this are summarized below. For α = 0.01, in both the triple-
impulse responses in IS1 and the critical responses under the triple
impulse with IS2, the maximum response just after the second
impulse, corresponding to umax2 shown in Section 5, determines
the maximum displacement. In IS2 for h = 0, the third impulse
acts in the loading process after the second impulse and makes
the maximum response just after the second impulse smaller, as
stated in Kojima and Takewaki (2015b) and Kojima and Takewaki
(2024). A similar situation occurs for h = 0.01, 0.02, and 0.05 and
the larger input level. In this situation, the critical timing of the
second impulse in IS2 is longer than the zero-restoring force timing,
and the maximum displacement in IS1 becomes slightly larger than
that in the critical IS2. When α = 0.01 and h = 0.1 and 0.2, the
third impulse acts in the unloading process after the maximum
displacement just after the second impulse, and the critical timing of
the second impulse is determined as the zero-restoring force timing
in both IS1 and IS2. In this case, the maximum responses in IS1
and the critical IS2 are the same. When α = 0.1, both the maximum
responses in IS1 and the critical IS2 are determined by themaximum
displacement just after the second impulse, and the third impulse
acts in the unloading process after the maximum displacement just
after the second impulse, regardless of the damping ratio.Therefore,
the critical timing of the second impulse is determined as the zero-
restoring force timing in both IS1 and IS2, and the response in IS1
is equal to that in the critical IS2. When α = 0.5, the maximum
response just after the third impulse, corresponding to umax3 shown
in Section 5, becomes the maximum displacement to the triple
impulse in all input levels for h=0, as shown inKojima andTakewaki
(2024), and in the larger input level for h = 0.01, 0.02, 0.05. The
critical timing in IS2 is determined to maximize the maximum
displacement after the third impulse and is longer than the zero-
restoring force timing.Therefore, themaximumdisplacement in IS1
becomes somewhat larger than that in IS2. On the other hand, when
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α = 0.5 and h = 0.1 and 0.2, the maximum displacement in both IS1
and the critical IS2 is determined by the maximum displacement
just after the second impulse due to the large damping ratio. The
critical timing of the second impulse in both input sequences is
the zero-restoring force timing, and the maximum displacements
are the same.

Figure 6 shows the maximum displacement response umax
normalized by the yield deformation dy under the triple impulse in
IS2 with respect to the time interval t0 shown in Equation 1 for a
specific input velocity amplitude V/Vy for the SDOF system with
α = 0.1 and 0.5 and h = 0.02 and 0.1. It can be seen that, as the
input velocity amplitude becomes larger, the time interval attaining
the maximum displacement response moves to a longer range
depending on the post-yield stiffness ratio and the damping quantity.

5 Approximate triple-impulse
response in Input Sequence 1 of the
SDOF system with bilinear hysteresis
and viscous damping

5.1 Classification of elastic–plastic
response under triple impulse inputs in IS1

In the previous papers (Kojima and Takewaki, 2015b; Kojima
and Takewaki, 2024; Kojima and Hikita, 2020), it was assumed
that the elastic–plastic response under the triple impulse in IS1,
whose second and third impulses act at zero-restoring force timings,
provides the upper bound of that under the critical triple impulse
(IS2) with the same time intervals, and the exact or approximate
expressions of the elastic–plastic responses under the triple impulse
were derived. In Section 5, approximate expressions are obtained
for the triple-impulse responses in IS1 of the SDOF systems with
bilinear hysteresis and viscous damping by using an approximation
of the damping force–displacement relationship and an energy
balance law based on the previous works (Kojima et al., 2018;
Akehashi et al., 2018a; Kojima and Hikita, 2020). In Section 4,
the response of the damped SDOF bilinear system under the
triple impulse with IS1 is the same or slightly larger than the
critical response under the triple impulse in IS2. Therefore, the
approximate expression of the triple-impulse response in IS1 is
useful for evaluating the upper bound of the critical elastic–plastic
response under the triple impulse in IS2 (two time intervals are the
same). Since it seems difficult to obtain the critical timing for IS2
in a simple manner, the critical triple-impulse response in IS2 is
difficult to derive in a similar manner, as shown for IS1. It is hoped
to obtain an approximate expression for the free vibration of the
damped elastic–plastic system and approximately derive the critical
triple impulse responses in IS2.

The triple-impulse responses in IS1 are summarized in Figure 7.
The triple-impulse response in IS1 of an SDOF system with
viscous damping and bilinear hysteresis can be classified into seven
cases, as stated below and summarized in Table 1, depending on
whether the system yields after each impulse, as shown in the
previous work (Kojima and Takewaki, 2024).

CASE 1: the elastic response even after the third impulse.
CASE 2: the system yields after the third impulse.

CASE 3–1: the system yields after the second impulse, and
the third impulse acts in the unloading process
(initial stiffness range).

CASE 3–2: the system yields after the second impulse, and
the third impulse acts in the post-yield stiffness
range (second stiffness range).

CASE 4–1: the system yields after the first impulse, and the
second and third impulses act in the unloading
process (initial stiffness range).

CASE 4–2: the system yields after the first impulse, the second
impulse acts in the initial stiffness range, and the
third impulse acts in the second stiffness range.

CASE 4–3: the system yields after the first impulse, and both the
second and third impulses act in the second
stiffness range.

Figure 7 shows the schematic diagram of the restoring force
fR–displacement u relationship and the approximate damping force
fD–displacement u relationship for each response case. It should be
noted that each case is determined by the second stiffness ratio α
and the input level. It is shown in Section 5.3 which cases occur for
several α as the input level increases. Let umax1, umax2, and umax3
denote the maximum displacement (absolute values) just after the
first, second, and third impulses, respectively. Similarly, the plastic
deformation just after each impulse is denoted by up1, up2, and up3.

5.2 Derivation of the approximate
expression of the triple-impulse response
in IS1

Approximate expressions are derived in this section for
the triple-impulse responses in IS1 of the SDOF systems with
bilinear hysteresis and viscous damping. There are two procedures
for deriving the maximum displacement response and plastic
deformation after each impulse, depending on the state of the
impulse-acting point. For the response after the first, second, or
third impulses acting in the initial stiffness range, the damping
force–displacement relationship is approximated, and thework done
by the damping force between the impulse acting point and the
maximum displacement point is formulated. Then, the maximum
displacement response and plastic deformation just after each
impulse are obtained by using the energy balance law (Kojima et al.,
2018; Akehashi et al., 2018a; Kojima and Hikita, 2020). In this
procedure, the velocity at the impulse acting point (the zero-
restoring force timing) after the elastic–plastic response can be
obtained by the free vibration response after themaximum response
and that after the elastic response can be formulated by the exact
linear free vibration solution after the previous impulses.

On the other hand, the response after the second or third
impulse acting in the post-yield stiffness range is obtained by
the following procedure proposed by Akehashi et al. (2018a).
The damping force–displacement relationship in the unloading
process after the maximum displacement is approximated by a
quadratic function, and then, the work done by the damping
force between the maximum displacement after the previous
impulse and the re-yielding point is formulated. The approximate
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FIGURE 3
Comparison of the normalized maximum displacement response under triple impulse in IS1 with that under critical triple impulse in IS2 (α = 0.01):
(A) h = 0, (B) h = 0.01, (C) h = 0.02, (D) h = 0.05, (E) h = 0.1, and (F) h = 0.2.
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FIGURE 4
Comparison of the normalized maximum displacement response under triple impulse in IS1 with that under critical triple impulse in IS2 (α = 0.1):
(A) h = 0, (B) h = 0.01, (C) h = 0.02, (D) h = 0.05, (E) h = 0.1, and (F) h = 0.2.
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FIGURE 5
Comparison of the normalized maximum displacement response under triple impulse in IS1 with that under critical triple impulse in IS2 (α = 0.5):
(A) h = 0, (B) h = 0.01, (C) h = 0.02, (D) h = 0.05, (E) h = 0.1, and (F) h = 0.2.

expression of the velocity at the zero-restoring force timing in
the post-yield stiffness range can be obtained by free vibration,
which can be obtained by using the initial condition at the re-
yielding point. The maximum displacement can then be formulated

approximately by using the free vibration derived by using the
initial condition at the impulse-acting point (the zero-restoring
force timing).

The diagrams of the two procedures are shown in Figure 8.
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FIGURE 6
Normalized maximum displacement response umax/dy under triple impulse in IS2 with respect to time interval t0 for specific input velocity V/Vy: (A) α =
0.1, h = 0.02, (B) α = 0.1, h = 0.1, (C) α = 0.5, h = 0.02, and (D) α = 0.5, h = 0.1.

The approximate expressions of the maximum displacement
responses under the triple impulse in IS1 are summarized below. In
the following equations, ϕ = arctan(h/√1− h2), h2 = (1/√α)h, and

ϕ2 = arctan(h2/√1− h22).

5.2.1 CASE 1
The triple-impulse response in CASE 1, as shown in Figure 7A,

remains in the elastic range even after the third impulse. Kojima and
Hikita (2020) obtained the approximate expressions of the triple-
impulse responses in CASE 1, which are summarized as follows:

umax 1

dy
= −4h+

√16h2 + 9
6

( V
Vy
), (5)

umax 2

dy
= −4h+

√16h2 + 9
6

{2+ exp( −πh
√1− h2
)}( V

Vy
), (6)

umax 3

dy
= −4h+

√16h2 + 9
6

[{1+ 2 exp( πh
√1− h2

)}exp( −2πh
√1− h2

)+ 1]( V
Vy
). (7)

In the derivation of Equations 6, 7, the velocities vc1 and
vc2 at the zero-restoring force timing are used after the first
and second impulses. For an elastic linear SDOF system, both
time intervals between the neighboring two of the three impulses
are 0.5T′1, where T′1 = T1/√1− h2, and the zero-restoring force
timing after the first and second impulses are t = 0.5T′1 and t =
T′1, respectively. Therefore, the velocities vc1 and vc2 of the elastic
responses after the first and second impulses can be derived from
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FIGURE 7
(Continued).
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FIGURE 7
(Continued). Schematic diagram of restoring force–displacement relationship and approximate damping force–displacement relationship of
triple-impulse responses in IS1: (A) CASE 1, (B) CASE 2, (C) CASE 3–1, (D) CASE 3–2, (E) CASE 4–1, (F) CASE 4–2, and (G) CASE 4–3 (●: first impulse
timing, ▲: second impulse timing, and ■: third impulse timing) .
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TABLE 1 Classification of the elastic–plastic response under triple impulse in IS1.

Response case Yielding stage Impulse-acting points
(zero-restoring force points)

CASE 1 Elastic response even after the third impulse Both impulses act in the initial stiffness range

CASE 2 Yielding only after the third impulse Both impulses act in the initial stiffness range

CASE 3–1
Yielding after the second impulse

Third impulse acts in the initial stiffness range

CASE 3–2 Third impulse acts in the second stiffness range

CASE 4–1

Yielding even after the first impulse

Second and third impulses act in the initial stiffness
range

CASE 4–2 Second impulse acts in the initial stiffness range, and
the third impulse acts in the second stiffness range

CASE 4–3 Second and third impulses act in the second stiffness
range

FIGURE 8
Schematic diagram of two deriving procedures for triple impulse (IS1). (A) Derivation of maximum displacement after second impulse acting at
zero-restoring force point in the elastic stiffness range in CASE 4–1. (B) Derivation of maximum displacement after third impulse at the zero-restoring
force point in the post-yield stiffness range in CASE 4–3 (●: first impulse timing, ▲: second impulse timing and ■: third impulse timing).

the free vibrations and are expressed as follows (Kojima and
Hikita, 2020):

vc1 = 0.5V exp(−πh/√1− h2), (8)

vc2 = 0.5V{1+ 2 exp(πh/√1− h2)}exp(−2πh/√1− h2). (9)

The velocities vc1 and vc2 obtained in Equations 8, 9 will
be used for later expressions.
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The exact solutions of the triple-impulse responses in IS1 of
the elastic SDOF system with viscous damping can be obtained
from the free vibration responses. The time intervals of the triple
impulse (IS1) are 0.5T′1 for the damped elastic system.Themaximum
elastic responses under the triple impulse can be expressed by
Equations 10–12:

umax 1

dy
= 1
2
exp{− h
√1− h2
(π
2
−ϕ)}( V

Vy
), (10)

umax 2
dy
= 1
2
{1+ 2 exp( πh

√1− h2
)}exp{− h

√1− h2
( 3
2
π−ϕ)}( V

Vy
),

(11)
umax 3

dy
= 1
2
{1+ 2 exp( πh

√1− h2
)+ exp( 2πh

√1− h2
)}

×exp{− h
√1− h2
(5
2
π−ϕ)}( V

Vy
). (12)

5.2.2 CASE 2
In CASE 2, a plastic deformation appears only after the third

impulse. Figure 7B shows the schematic diagram of the triple-
impulse response in CASE 2. The boundary input level V/Vy
between CASEs 1 and 2 can be obtained by Equation 7 and umax3
= dy and is expressed by Equation 13 (Kojima and Hikita, 2020):

V
Vy
= ( 2

3
)(4h+√16h2 + 9)[{1+ 2 exp( πh

√1− h2
)}exp( −2πh

√1− h2
)+ 1]

−1
. (13)

However, if the damping ratio h is larger than 0.151409, it is
noted that the maximum displacement response umax2 just after the
second impulse becomes larger than the maximum displacement
response umax3 after the third impulse.

In CASE 2, umax1 and umax2 are in the elastic range and are
calculated using Equations 5, 6. The plastic deformation up3 and the
maximum displacement umax3 are obtained as follows:

up3
dy
= 1
α

[[[[[

[

−{1+ 4
3
h(

vc2
Vy
+ 0.5 V

Vy
)}

+√{(1− α) + 4
3
h(

vc2
Vy
+ 0.5 V

Vy
)}

2

+ α{(1− α) +(
vc2
Vy
+ 0.5 V

Vy
)
2

}

]]]]]

]

,

(14)

umax 3

dy
= 1+

up3
dy

= 1
α

[[[[[

[

−{(1− α) + 4
3
h(

vc2
Vy
+ 0.5 V

Vy
)}

+√{(1− α) + 4
3
h(

vc2
Vy
+ 0.5 V

Vy
)}

2
+ α{(1− α) +(

vc2
Vy
+ 0.5 V

Vy
)
2
}

]]]]]

]

.

(15)

where vc2/Vy in Equations 14, 15 can be obtained by Equation 9.

5.2.3 CASE 3–1
In CASEs 3–1 and 3–2, the displacement response is beyond the

yield deformation after the second impulse. CASE 3–1, as shown
in Figures 7C, is the case where the third impulse acts in the
unloading range (initial stiffness range), and CASE 3–2, as shown in
Figures 7D, is the case where the third impulse acts in the second
stiffness range. The boundary input level V/Vy between CASEs

2 and 3–1 can be obtained by Equation 6 and umax2 = dy and is
expressed by Equation 16 (Kojima and Hikita, 2020):

V
Vy
= (2

3
)(4h+√16h2 + 9){exp( −πh

√1− h2
)+ 2}

−1
. (16)

In CASEs 3–1 and 3–2, umax1 is in the elastic range and is
calculated using Equation 5. The plastic deformations up2 and up3
and the maximum displacements umax2 and umax3 in CASE 3–1 are
summarized as Equations 17–20:

up2
dy
= 1
α
[−{1+ 4

3
h(

vc1
Vy
+ V
Vy
)}

+ √{(1− α) + 4
3
h(

vc1
Vy
+ V
Vy
)}

2
+ α{(1− α) +(

vc1
Vy
+ V
Vy
)
2
}]

]
,

(17)

umax 2

dy
= 1+

up2
dy

= 1
α

[[[[[

[

−{(1− α) + 4
3
h(

vc1
Vy
+ V
Vy
)}

+√{(1− α) + 4
3
h(

vc1
Vy
+ V
Vy
)}

2
+ α{(1− α) +(

vc1
Vy
+ V
Vy
)
2
}

]]]]]

]

,

(18)

up3
dy
= 1
α

[[[[[[[[

[

−{(1− α
up2
dy
)+ 4

3
h(

vc2
Vy
+ 0.5 V

Vy
)}

+

√√√√

√

{(1− α
up2
dy
)+ 4

3
h(

vc2
Vy
+ 0.5 V

Vy
)}

2

+α{(
vc2
Vy
+ 0.5 V

Vy
)
2

−(1− α
up2
dy
)
2

− 8
3
h(

vc2
Vy
+ 0.5 V

Vy
)(1− α

up2
dy
)}

]]]]]]]]

]

,

(19)

umax 3

dy
= |−1+

up2
dy
−
up3
dy
|, (20)

where vc1/Vy in Equations 17, 18 can be obtained by Equation 8
and vc2/Vy in Equation 19, which is the velocity at the
zero-restoring force timing in the free vibration after the
maximum displacement point umax2, can be calculated using
Equation 21 (Akehashi et al., 2018a):

vc2
Vy
= (1+ α

up2
dy
)exp{− h

√1− h2
(π
2
+ϕ)}. (21)

5.2.4 CASE 3–2
The schematic diagram of CASE 3–2 is shown in Figure 7D.

When fy + αkup2 > 2 fy, the third impulse acts in the post-yield
stiffness range.Therefore, the boundary betweenCASEs 3–1 and 3–2
can be obtained from Equation 22:

fy + αkup2 = 2 fy. (22)

In CASE 3–2, umax1, up2, and umax2 are calculated using
Equation 5 in CASE 1 and Equations 17, 18 in CASE 3–1,
respectively. The maximum displacement umax3 in CASE 3–2 is
summarized as Equation 23:

umax 3

dy
= ||

|

− 1
√α

vc2 + 0.5V
Vy

exp
{{
{{
{

−
h2

√1− h22
(π
2
−ϕ2)
}}
}}
}

+( 1
α
− 1)||

|

,

(23)
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where h2 = (1/√α)h and ϕ2 = arctan(h2/√1− h22) are mentioned
in Section 5.2. vc2 denotes the absolute value of the velocity at
the zero-restoring force timing (point F in Figure 7D) and is
expressed by

vc2
Vy
= √(α− h2){(

a1
dy
)
2
+(

b1
dy
)
2
}exp(

h2

√1− h22
θ1), (24)

where

θ1 = arctan
a1
b1
, (25)

a1
dy
=
umax 2

dy
−(1+ 1

α
), (26)

b1
dy
= − 1
√α− h2

vE
Vy
+

h2

√1− h22

a1
dy
, (27)

vE
Vy
= −8

3
h+√(8

3
h)

2
+ 4α

up2
dy
, (28)

where vE denotes the absolute value of the velocity at point E shown
in Figure 7D (Equations 24–28).

5.2.5 CASE 4–1
In CASEs 4–1, 4–2, and 4–3, the elastic–plastic response appears

even after the first impulse. CASE 4–1, as shown in Figures 7E, is the
case where both the second and third impulses act in the unloading
range, and CASE 4–2, as shown in Figures 7F, is the case where
the third impulse only acts in the post-yield stiffness range. The
boundary input level V/Vy between CASEs 3–1 and 4–1 or CASEs
3–2 and 4–2 can be obtained by Equation 5 and umax1 = dy and is
expressed by Equation 29 (Kojima and Hikita, 2020):

V
Vy
= (2

3
)(4h+√16h2 + 9). (29)

Depending on the values of the post-yield stiffness ratio α and
the damping ratio h, the order of the cases differs as V/Vy increases.

The plastic deformations up1, up2, and up3 and the maximum
displacements umax1, umax2, and umax3 in CASE 4–1 can be
summarized as Equations 30–35:

up1
dy
= 1
α
[−{1+ 4

3
h(0.5 V

Vy
)}

+√{1+ 4
3
h(0.5 V

Vy
)}

2
+ α{(0.5 V

Vy
)
2
− 1− 8

3
h(0.5 V

Vy
)}]

]
, (30)

umax 1

dy
= 1+

up1
dy
, (31)

up2
dy
= 1
α

[[[[[[[[[

[

−{(1− α
up1
dy
)+ 4

3
h(

vc1
Vy
+ V
Vy
)}

+

√√√√

√

{(1− α
up1
dy
)+ 4

3
h(

vc1
Vy
+ V
Vy
)}

2

+α{(
vc1
Vy
+ V
Vy
)
2
−(1− α

up1
dy
)
2
− 8
3
h(

vc1
Vy
+ V
Vy
)(1− α

up1
dy
)}

]]]]]]]]]

]

,

(32)
umax 2

dy
= 1−

up1
dy
+
up2
dy
, (33)

up3
dy
= 1
α

[[[[[[[[[[[[[[[[

[

−{(1+ α
up1
dy
− α

up2
dy
)+ 4

3
h(

vc2
Vy
+ 0.5 V

Vy
)}

+

√√√√√√√√√√

√

{(1+ α
up1
dy
− α

up2
dy
)+ 4

3
h(

vc2
Vy
+ 0.5 V

Vy
)}

2

+α

{{{{{
{{{{{
{

(
vc2
Vy
+ 0.5 V

Vy
)
2
−(1+ α

up1
dy
− α

up2
dy
)
2

−8
3
h(

vc2
Vy
+ 0.5 V

Vy
)(1+ α

up1
dy
− α

up2
dy
)

}}}}}
}}}}}
}

]]]]]]]]]]]]]]]]

]

,

(34)
umax 3

dy
= |−1−

up1
dy
+
up2
dy
−
up3
dy
|, (35)

where vc1/Vy and vc2/Vy in Equations 32, 34, which are the velocities
at the zero-restoring force timing in the free vibration after the
maximum displacement points umax1 and umax2, can be calculated
using Equations 36, 37 (Akehashi et al., 2018a):

vc1
Vy
= (1+ α

up1
dy
)exp{− h

√1− h2
(π
2
+ϕ)}, (36)

vc2
Vy
= (1− α

up1
dy
+ α

up2
dy
)exp{− h

√1− h2
(π
2
+ϕ)}. (37)

5.2.6 CASE 4–2
The schematic diagram of the triple-impulse response in

CASE 4–2 is shown in Figure 7F. When (1− α)kdy + αkumax 2 >
2 fy, the third impulse acts in the second stiffness range.
Therefore, the boundary between CASEs 4–1 and 4-2 can be
obtained from Equation 38:

(1− α)kdy + αkumax 2 = 2 fy. (38)

In CASE 4–2, up1, umax1, up2, and umax2 are calculated
using Equations 30–33 in CASE 4–1, respectively. The maximum
displacement umax3 after the third impulse in CASE 4–2 can be
derived by using the same procedure shown in Akehashi et al.
(2018a) and is summarized as follows:

umax 3

dy
= ||

|

− 1
√α

vc2 + 0.5V
Vy

exp
{{
{{
{

−
h2

√1− h22
(π
2
−ϕ2)
}}
}}
}

+( 1
α
− 1)||

|

,

(39)

where vc2 denotes the absolute value of the velocity at the zero-
restoring force timing (point G in Figure 7F) and can be expressed as

vc2
Vy
= √(α− h2){(

a2
dy
)
2
+(

b2
dy
)
2
}exp(

h2

√1− h22
θ2), (40)

where

θ2 =
{{{
{{{
{

arctan
a2
b2
 (if 

a2
b2
< 0)

arctan
a2
b2
− π (if 

a2
b2
> 0)
, (41)

a2
dy
=
umax 2

dy
−(1+ 1

α
), (42)
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b2
dy
= − 1
√α− h2

vF
Vy
+

h2

√1− h22

a2
dy
, (43)

vF
Vy
= −8

3
h+√(8

3
h)

2
+ 4α(

umax 2

dy
− 1), (44)

where vF denotes the absolute value of the velocity at point F,
as shown in Figure 7F.

5.2.7 CASE 4–3
The schematic diagram of the triple-impulse response in CASE

4–3 is shown in Figure 7G. When − fy − αkup1 < − 2 fy, the second
impulse acts in the second stiffness range. Therefore, the boundary
between CASEs 4–2 and 4–3 can be obtained from Equation 45:

− fy − αkup1 = −2 fy. (45)

In CASE 4–3, up1 and umax1 are calculated using Equations 30,
31 in CASE 4–1. The maximum displacement umax2 in CASE 4–3 is
summarized as follows:

umax 2

dy
= 1
√α

vc1 +V
Vy

exp
{{
{{
{

−
h2

√1− h22
(π
2
−ϕ2)
}}
}}
}

−( 1
α
− 1), (46)

where vc1 denotes the velocity at the zero-restoring force timing
(point D in Figure 7G) and can be expressed as

vc1
Vy
= √(α− h2){(

a3
dy
)
2
+(

b3
dy
)
2
}exp(

h2

√1− h22
θ3), (47)

where

θ3 =
{{{
{{{
{

arctan
a3
b3
 (if 

a3
b3
< 0)

arctan
a3
b3
− π (if 

a3
b3
> 0)
, (48)

a3
dy
= −

umax 1

dy
+(1+ 1

α
), (49)

b3
dy
= 1
√α− h2

vC
Vy
+

h2

√1− h22

a3
dy
, (50)

vC
Vy
= −8

3
h+√(8

3
h)

2
+ 4α

up1
dy
, (51)

where vC denotes the velocity at point C, as shown in Figure 7G
(Equations 46–51):

umax3 in CASE 4–3 can be obtained by substituting umax2/dy
obtained from Equation 46 into Equations 39–44 in CASE 4–2.

5.3 Evaluation of maximum displacement
to triple impulse in IS1 using approximate
expressions

The maximum deformation of the damped bilinear hysteretic
SDOF system under the triple impulse in IS1 is evaluated using
the approximate expressions obtained in Section 5.2. Figures 9–11
show the normalized maximum displacement response umax/dy to

the triple impulse in IS1 with respect to the input level V/Vy
evaluated for the post-yield stiffness ratio α = 0.01, 0.1, and 0.5
and the damping ratio h = 0, 0.01, 0.02, 0.05, and 0.1 using the
approximate expressions. Figures 9–11 show that umax =max (umax1,
umax2, umax3). It can be observed from Equations 6, 7 that when the
damping ratio h ≥ 0.151409, umax2 is larger than umax3 in the elastic
response (CASE 1). In this case, when the input amplitude becomes
larger, umax2 exceeds the yield deformation before the system yields
after the third impulse. Therefore, this case is different from the
case assumed in Section 5.1. The system with the damping ratio h ≥
0.151409 is out of range of application of the approximate expression
derived in Section 5.2.

Figures 9, 10 show that, when the post-yield stiffness ratio α =
0.01 and 0.1, umax2 is the largest in the larger input level (about 1 ≤
V/Vy) for any damping ratio. On the other hand, Figure 11 shows
that when α = 0.5, there is a range of the input level where umax3 is
the largest in CASEs 3–1, 3–2, and 4–2 for the damping ratio h =
0, 0.01, 0.02, and 0.05. However, when α = 0.5 and h = 0.1, umax2 is
the largest in the larger input level (about 1 ≤ V/Vy). Figures 9–11
show that CASE 4–1 appears after CASE 3–1 for α = 0.01 and 0.1 as
V/Vy becomes larger, and the cases for α = 0.5 change in the order
of CASEs 1, 2, 3–1, 3–2, and 4–2 as V/Vy increases.

5.4 Accuracy check of approximate
expressions compared with time-history
response analysis

The approximate triple-impulse responses in IS1 derived in
Section 5.2 are compared with those calculated by the time-history
response analysis (THRA) to investigate their accuracy. Figures 12,
13 show the comparison of the normalized maximum displacement
response of the damped bilinear hysteretic SDOF system under the
triple impulse in IS1 calculated by the approximated expressions
and that obtained by THRA. In Figures 12, 13, umax = max (umax1,
umax2, umax3). It can be observed from Figures 12, 13 that the
approximate expressions can predict the triple-impulse response in
IS1 with reasonable accuracy. It may be meaningful to consider
the limit case of α = 1.0 (elastic) and h = 0 (undamped). Since
the energy is stored successively when each impulse is given, it is
clear that the maximum deformation occurs after the third impulse
and the critical timing is the moment of peak velocity. In some
cases for the damped bilinear hysteretic system with a smaller
α and/or a larger h, the maximum velocity occurs at the timing
just after the second impulse because of the energy dissipation by
the plastic deformation and the viscous damping and because the
given initial velocity by the second impulse is twice that by the
third impulse.

6 Validity of triple impulse in the
forward-directivity input

To investigate the validity of modeling the forward-directivity
input by the triple impulse, the elastic–plastic responses under
the triple impulse in IS1 and the critical triple impulse in IS2
are compared with the elastic–plastic response to TWSW and the
Ricker wavelet, which have been employed to simulate the ground
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FIGURE 9
Normalized maximum displacement response umax/dy under triple impulse in IS1 with respect to input level V/Vy evaluated by approximate expression
(α = 0.01): (A) h = 0 from Kojima and Takewaki (2024), (B) h = 0.01, (C) h = 0.02, (D) h = 0.05, and (E) h = 0.1.
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FIGURE 10
Normalized maximum displacement response under triple impulse in IS1 with respect to input level V/Vy evaluated by approximate expression (α = 0.1):
(A) h = 0 from Kojima and Takewaki (2024), (B) h = 0.01, (C) h = 0.02, (D) h = 0.05, and (E) h = 0.1.

acceleration of the forward-directivity pulse (Sasani and Bertero,
2000; Kalkan and Kunnath, 2006; Minami and Hayashi, 2013;
Khaloo et al., 2015; Okazawa et al., 2018).

To compare the elastic–plastic responses under these inputs,
the TWSW and the Ricker wavelet equivalent to the triple impulse
in IS2 in Equation 1 are set according to the following procedure.
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FIGURE 11
Normalized maximum displacement response under triple impulse in IS1 with respect to input level V/Vy evaluated by approximate expression (α = 0.5):
(A) h = 0 from Kojima and Takewaki (2024), (B) h = 0.01, (C) h = 0.02, (D) h = 0.05, and (E) h = 0.1.

As mentioned in Section 2, the pulse period Tp of the TWSW in
Equation 2 is twice of the time interval t0 of the triple impulse in
IS2 in Equation 1, and the ground acceleration amplitude Ap in

Equation 2 can be determined from the velocity amplitude V of
the triple impulse and ωp( = 2π/Tp) by using Equation 3 based on
the equivalence of the maximum Fourier amplitudes of the TWSW
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FIGURE 12
Comparison of normalized maximum displacement under triple impulse in IS1 by approximate expressions and that by time-history response analysis
(α = 0.1): (A) h = 0.02, (B) h = 0.02 (magnified), (C) h = 0.1, and (D) h = 0.1 (magnified).

and the triple impulse in IS2 (Kojima and Takewaki, 2015b; Kojima
and Takewaki, 2024; Kojima and Hikita, 2020). Equation 3 has been
obtained from the equivalence of the maximum Fourier amplitudes
of the TWSW and the triple impulse.

The ground acceleration of the forward-directivity pulse
modeled by theRickerwavelet is expressed by (Minami andHayashi,
2013; Okazawa et al., 2018)

̈ugRW(t) = Ap
RW{0.5ωp

2(t−Tp)
2 − 1}exp{−0.25ωp

2(t−Tp)
2},
(52)

where Tp = 2t0 and Ap
RW is the maximum ground acceleration of

the Ricker wavelet. The Fourier amplitude of the Ricker wavelet
in Equation 52 attains the maximum at ω = ωp, and its maximum
Fourier amplitude is 4√πe−1(Ap/ωp). Similar to the scaling of the

acceleration amplitude of the TWSW, the amplitude Ap
RW is scaled

so that the maximum Fourier amplitude of the Ricker wavelet
becomes equal to that of the triple impulse in IS2. Then, Ap

RW can
be calculated by using V and t0 of the triple impulse in Equation 1
as Equation 53 (Kojima and Hikita, 2020):

Ap =
√πe
2t0

V. (53)

Figure 1D shows the Fourier amplitudes of the triple
impulse, the TWSW, and the Ricker wavelet for V = 1.0 m/s
and t0 = 0.5 s, whose ground acceleration amplitudes Ap and
Ap

RW are adjusted so that their maximum Fourier amplitudes
are the same.

Figure 14 shows the comparison of the ductility (the maximum
displacement response) to the triple impulse in IS1, the critical triple
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FIGURE 13
Comparison of normalized maximum displacement under triple impulse in IS1 by approximate expressions and that by time-history response analysis
(α = 0.5): (A) h = 0.02, (B) h = 0.02 (magnified), (C) h = 0.1, and (D) h = 0.1 (magnified).

impulse in IS2, the TWSW, and the Ricker wavelet.The time interval
t0

c, whichmaximizes umax under the triple impulse in IS2, is adopted
as t0 (= Tp/2) for the TWSW and the Ricker wavelet. The time-
history response analysis is used to calculate the responses under the
triple impulse (IS1 and IS2), the TWSW, and the Ricker wavelet in
this section.The response to the triple impulse (IS1) is also obtained
by the approximate expressions (AE) derived in Section 5.2. When
α = 0.01 and h = 0.01, the triple-impulse response in IS1 by AE
and THRA can evaluate the response under the Ricker wavelet with
reasonable accuracy, and the response to the critical triple impulse
in IS2 corresponds well to the response to the TWSW. When α =
0.1 and 0.5 and h = 0.01, the responses under the triple impulse

in IS1 (THRA and AE), the critical triple impulse in IS2, TWSW,
and the Ricker wavelet are almost the same. On the other hand,
when h = 0.1, the response under the Ricker wavelet is slightly larger
than both the triple-impulse responses (IS1 and critical IS2). This
is because, while the response under the Ricker wavelet is a forced
vibration, the triple-impulse response is a series of free vibrations.
Although the response under the Ricker wavelet is slightly larger
than that under the triple impulse (IS1) and the critical triple
impulse (IS2) for the systemwith h = 0.1, the responses of the system
with bilinear hysteresis and viscous damping to the TWSW and the
Ricker wavelet can be estimated by the approximate expressions of
the triple-impulse response (IS1).
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FIGURE 14
Comparison of normalized maximum deformation umax/dy under triple impulse with IS1 and critical triple impulse with IS2, TWSW, and Ricker wavelet:
(A) α = 0.01 and h = 0.01; (B) α = 0.01 and h = 0.1; (C) α = 0.1 and h = 0.01; (D) α = 0.1 and h = 0.1; (E) α = 0.5 and h = 0.01; and (F) α = 0.5 and h = 0.1.
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7 Conclusion

Two types of sequences of a triple impulse, as one of the
mathematical models of forward-directivity inputs, were proposed.
One is the triple impulse, in which the timings of the second
and third impulses are the zero-restoring force timings. This
is called Input Sequence 1 (IS1). The other is Input Sequence
2 (IS2) with the same time interval. Then, the elastic–plastic
responses of an SDOF system with bilinear hysteresis and linear
viscous damping under the triple impulse (IS1) and the critical
triple impulse (IS2) were calculated and compared. The critical
triple impulse (IS2) was defined as the triple impulse with the
critical time interval that maximizes the maximum displacement
response when the time interval with the same value was
changed. Furthermore, approximate expressions were derived for
the elastic–plastic responses of the SDOF system with bilinear
hysteresis and viscous damping under the triple impulse (IS1).
To validate the appropriateness of the triple impulse as the
mathematical model of the directivity pulse, the responses under
the triple impulse (IS1) and the critical triple impulse (IS2)
were compared with those under the equivalent three wavelets of
sinusoidal waves (TWSW) and the Ricker wavelet. The conclusions
are summarized as follows:

(1) The elastic–plastic responses of the damped bilinear hysteretic
SDOF system under the triple impulse (IS1) were calculated
for various normalized input velocity levels by the time-history
response analysis and compared with those under the critical
triple impulse (IS2) calculated by the time-history response
analysis for the post-yield stiffness ratio α = 0.01, 0.1, and 0.5
and the damping ratio h = 0, 0.01, 0.02, 0.05, 0.1, and 0.2. The
critical time interval of the triple impulse (IS2) was calculated
by changing the same time interval and captured as the time
interval that maximizes the maximum displacement response
to the triple impulse (IS2). When the second stiffness ratio
α is 0.01 and 0.5 and the damping ratio h is 0, 0.01, 0.02,
and 0.05, the elastic–plastic responses under the triple impulse
(IS1) were larger than those under the critical triple impulse
(IS2) in the larger input velocity level. On the other hand, for
the systems except those mentioned above, the elastic–plastic
responses under the triple impulse (IS1) and the critical triple
impulse (IS2) were the same even in the larger input level.

(2) Approximate expressions were derived for the elastic–plastic
responses of the damped bilinear hysteretic SDOF system
under the triple impulse (IS1) using the quadratic-function
approximation of the damping force–displacement relationship
andenergybalanceequations.Theresponses to the triple impulse
(IS1) were classified into seven cases depending on the timing of
the system yielding and whether the second and third impulses
act in the unloading process (initial stiffness range) or post-
yield stiffness range.When the impulses act at the zero-restoring
force point in the initial stiffness range, the work done by the
damping force can be formulated from the quadratic-function
approximation of the damping force–displacement relationship,
and the maximum displacement just after each impulse can
be obtained from the energy balance equation between the
impulse acting point and the maximum displacement point.
On the other hand, when the second or third impulse acts at

the zero-restoring force point in the post-yield stiffness range,
the work done by the damping force between the maximum
displacement after the previous impulse and the re-yielding
point can be formulated using the approximated damping
force–displacement relationship by aquadratic function, and the
velocity at the re-yielding point can be derived from the energy
balance equation. Then, the velocity at the zero-restoring force
point and themaximumdisplacement after each impulse can be
obtained from the free vibration in the post-yield stiffness range.

(3) The accuracy of the approximate expressions was investigated
by comparing the response under the triple impulse (IS1)
obtained by the approximate expressions with that by the
time-history response analysis. As for the conclusion (1), it
was found that the elastic–plastic response under the triple
impulse (IS1) was slightly larger than or the same as that under
the critical triple impulse (IS2). Therefore, the elastic–plastic
responses of the damped bilinear hysteretic system under both
the triple impulse (IS1) and the critical triple impulse (IS2)
can be estimated in a simple manner by the approximate
expressions for the triple impulse (IS1).

(4) To validate the appropriateness of the triple impulse as a simple
mathematical ground motion model of the forward directivity
pulse, the elastic–plastic responses to the triple impulse (IS1)
and the critical triple impulse (IS2) were compared with those
under TWSW and the Ricker wavelet, which were commonly
used as groundmotionmodels of the forward-directivity pulse.
The pulse periods of the TWSW and the Ricker wavelet were
twice the critical time interval of the triple impulse (IS2), and
their acceleration amplitudes were scaled so that themaximum
Fourier amplitudes of the triple impulse (IS2), the TWSW,
and the Ricker wavelet were the same. Although the responses
under the equivalent Ricker wavelet were slightly larger than
those under the triple impulse (IS1) and the critical triple
impulse (IS2) for the damping ratio h = 0.1, the elastic–plastic
responses to the equivalent TWSW and the Ricker wavelet can
be estimated by that to the triple impulse (IS1).
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