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This study aims to investigate the application of fuzzy logic in decision-
making within the Built Environment. The research focuses on achieving
a balance between reducing carbon emissions and increasing costs in the
selection of materials and equipment. This balance is measured by Life Cycle
Carbon Emissions (LCCE) and is evaluated using a Life Cycle Assessment (LCA)
methodology. By modeling fuzzy logic against classical binary logic within
MATLAB, the study demonstrates how fuzzy logic’s “degrees of truth” may be
utilized to construct customized stakeholder buy-in profiles and also achieve
increased mathematical precision. These decision-maker stakeholder profiles
reflect different interpretations of linguistic expressions of value in terms of cost
against carbon reduction trade-offs. The research develops a three-dimensional
control surface by using the Fuzzy Logic Toolbox in MATLAB. This surface serves
as a visual tool for purchasing professionals to optimize these trade-offs on a
scale, which provides a practical strategy for large-scale construction projects.

KEYWORDS

built environment,multi-criteria decision analysis (MCDA), decision science, fuzzy logic,
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Introduction

The material production phase has been quantified to represent 40% of the carbon
footprint of urban buildings (Huang et al., 2017). As such, professionals within the
built environment have a practical interest in comparing the life cycle carbon emissions
(LCCE) calculation that reveals the entrained carbon as a result of the manufacturing
process required to create a given material or piece of equipment, at the point of
sale. By introducing competition at a carbon emissions level, an aggregate and net
emissions reduction may be realized within capital projects and the greater built
environment sector. Moreover, suppose the market indicates a growing demand for
products on the basis of low entrained carbon emissions. In that case, this will
send a powerful signal to the manufacturers of building materials and equipment
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to actively seek to reduce the carbon footprint of their products,
creating further downward pressure on carbon emissions in the built
environment (Marzouk and Eslam 2020).

The building sector has been shown to be one of the main
contributors to environmental emissions, and those emissions
are projected to increase with the rapid growth of urbanization.
It has been well-established that there are numerous and often
conflicting demands made upon construction projects, such as
cost and enhancing environmental outcomes via sustainability
initiatives (Seo et al., 2004).

To address this trade-off and compute linguistic imprecision,
we look to fuzzy logic. Fuzzy logic is a mathematical means
by which practitioners may move beyond a binary yes/no logic
system of classical logic or classical set theory to one the spans a
spectrum or gradient ranging from yes to no, describing “degrees
of truth” otherwise known as a membership function. It is
particularly helpful in adapting linguistic descriptors into machine
interpretable numeric values which presents an opportunity for
ease of use and intuitive application. “...Fuzzy sets allow us to
handle linguistic uncertainties, as typified by the adage ‘words
can mean different things to different people’” (Karnik et al.,
1999). As such, the conditions by which Fuzzy Logic may be
applied is expansive due to its ability to absorb variability.
This is particularly useful in private industry in which capital
project stakeholders introduce varying perspectives, even when
using the same adjectives to describe capital project elements
from project-to-project or entity-to-entity. For these reasons,
fuzzy logic is particularly well suited to addressing trade-offs in
construction and, as it relates to the hypothetical examined in this
research paper, trade-offs between cost and the carbon-emissions
inherent in material and equipment purchasing decisions within
construction projects.

It is possible that a control surfacemay be generated as an output
of a fuzzy inference system such that the control surface serves
as a look-up reference guided by input variables to determine the
output according to the fuzzy logic model. Such a reference may be
simpler to adopt for constructionmanagers or superintendents than
having them interact with a fuzzy model directly or sophisticated
software systems.

Within the Built Environment, capital project stakeholders may
express an interest in sustainability but be unsure how to act
upon that desire in a quantifiable or specific way. While numerous
sustainability rating systems exist, such as LEED rating systems and
many others, there may be instances in which the stakeholders with
funding decision approval authority elect not to pursue a known or
given rating system but would like to evidence their awareness of
and commitment to sustainability concepts. Moreover, there exists
numerous entities that track net life cycle carbon emissions of
materials and equipment, however, many of these entities are either
structured as non-profits and so have an intrinsic bias in ignoring
private sector cost biases to further their organizational vision or,
alternatively, monetize their indices and sell LCCE estimations as
either a consulting service or a self-service tool at additional cost to
a given Owner.

There is precedence for using Fuzzy Logic for comparison
purposes within construction, such as with comparing construction

labor productivity models (Sarihi et al., 2023), optimizing Health
and Safety Plans (Jafari, 2022), cost control (Zeng and Gao,
2024), construction time/risk (Plebankiewicz et al., 2021), supplier
selection (Jadidi et al., 2008), and construction risk (Zeng et al.,
2007). There is, however, an absence of a targeted and practical
use case for fuzzy logic at the point of material selection
or purchase. This decision-point could feasibly be construed
as speaking to the development of construction specifications,
which could incorporate a decision-making logic for navigating
cost and sustainability pressures that are in tension with each
other. It could also apply to the actual point of purchase
when construction professionals issue Purchase Orders (POs)
for project materials or equipment and are forced to navigate
between available options that satisfy the technical specifications
but show variances according to Life Cycle Carbon Emissions
(LCCE) and cost. Fuzzy logic is a mature field of mathematics
and is commonly employed within numerous subject matter
domains, to include medical research, e.g., (Hussain Hassan,
2020; Tan et al., 2022). It has been shown to aid group
decision-making, and the academic literature cites crisp values as,
“...inadequate to model real-life situations” (Chen, 2000). Beyond
the boundaries of capital projects, the built environment uses fuzzy
logic to assist with prioritizing maintenance work (Shahrivar et al.,
2022). Interestingly, fuzz logic is assisting with accounting for
conflicting objectives within construction management contexts
(Chen and Pan, 2021). Common built environment tools, such as
Building Information Modeling (BIM), are now being combined
with fuzzy logic to impact design and construction outcomes
(Tan et al., 2021).

This research paper will explore the viability of fuzzy logic
and a fuzzy inference system upon optimizing material selection
decisions when project stakeholders want to analyze the decision
by Life Cycle Assessment (LCA) carbon emission related to a given
material versus cost. The Fuzzy Inference System will be compared
and contrasted to a classic logic exercise in which a collection of
logic statements, such as if/then logic statements in an effort to
identify if the Fuzzy Logic approach offers benefits. While research
has been conducted on material selection within construction
applications using fuzzy logic (Obradović and Pamucar, 2020), this
research seeks a user-friendly methodology that might feasibly
be deployed within a construction organization using software
tool that is pervasive and intuitive and a method that is
comparatively simple.

The Life Cycle Assessment is fundamental to supporting
decision-making related to reducing carbon emissions in the
built environment. This method recognizes the carbon emissions
generated within the full lifecycle of the manufacturing process
of a given piece of material or equipment, not simply the carbon
emissions realized within time boundaries of a given construction
endeavor. Existing material and equipment stocks may be viewed
as already possessing a sunk cost of carbon emissions prior to
the point of selection and use in design and construction. In a
sense, the manufacture and warehousing of construction goods
and equipment may be viewed as a form of pre-work for any
given construction project, as such works could not be built
without them.
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Nomenclature

Research has been conducted to establish a timeline for
the rise of fuzzy logic, succinctly summarized by a table titled,
“Historical Development and Application of Fuzzy Theories
from 1965 to 1994” which was then extended to show Fuzzy
Logics incorporation into Construction Management Research,
summarized by the table, “Applications of Fuzzy Set/Fuzzy Logic in
Construction Management Research” (Chan Albert, Chan Daniel
and Yeung John, 2009) based on a literature review of “top quality”
journals until 2005.

Fuzzy Set Theory (FST) and, by extension, Fuzzy Logic were
first described in the 1960s by the groundbreaking paper Fuzzy
Sets that described the mathematics beyond the binary or true/false
nature of classical set theory (Zadeh, 1965). It has been argued
that Fuzzy Logic traces its origin to Greek philosophy, citing
a debate in which the Law of the Excluded Middle and Law
of Extended Contradiction which set out a binary true/false
reasoning approach evoked thinking on a third “possible” value
that could be assigned a numeric value between true and false
(McBratney and Odeh, 1997).

• Fuzzy Logic – “Fuzzy logic is intended to model logical
reasoningwith vague or imprecise statements...where the truth-
values are interpreted as degrees of truth. The truth-value
of a logically compound proposition...is determined by the
truth-value of its components. In other words, like in classical
logic, one imposes truth-functionality. Fuzzy logic emerged in
the context of the theory of fuzzy sets, introduced by Zadeh
(1965). A fuzzy set assigns a degree of membership, typically
a real number from the interval [0,1] [0,1], to elements of
a universe. Fuzzy logic arises by assigning degrees of truth
to propositions. The standard set of truth-values (degrees)
is the real unit interval [0,1] [0,1], where 00 represents
“totally false,” 11 represents “totally true,” and the other values
refer to partial truth, i.e., intermediate degrees of truth”
(Cintula et al., 2023).

• Fuzzy Inference System – “Fuzzy inference system is a system
with the ability to handle fuzzy information based on fuzzy
set theory and fuzzy inference methods. Fuzzy inference
system mainly consists of four parts: input, fuzzy rule base,
fuzzy inference method and output. Fuzzy inference system is
also called multi-rule fuzzy inference system when there are
multiple rules in the fuzzy rule base” (Deng et al., 2023).

• Fuzzy Sets – “Fuzzy sets were first introduced to represent the
values of real-world parameters when the boundaries between
different states of a parameter are not sharp (i.e., not crisp),
due to the subjectivity or vagueness of the measure (e.g., warm
weather), incomplete information, or ambiguity in specifying
an exact value (i.e., nonspecificity or resolutional uncertainty)”
(Pal and Bezdek, 1994). “A fuzzy set is a class of objects with a
continuum of grades of membership. Such a set is characterized
by a membership (characteristic) function which assigns to
each object a grade of membership ranging between zero and
one.The notions of inclusion, union, intersection, complement,
relation, convexity, etc., are extended to such sets, and various
properties of these notions in the context of fuzzy sets are
established” (Zadeh, 1965).

• Classical Set Theory – “Classical (i.e., crisp) set theory imposes
a sharp boundary on uncertain concepts: an element either
fully belongs or does not belong to a set. Fuzzy set theory
provides a way to overcome these classification challenges by
allowing an element to partially belong to a set through its
membership degree” (Fayek, 2020).

• Membership Function – “Membership functions make
it possible to capture the gradual transition and overlap
between concepts” (Fayek, 2020).

• Fuzzy Inference System Mamdani–is intended to model
logical reasoning “Fuzzy inference system Mamdani, known
also as Min-Max method, was formulated by Ebrahim
Mamdani in 1975. On Mamdani fuzzy systems both
antecedent and consequent are linguistic terms and the output
corresponds to the superposition of individual outputs given
by each rule” (Putri and Saputro, 2021).

• Lifecycle Assessment (LCA) – “LCA, which was the earliest
proposed method, has been applied to the construction
industry and other related industries. In a building system,
an LCA is performed to evaluate all resource loads, including
land, energy, water, and materials, as well as environmental
loads, including global warming, ozone depletion, acidification,
eutrophication, and photochemical smog” (Huang et al., 2024).

• Life Cycle Carbon Emissions (LCCE) – “LCCE include both
the production of building materials and their consumption
in the construction sector. The production and transportation
of building materials are determined by the demand of the
construction sector. Therefore, measures to reduce building
LCCE should account for the direct and indirect emissions
generated by building operations, as well as the emissions
generated by the production and transportation of building
materials” (Huang et al., 2024).

• International Standards Organization (ISO) 21930 – “...issued
by the International Organization for Standardization (ISO)
in 2017 as a formal international rule for building LCA
[7]; it specifies the principles, codes, and requirements
for formulating an environmental product declaration for
construction activities, establishes product category rules for
construction products and services, and proposes calculation
rules for life-cycle inventory analysis and life-cycle impact
assessment in environmental product declaration reports. ISO
21930 categorizes the entire building life cycle into fivemodules
or stages and 17 sub-stages: building material production
(A1–A3), construction (A4–A5), use (B1–B7), end-of-life
(C1–C4), and supplementary information beyond the system
boundary (D). This provides a basis for the classification of
life-cycle stages and the definition of system boundaries for
calculating buildings’ LCCE (Figure 2)” (Huang et al., 2024).

This study explores whether the material selection process in
construction projects presents a viable application for fuzzy logic.
Specifically, it examines whether a fuzzy inference system can be
effectively designed to guide material choices in a way that aligns
with the varied trade-off preferences of project leaders and key
stakeholders. Additionally, it assesses the suitability of using cost
and Life Cycle Carbon Emissions (LCCE) as input metrics within
such a system.
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FIGURE 1
MATLAB workflow to analyze cost versus carbon-emissions reduction trade-offs.

Methodology

Figure 1 is the workflow used to create the fuzzy logic
components of this simulation using MATLAB’s Fuzzy Logic
Designer application as it relates to the selected scenario under
analysis: a situation in which cost and carbon emissions reduction
values may be in tension when making a purchasing decision
for construction materials or equipment, assuming all other
specification elements have been equivalently satisfied. A “cetaris
paribus” (other things being equal) approach was selected and
employed with intentionality in this research paper such that
the tension in built environment vocations between cost and
sustainability could be directly explored. This is a common research
approach and perspective, often employed within the field of
economics.

Within fuzzy logic, it is important to train or code a givenmodel
with expert knowledge. The experts in a given scenario may be the
primary project stakeholders or they may be subject matter experts
related to sustainability and project financial management. A key
advantage of a fuzzy inference system is that the input values may be
altered or improved to account for the possibility of change, without
redefining the logic statements of the Fuzzy Inference System. Given
this research is hypothetical in nature, experts were not used to
create input nor output values and so the values presented should
be interpreted as illustrative in nature.

This simulation will model the transitions from the crisp
input points using smooth curves as opposed to assumed linear
relationships or other alternatives.The researchmethodwill leverage
the MATLAB software application with a specific emphasis on the
FuzzyToolbox.The advantage of usingMATLABand its Fuzzy Logic

Toolbox is the intuitive user-interface allows practitioners to step-
through recognizing the required inputs and logic rules required
for a fuzzy logic application, to easily infill them, and to run rapid
simulations that create corresponding visualizations of both the
inputs and resulting control structure and/or specific value outputs.
The software serves as a both a calculator and a visualizer, quickly
computing a vast number of calculations faster than would be
capable by a human and generating visualizations to engage inmulti-
modal communication and an enhanced user interface experience.
There may exist other solutions which may be equally appropriate;
this research does not involve a critical evaluation of competing
fuzzy logic software applications.

Two inputs consisting of three Gaussian shaped categories of
data will be input into the model. The dispersion of the Gaussian
shapes will be modeled to represent differing perspectives as to
what constitutes a sustainable gain via a specific carbon emissions
reduction and the differing perspectives of what constitutes a value
proposition relative to price for carbon emission reduction. In
this fashion, overlapping perspectives which represent the healthy
tension and routine disagreement within the business will be
mathematically modelled and visually depicted on graphs. It should
be noted that the Mamdani method was selected for use within
MATLAB and applied to this use case. There are typically three
methods used within fuzzy inference systems andMamdani is often
used, as noted in similar built environment research.

An output function that is reliant upon and translates the input
data will also bemodelled within the Fuzzy Toolbox.The output will
result in human understandable logic rules based on all the possible
combinations of input data across their three respective categories.
Upon completion, the MATLAB model will be able to generate a
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3-dimensional control surface that is representative of every output
point relative to the inputs, within the described range.

While the core function of this method may be demonstrated
with hypothetical data, industry data related to material cost and
net material LCA carbon emissions was source from XYZ source
to enhance the realism of the exercise by presenting industry
professionals with realistic data that they might expect to see during
a capital project relative to the time span and geographic location
assumptions made within this research exercise.

Classical Set Theory is introduced for comparative
purposes via Figure 4 – Visual Comparison of Fuzzy Set Theory
to Classical Set Theory that compares a crisp input versus a fuzzy
input. The graph visually reveals “discontinuous jumps” that are
inherent and problematic within classical set theory contexts and
compare those to the spectrum of data employed by Fuzzy Logic.

Figure 2 represents three input ranges that represent the
linguistic concepts of low, medium, and high as they relate to cost
judgements. The x-axis represents cost expressed in the units of
dollars. The exponential notation on the x-axis indicates that the
units may be interpreted in terms of increments of 10,000 (e.g.
$10,000, $20,000, et cetera). The y-axis is the degree of membership
for a given value. That is, the percentage to which the linguistic
concept can be said to be true and belong to a fuzzy set, relative
to the value of the x-axis. A degree membership value of 0 = 0%,
0.5 = 50%, and 1 = 100%, and all permutations between the values
of 0 and 100%s. A Gaussian curve was assumed for each input
value, indicating a bell-shaped curve was modeled to approximate
how the concepts of low, medium, and high would relate to
incremental cost increase by the project stakeholders within this
hypothetical scenario. It should be noted that the area beneath the
curve of each bell-shaped curve sometimes overlaps with the other
linguistic concepts; this indicates that the description belongs to
both linguistic sets, to some partial degree, creating a contradiction
of inputs that simulates differing opinions and perspectives in real
world linguistic use.

It is important to note that these input values could and likely
would change if the composition of the capital project stakeholders
were to change, resulting in differing interpretations of the concepts
of low, medium, and high as it relates to this scenario. This
is significant in the sense that the Fuzzy Logic model is being
customized to the linguistic nuance of a particular, applicable set of
people—those with a vested interest in the successful outcome of a
given endeavor such as this exercise in optimizing costs relative to
attaining quantifiable carbon emissions reduction values.

Figure 3 represents three input ranges that represent the
linguistic concepts of red, yellow, and green as they relate to carbon
emissions reduction judgements. The x-axis represents carbon
emissions reduction expressed in the units of tons. The exponential
notation on the x-axis indicates that the units may be interpreted
in terms of increments of 10,000 (e.g. 10,000 tons, 20,000 tons, et
cetera). The y-axis is the degree of membership for a given value
related to the percentage to which the linguistic concept can be
said to be true and belonging to a fuzzy set, relative to the value
of the x-axis value. As with cost, a Gaussian curve was assumed
for each input value, indicating a bell-shaped curve was modeled
to approximate how the concepts of red, yellow, and green would
relate to Life Cycle Carbon Emissions (LCCE) reduction by the
project stakeholders within this hypothetical scenario. Red, yellow,

and green were selected due to their common association with the
concepts of low, medium, and high or bad, neutral, and good. As
was true of the cost inputs, the area beneath the curve of each
carbon emissions reduction bell-shaped curve sometimes overlaps
with the other linguistic concepts; this indicates that the description
belongs to both linguistic sets, to some partial degree, creating
a contradiction of inputs that simulates differing opinions and
perspectives in real world linguistic use.

In addition to re-emphasizing that each concept may relate to
differing percentages of truth, the intersection of the curves can be
understood as implying equivalent truth. For example, in Figure 2,
the input value curves for red and yellow intersect at approximately
24,000 tons of reduced LCCE and approximately 20% membership
agreement with both concepts. This is akin to saying that for this
amount of carbon emission reduction, stakeholders perceive it to be
equally true that the this could be classified as both red and yellow,
two distinctive fuzzy sets.

Figure 4 represents output ranges that relate to the fuzzy input
values noted in Figures 1, 2 for cost and LCCE reduction.The intent
of the output values is to mathematically and visually model the
buy value relative to the perception of the hypothetical stakeholders
as to what constitutes value loss, value neutrality, and value gain
given specific interactions of cost and LCCE reduction.The x-access
represents the numeric score derived from the inputs. This scale
was structured from 0 to 100. This scale represents an arbitrary
range which could feasibly be changed to any range insofar as
the membership function plots are readily decipherable. The y-axis
remains the degree of membership, ranging in value from 0 to 1, or
0%–100% inclusion within a given fuzzy set.

Fuzzy Logic Rules

Within theMATLAB Fuzzy Logic Designer, the fuzzy logic rules
must be encoded. The following logic rules were developed for this
simulation:

• If Cost is Low and Carbon Emissions Reduction is Red, then
Buy Value is Value Loss

• If Cost is Medium and Carbon Emissions Reduction is Red,
then Buy Value is Value Loss

• If Cost is High and Carbon Emissions Reduction is Red, then
Buy Value is Value Loss

• If Cost is Low and Carbon Emissions Reduction is Yellow, then
Buy Value is Value Neutral

• If Cost is Medium and Carbon Emissions Reduction is Yellow,
then Buy Value is Value Neutral

• If Cost is High and Carbon Emissions Reduction is Yellow, then
Buy Value is Value Loss

• If Cost is Low and Carbon Emissions Reduction is Green, then
Buy Value is Value Gain

• If Cost is Medium and Carbon Emissions Reduction is Green,
then Buy Value is Value Gain

• If Cost is High and Carbon Emissions Reduction is Green, then
Buy Value is Value Neutral

These rules can be said to be “fuzzy” given all the encoded inputs
employ Gaussian, bell-shaped curves that show a range of values
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FIGURE 2
Fuzzy logic Gaussian input value range for cost.

FIGURE 3
Fuzzy logic Gaussian input value range for net LCA carbon emissions reduction.
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FIGURE 4
Fuzzy logic Gaussian output value ranges representing buy value logic.

relating to a degree ofmembership instead of the binarymembership
model of classical set theory (CST).

Adapted from the text Discrete Mathematics, Chapter 5.7 Fuzzy
Sets, we see the illustrative comparison of Fuzzy Sets versus Classical
“Crisp” Sets which may be applied to this use case (Grami, 2023).

Figure 5 is a visual representation of how carbon emission
reduction quantities might be classified using classical set theory
and fuzzy set theory, noting that in the case of classical set theory,
binary logic does not allow for contradictory membership—it must
either be a part of the set or not a part of it. As such, fuzzy logic
differs from binary logic in the decision-making process within the
underlying mathematical treatment of linguistic interpretation in
which fuzzy logic acknowledges a waning spectrum of membership
function inclusion, akin to a definitional smear, whereas binary
logic creates abrupt definitional borders to appear graphically
as logic cliffs within the Figure 5 visualization. Thus, we have
sharp division between groups, and the degree of membership
function is always expressed as 1 or 0 (i.e. 0% or 100%), with
no in-between states recognized, even as the values approach a
classification threshold. In this framework, there exists a “jump”
in classification from zero membership to full membership from
one classification to another up arriving at the respective threshold
value. In this instance, “red” is associated with a low carbon
emissions reduction value, “yellow” a medium carbon emissions
reduction value, and “green” a high carbon emissions reduction
value. These values are hypothetical only and created to convey the
problematic nature of classical set theory and crisp inputs when
dealing with linguistic terminology. Similarly, this visualization
could be adapted for cost and buy value classifications, interpreting
those fuzzy inputs/outputs in a classical fashion. Note, in this
visualization, Grami opted to represent the fuzzy set using a straight
line, creating a triangle, whereas in the proposed fuzzy inference

system, the authors of this paper have opted to use a Gaussian,
curved shape.

Figure 6 shows an overview of the Mamdani Type 1 Fuzzy
Logic method employed within MATLAB with relationships shown
betweenMembership Functions (MFs)modelled as per Figures 1–3.
Specifically, a two input Mamdani is shown. A Type 1 Fuzzy
Inference System refers principally to the defuzzification process
in that uses the centroid method to create a given output value.
A Type 2 Fuzzy Inference System models uncertainty within the
degree of membership in each fuzzy set (Mathworks, 2024b).
While Type 2 could have been employed in this instance, this
hypothetical focused on a Type 1 scenario. MATLAB’s Fuzzy
Logic designer is capable of both Mamdani and Sugeno Fuzzy
Logic. Mamdani was selected because it creates an output that
is comprised of fuzzy sets, as Buy Value is more likely to be
subjective and specific to the project stakeholders. Sugeno inferences
yield outputs that are either a constant or linear mathematical
expression which did not match the proposed use case as well
(Mathworks, 2024a).

Hypothesis testing

Hypothesis testing will be completed by simulating within
MATLAB with Fuzzy Logic using the concepts of entrained carbon
and cost as the inputs to determine when a given material ought to
be selected by an Engineer, Procure, Construct (EPC) company.This
simulation will be compared to if/then logic statements modeled in
Excel which will represent “classic logic” to determine if the Fuzzy
Logic Multi-Criteria Decision Analysis lends itself to a practical
Built Environment use case ofmaterial selection involving trade-offs
of cost and carbon emissions reduction within an environment of
unknowns and vagueness.
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FIGURE 5
Visual comparison of fuzzy set theory to classical set theory (Source: Reprinted with permission of Elsevier from Discrete Mathematics (Grami, 2023),
License Number 5991570523049).

FIGURE 6
Overview of MATLAB fuzzy logic designer Mamdani Type 1.

For themethod of ascertaining entrained carbon, this simulation
could feasibly leverage industry software such as ProCore or look
to indices or manufacturer disclosures revealing LCCE levels to
compare the carbon emissions potentials of a basket of materials.

Results

A 3-dimensional control surface was successfully
generated via MATLAB’s Fuzzy Toolbox.
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FIGURE 7
Fuzzy logic control surface of input values for cost and net LCA carbon emissions reduction quantity yielding a buy value decision output metric.

Figure 7 is a graphic presentation of buy value output points
represented in relation to their controlling input values of cost and
net LCA carbon emissions reduction. This is the result of running
numerous iterations of a Mamdani Type 1 calculation in which
a centroid value is calculated from the shape resulting from the
overlapping sections of partial or conflicting “truth”. While there are
numerousways to “defuzzify” values, the popular centroidmethod is
to draw a line parallel to the x-axis to the chosen point of intersection
where this are differing fuzzy sets represented as having some
membership function value greater than 0. The area above the line
is removed and the area below is retained. The resulting shapes are
merged into a singular shape, and the centroid of that resulting shape
is calculated. This is depicted in Figure 8. The three-dimensional
control surface was generated by MATLAB by plotting the resulting
values of numerous cost and carbon emissions reduction value
combinations.The visualization may be understood to represent the
results of a set of numerous, discrete calculations bounded by the
constraints identified by the input values and interaction rules. The
MATLAB Fuzzy Logic Toolbox then connected all of those resulting
points with lines to convey the manner in which the results might
conform to three-dimensional space. The control structure involves
a 15 × 15 point grid that is adjusted according to the 3rd dimension
of “Buy Value” as defined by the logic rules infilled in the simulation,
as noted in the section titled “Fuzzy Logic Rules.”

Recognizing that the control surface is the output of a large
set of fuzzy logic projects, a user could quickly infer the buy
value of a given purchasing decision by tracing the lines of a

given cost and carbon emissions reduction input combination to
its corresponding point of intersection on the chart. In instances
where there is not perfect alignment along the lines, reasonable
interpolation steps may be reasonably and quickly taken. In this
fashion, a quick reference guide may be generated to facilitate
purchasing decisions without requiring the purchasing professional
to re-run the analysis repeatedly, insofar as the input values and logic
rules remain unchanged based on stakeholder inputs.

Figure 8 shows the resulting overlap of the area remaining under
the curve for the concepts of “low” and “medium” cost at the selected
LCCE reduction value of 30,000 tons. The resulting centroid of this
shape is the crisp output value for this selected input value. To
simplify the geometry, one might choose a triangular input value
instead of a curved shape to create trapezoid shapes, allowing end-
users to more easily calculate the centroid by hand to facilitate
understanding.

225-point outcomes are shown in 3-dimensional space and are
linked via connecting lines into a plane that has been contorted
to conform to the points of optimization balance between the
competing cost and LCCE reduction forces. This visualization
may serve as a de facto Decision Support System (DSS) insofar
as the input values of the capital project primary stakeholders
remain fixed.

Such control surfaces might serve as a clarifying visualization
within a procurement procedure, for instance, and serve as reference
at the point of purchase. It could feasibly be encoded into purchasing
workflows that rely on manual interventions, or it could also be
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FIGURE 8
Defuzzification of a Chosen Cost Value by Creating a Single Shape Using the Area Beneath the y-axis point of Intersection for Each Fuzzy Set with a
Value Greater than 0.

embedded mathematically within automated solutions that seek to
simultaneously conform to material and equipment specifications
but also enhance Owner value by layering additional trade-
optimization logic atop of minimum or mandatory specification
requirements. In this fashion, it yields benefits which, depending
on the values of a specific entity or project, may take the form
of cost savings or carbon emissions reduction or a negotiation of
both competingmarket pressures. Other decision elementsmight be
infilled, such as resistance to a particular corrosive environmental
condition versus cost, or warranty duration versus cost, et cetera.
Though more complex, the underlying MATLAB methodology
represents increased accuracy relative to classical set theory, as
graphically represented by Figure 9.

Figure 9 graphically depicts the region of contradictory, partial
truth when the cost judgements of low overlap with medium, and
the cost judgements of medium overlap with high if the classical sets
depicted by the boxed with dashed-line boundaries were employed
instead of the fuzzy inputs denoted by the Gaussian curves. By
ignoring this in-between state or disagreement within a sample of
people, classical set theory may erode the mathematical precision
of Decision Support Systems (DSS). Secondarily, the region above
the curve but within the boundaries of the crisp sets represents the

amount by which the classical set theory is making a discontinuous
logic jump, abruptly changing from the low to medium crisp set
or from the medium to high crisp set. This figure serves as a
representative example of the condition that would also be true
for the LCCE reduction input values and the buy value logic
output values.

Discussion

Research suggests a growing trend toward hybrid approaches
that combine Fuzzy Logic with othermathematical orMulti-Criteria
Decision Analysis (MCDA) methods to address its limitations.
While hybrid models may improve precision, they also introduce
added complexity, which could discourage practical application
within the industry due to increased implementation challenges.

Although literature frequently highlights the suitability of
Fuzzy Logic for the construction industry—due to its ability to
handle vagueness and imprecision—there is often a lack of focus
on the diversity of stakeholder priorities. Discussions generally
emphasize technical aspects over the cost-reduction and profit-
oriented needs of private-sector companies, which vary significantly.
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FIGURE 9
Diagram revealing the Area of the Region Ignored by Non-Binary Linguistic Meaning.

Fuzzy logic, however, offers potential as a stakeholder alignment
tool, facilitating compromise among project participants and
enhancing client satisfaction through consensus-driven decision-
making. Stakeholder buy-in is driven by demonstrating to all
stakeholders that their input has been mathematically included in
themodel and so is exerting influence within fuzzy logic application.
It should be noted that equal weighting was given to all stakeholders;
some entities might prefer custom weighting considerations that
relate to the hierarchical position, influence, or technical knowledge
of a given stakeholder on a particular decision. By demonstrating
stakeholder inclusion, reassurance is given that their input is not
being ignored but instead actioned via inclusion in plotting linguistic
meaning within fuzzy logic inputs via a percentage of membership
inclusion.

As generative AI technologies advance, there is potential for
AI models to make faster, more precise decisions, potentially
outpacing traditional human review of specifications and LCCE
data. This research, while not a comparative study, underscores the
current applicability of fuzzy logic as a decision tool for material
selection in construction, acknowledging the evolving role of AI
but focusing on the present value of fuzzy logic within today’s
industry landscape.

It should be noted that the hypothetical fuzzy inputs and output
values indicate instances in which the linguistic value associations do
not add-up to 100%, indicating portion of the stakeholder population
that did not or could associate the given value with one of the
given classifications. In practice, this would be unlikely, though not
impossible. In practice, the input value ranges may well be different
from the assumedGaussian inputs, leading to different interactions of
concepts to varying degrees. The hypothetical illustrates an instance
in which two fuzzy sets overlap with each other, but it is possible that
additional overlaps might occur.

It may be beneficial to provide a brief explanation of fuzzy
logic and its benefits within policies, procedures, and governance.
Professionals are used to classical set theory, and this is especially
true of built environment professionals who routinely use crisp
sets within capital project management such as when applying
risk matrices within risk registers. Using simple high, medium,
low descriptors for cost, schedule, and probability associations is
ubiquitous within industry. The challenge is, absent a learning
curve related to fuzzy logic, a fuzzy logic inference system may be
perceived as a “black box” in which the inner workers of the math
are unknown to end-users. Two-inputMamdanimethods are known
to be intuitive and reasonably intuitive to understand.
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Modeling additional material and
equipment purchasing characteristics

There exist numerous material and equipment characteristics
which may be of interest to a given capital project team. Durability,
Maintenance Requirements and Cost, Installation Complexity
represent possible considerations. All of these, conceptually, may be
modelled using Fuzzy Logic by going beyond the binary classical
set theory approach of affirming that a given material does or
does not satisfy the defined specifications but instead model what
represents “buy value” to the primary stakeholders across these
dimensions, beyond their baseline acceptance threshold value of
each one. This, however, would introduce a corresponding increase
in the complexity of the creating the rules as the number of rules
is an exponential expression of the number of inputs relative to the
quantity of linguistic values for each input.

Additional dimensions for purchasing consideration, such as
embodied energy and depletion attributable to a given material,
are particularly interesting, as these attempt to go beyond a
carbon-emissions perspective and address sustainability more
comprehensively. The academic literature reveals a number
of proposed methods to quantify embodied energy via the
Life Cycle Energy Assessment (LCEA) and Life Cycle Impact
Assessment (LCIA) that attempts to assess resource depletion
(Klinglmair et al., 2014; Chau et al., 2015). While the proposed
fuzzy logic method might be employed by encompassing one of
the proposed LCEA and LCIA methods, respectively, as additional
fuzzy inputs and correspondingly increase the number of fuzzy logic
rules.This would require a significant investment of stakeholder and
project team analysis to identify the desired method of measure and
would further be complicated by the difficulty in accessing the
required information on environmental disclosure labels or vendor
specification sheets. That is, while it is conceptually possible, it
may be practically difficult given the existing availability of product
information and lack of unity of governing quantification methods.

Accessibility to non-expert users

Enhancing the accessibility of fuzzy logic framework such that
non-experts might engage in its practical application is of great
importance if industry adoption aspirations are to be realistically
achieved. At core, recognizing which circumstances are best suited
to the application of a given MCDA method, to include Fuzzy
Logic, represents a great deal of complexity and expert knowledge
that may seem insurmountable to a non-expert user. As such,
a tool that recognizes the quality of existing data, the ability to
develop additional data, and an analysis of the constraints and
the underlying intent of a decision to propose best match would
greatly enhance accuracy, utility, and user friendliness. Once Fuzzy
Logic has been identified as the best match for a given scenario,
improvements within the HumanMachine Interface (HMI), such as
speech recognition and interactivity could greatly enhance the tool.
Additionally, instant and web-based linkage to expert assistance via
the tool akin to that offered via tax software applications offering
the on-demand assistance of Certified Publica Accounts (CPAs).
Finally, integrating the MATLAB Fuzzy Logic Toolbox and Fuzzy
Logic Designer with a digital polling solution to allow for direct

importation of stakeholder linguistic interpretation would also ease
the use of the approach for non-expert systems given the current
solution requires aggregating and interpreting this data and its
plotted shape to occur beyond the bounds of the MATLAB system,
enhancing the risk of user input error. User Experience and User
Interface (UX/UI) improvements represent a rich field for future
research to address these concerns.

System integration with existing procurement software
commonly used in construction management, for instance
Enterprise Resource Planning (ERP) systems such as SAP, would
additionally enhance end user ease of use for the proposed Fuzzy
Logic method, as would integration of Environmental Disclosure
Data relevant to the modeling exercise.

Limitations of research

This research does not explore alternatives to smooth curves
within the Fuzzy Inference System, such as linear or other non-
smooth relationships, which could impact the control surface
output. Additionally, the simulation focuses solely on two input
criteria—cost and entrained carbon reduction. In practice, material
selection decisions often involve multiple factors, such as material
longevity and lead time, which would increase complexity. Adding
more criteria could make the control surface challenging to
visualize, as it would require moving beyond a three-dimensional
representation, limiting intuitive understanding for construction
procurement specialists.

Furthermore, debates in academic literature on the precision
of different fuzzy methodologies—such as standard versus
extended fuzzy arithmetic or Mamdani versus alternative inference
methods—are not addressed in this study. The research utilizes
methods available within MATLAB’s Fuzzy Logic Designer,
recognizing that more precise computational approaches may exist
within academic literature, differing software solutions, or other
bodies of knowledge. The emphasis on MATLAB is based on its
prevalence within industry. Recognizing this, this research sought
to put forth an applied science use case using common tools that
may be familiar to built environment professionals.

This paper does not address Classic-Like Fuzzy Logic (Bedregal
and Cruz, 2008), Fuzzy Sorting Methods (Yatsalo et al., 2024), or
comparable explorations of Fuzzy Set Theory within the subject
matter domain of mathematics, computer science, or like instances.
This research is intended to present applied science that does not
propose original math or science but instead seeks original use cases
and applications for existing math and science.

Fuzzy logic limitations within the built
environment

While the uses of fuzzy logic are vast, constrained primarily by
the limitations placed on practitioners operating within a business
environment of free market competition. It is possible to envision
a future in which fuzzy logic is a commonly used branch of logic
used by complex software in the guise of aDigital Assistant—a broad
term the authors of this research will use to mean an artificial
intelligence that evaluates multiple decision-making logic paths and
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proposes a technique that best optimizes the outcome given known
information, constraints, and user preferences that will be paired
to a team of humans. At the time of this research, great leaps are
beingmade in such technological developments, however, it remains
important to understand the underlying means and methods used
by such methods on an individual and use case basis and the age of
such wide-spread digital interactivity is not yet upon us. As such, we
analyze the limitations of fuzzy logic in practical terms, through the
eyes of built environment professionals.

The primary limitation of fuzzy logic in the built environment
relates to the administrative burden it entails.Thenumber of decisions
that must be made in a given design, engineering, and construction
endeavor are tremendous. The speed at which they must be made
increases with market competition and the desire for continuous
improvement. As such, time and cost limitations in gathering the
required information to create thismodel present the greatest barrier.

Though fuzzy logic could certainly be employed without the aid
of purpose-built software, its application would be greatly slowed in
conflict with the previously noted time pressures that are ubiquitous
within capital projects. Software, therefore, becomes a limitation to
the application of fuzzy logic within the built environment. This
limitation is two-fold: 1) the cost of such software 2) identifying
a workforce with a blend of the requisite built environment
knowledge and computing literacy required to successfully deploy
such methods. Over-reliance of such means of analysis could create
process-bottlenecks in which somany decisions are flowing through
this method of analysis while the constraints of cost and capable
personnel are unable to process such requests. Thus, identifying an
appropriate threshold of value for a given decision may allow teams
to triage fuzzy logicmodeling requests to focus resources where they
may yield the most value.

Future research and case study

This research was conceptual and has not yet been validated via
the case study method. Future research must be conducted to verify
if: 1) Existing specifications andmaterial and equipment procurement
methods fail to optimize trade-offs between the discussed decision
dimensions 2) The proposed Fuzzy Logic method using MATLAB’s
Fuzzy Logic Toolbox according to the described process flow yields an
improvement to existing methods employed in industry 3) Quantify
“buyvalue” improvement,costsavings,orcarbonemissionsreductions
that might have been achieved 4) Determine if the use of Fuzzy
Logic enhanced Stakeholder Management 5) If the control surface
visualization has utility for procurement professionals 6) Assessing
the administrative burden of implementing this method relative to
any realized improvement measures. 7) Determine the sufficiency
and uniformity of available material and equipment environmental
disclosure labels to inform such an exercise at scale.

A case study could feasibly be undergone by identifying a willing
Owner and contracted EPC entity to undergo a retrospective study
of the material procurement that occurred on a given project, and
to replicate the procurement exercise using the proposed Fuzzy
Logic methodology. Such a studymight focus on purchase decisions
in which the alternatives remain known, such as if records of
comparisons were maintained or if an Owner restricted purchases
to a select few manufacturers, per specification. A review of the

EPC procurement procedures may be conducted to determine how
trade-off decisions are undertaken in the current state.

Conclusion

Fuzzy logic is particularly useful in guiding material and
equipment selection decisions in the Built Environment, providing
customizable inputs that correspond with stakeholders’ distinct
interpretations and preferences.This method facilitates customized,
“fit-for-purpose” solutions, circumventing the constraints of a
standardized specification model. Updates to ISO standards, such
as ISO 21930, should ideally include methods for addressing
trade-offs in carbon emissions reporting. These modifications
may facilitate a more effective equilibrium between sustainability
objectives and competitive market forces, hence improving
stakeholder involvement in sustainable decision-making. Numerous
opportunities exist for the integration of Fuzzy Logic into work
instructions, regulations, and processes. At scale, both in terms
of large-scale construction projects but also at a portfolio or
even sector level, such optimization improvements could yield
tremendous reductions in carbon emissions while still satisfying
cost considerations and adhering to project specifications.

Recognized occurrences of classical set theory in capital project
management, typically categorized by high, medium, and low input
assessments, can be enhanced through fuzzy logic. This implies that
an audit should be conducted to identify instances of classical set
theory, followed by an estimation to evaluate the impact of a series
of prior decisions concerning fuzzy logic results, thereby quantifying
the magnitude of the issue on a larger scale.

This study emphasizes how fuzzy logic helps avert sudden
classification shifts characteristic of Classical Set Theory, which
may lead to erroneous results in decision-making. Enhancing the
granularity of classifications may render binary logic more feasible
for procurement experts employing traditional methodologies.
Subsequent study ought to investigate the practical carbon
reduction effects of this strategy and evaluate whether hybrid fuzzy
methodologies or novel generative AI models could potentially
augment or surpass thismethod. Indeed, research of hybridmethods
using fuzzy logic in concert with other tools exist within academic
literature, to include medical use cases (Lefteh et al., 2022).
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