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A data-informed cascading
consequence modeling
framework for
hurricane-induced
petrochemical facility disruptions

Kendall M. Capshaw and Jamie E. Padgett*

Department of Civil and Environmental Engineering, Rice University, Houston, TX, United States

Pollutant emissions due to hurricane-induced petrochemical infrastructure
disruptions pose a significant threat to the public health of fenceline
communities and the surrounding environment. The objective of this study is to
develop a framework for cascading consequence modeling of petrochemical
processing infrastructure subjected to hurricane hazards. Overall the proposed
framework leverages Bayesian networks for predictive modeling and potential
updating of facility shutdown and excess emissions quantification due to
hurricane-induced facility failures. The NHERI DesignSafe Cyberinfrastructure
is leveraged to reuse prior hindcast storm datasets, develop and share a
petrochemical infrastructure performance database, conduct statistical analyses
for model development, and perform case study regional risk analyses. As
input to the framework, predictive models for likelihood and expected duration
of petrochemical facility idle and restart times and expected resulting excess
emissions quantities are proposed. Such models are presently lacking in
the literature yet vital for risk and resilience modeling of the cascading
consequences of petrochemical complex shutdowns ranging from resilience
analyses of regional petrochemical processing infrastructure to potential health
effects on fenceline communities tied to shutdown and restart activities. A
database of empirical petrochemical facility characteristics, downtime, and
hurricane hazards data is developed, and statistical analyses are conducted to
investigate the relationship between facility and storm features and shutdown
duration. The proposed method for expected shutdown modeling with the
highest predictive accuracy is determined to be one comprised of a logistic
regression binary classification component related to facility shutdown potential
and a gamma distribution generalized linear model component related to idle
time duration determination. To illustrate the utility of the proposed framework,
a case study is performed investigating the potential mitigative impact of
the proposed Galveston Bay Park Plan on Houston Ship Channel regional
petrochemical processing resilience and cascading air pollutant emissions risk.
Such analyses expose community and regional impacts of facility failures and
can support resilience improvement decisions.
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1 Introduction

Ambient air pollution poses a significant and chronic
threat to public health and the environment around the world
(Manisalidis et al., 2020). Globally, ambient air pollution
remains the highest environmental and fourth leading overall
risk factor for premature death (Health Effects Institute,
2020). Hazardous (e.g., volatile organic compounds) and
criteria (e.g., ozone, particulate matter, carbon monoxide,
and sulfur dioxide) air pollutants have been associated with
a wide variety of adverse health effects, including infant
mortality, cancer, and respiratory and cardiovascular disease
(Manisalidis et al., 2020; Goldman et al., 2022). Exposure to
these air pollutants and their associated consequential health
risks disproportionately impacts disadvantaged and socially
vulnerable populations, particularly fenceline communities which
are situated directly adjacent to highly polluting industrial facilities
(Collins et al., 2016; Banzhaf et al., 2019).

Oil and gas infrastructure, such as refineries and petrochemical
facilities, are major emission sources which tend to release multiple
air pollutants into the atmosphere even under normal operating
conditions (McCoy et al., 2010). However, during natural disasters
such as tropical storms and hurricanes, significant short-term
spikes in the emission levels of various hazardous and criteria air
pollutants due to either emergency facility shutdowns and restarts or
industrial accidents are commonly observed (Bhandari et al., 2022).
For example, Gulf Coast refineries and petrochemical facilities
reported the release of over 4 million pounds of air pollutants due to
emergency shutdown procedures alone during Hurricane Laura in
2020 (Fraser, 2020). Reportable excess emissions during Hurricane
Harvey in 2017 totaled over 14 million pounds, of which carbon
monoxide (CO) accounted for almost 3 million pounds of pollutants
and sulfur dioxide (SO2) accounted for over 4 million pounds of
pollutants (Xa et al., 2017). These excess emissions events in turn
result in severe and costly damage to public health (Zirogiannis et al.,
2018). Due to the highly centralized nature of the U.S. oil and
gas processing infrastructure, which is largely concentrated within
the hurricane prone Gulf Coast region, refinery and petrochemical
facility disruption due to hurricane hazards occurs regularly.
Furthermore, climate change research suggests that hurricane
hazards induced and exacerbated by sea level rise and global
warming are likely to increase throughout the century (Lin et al.,
2012; Dong et al., 2022; Dismukes and Narra, 2018; Rusco, 2014),
particularly in the U.S. Gulf Coast region (Marsooli et al., 2019).

In addition to the adverse health effects of refining and
petrochemical processing facility failures due to hurricane hazards,
prolonged facility disruptions can also result in substantial and
sustained economic and supply chain impacts. For example,
Hurricane Harvey halted over 60% of the total U.S. ethylene
production, with many petrochemical facilities unable to resume
processing activities for weeks and even months following the
storm’s dissipation (Cassiday, 2018). Ethylene is one of the
most important chemicals in the global production of resins,
plastics, and other essential chemical compounds which are vital
building blocks for both domestic and international manufacturing
sectors (AFPM Communications, 2017). The U.S. is the largest
ethylene producing country in the world (Bielicki et al., 2014;
Alshammari et al., 2016) andTexas alone accounts for approximately

70% of domestic ethylene production capacity, with Louisiana
housing another 20% of total domestic capacity (DiChristopher,
2017). As a result, disruptions to Gulf Coast petrochemical
processing activities can have far-reaching market impacts. For
example, prolonged petrochemical facility shutdowns across Texas
following Winter Storm Uri in February of 2021 resulted in a
global plastics shortage which impacted domestic and international
manufacturing activities and disrupted the global supply chain
for months (Matthews et al., 2021). This issue is only likely to
increase as more U.S. ethylene production capacity, particularly in
the Gulf Coast region, becomes available withmajor planned facility
expansions and start-ups projected to come online in the coming
years (Eiermann, 2022; Bernhardt, 2022).

In the oil and gas supply chain infrastructure space, previous
work has modeled distributed systems network resilience, such
as via the adoption of a graph theory approach to quantify the
resilience of a case study natural gas distribution network to
disruptions resulting from both facility failures (Pourhejazy et al.,
2017) and pipeline failures (Cimellaro et al., 2013) and specifically
tomake recommendations for future facility optimal siting (Nadeau,
2007). Previous studies have also proposed methods to model
economic, environmental, and social risks of coastal production
and refining centers and their respective fenceline communities
subjected to hurricane-induced hazards (Bernier et al., 2017;
Ebad Sichani et al., 2020; Dahitaleghani, 2016; Burleson et al., 2015).
Past work has also proposed empirically-derived predictive models
for estimating the expected idle time duration of refining complexes
following hurricane events (Capshaw and Padgett, 2023). However,
previous studies developing predictivemodels for hurricane hazard-
induced downtime of oil and gas processing facilities have only
been applicable to petroleum refining complexes, not ethylene
producing petrochemical facilities, which have unique processes and
constituent components. Furthermore suchmodels currently do not
capture the duration of the highly uncertain facility restart period,
which is important for overall consequencemodeling (Capshaw and
Padgett, 2023).

In the emissions research space, previous studies have proposed
various soft sensor techniques for daily emissions monitoring under
normal operating conditions of refineries, petrochemical facilities
(Roberty and Rubin, 2021; Bernier and Padgett, 2017), and coal
mines (Shao and Zhang, 2023). Linear regression models have been
proposed to estimate daily CO2 emissions volumes of refineries
based on operable capacity under normal operating conditions
(Madugula et al., 2021). Additionally, post-event analyses have
been performed previously to estimate impacts on air quality due
to historical natural and anthropogenic disasters (Bhandari et al.,
2022). Past studies have also modeled potential atmospheric
pollution formation due to hazardousmaterial spills (Bi et al., 2021).
However, there is a scarcity of studies proposing models to predict
the cascading emissions consequences of petrochemical complex
infrastructure failures due to hurricane hazards.

To address these gaps, the objective of this study is to pose
a method for developing a predictive model for the volume of
excess emissions from petrochemical complexes due to hurricane
hazard-induced facility failures. A Bayesian network formulation
is proposed as the overarching framework, but along the way, key
missing input models for central nodes of the network are derived.
Specifically, this study will propose models for the prediction
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of likelihood and expected duration of petrochemical facility
shutdowns and expected duration of subsequent restart activities
periods. In the subsequent sections of this paper, first a database of
empirical petrochemical facility excess emission quantities, idle time
and restart activity period durations, and hurricane-induced hazard
data is developed. Then, models for the prediction of petrochemical
facility idle time duration and restart activity period duration
due to hurricane-induced hazards are proposed. Next, a data-
driven Bayesian network-based excess CO emissions prediction
model is proposed for petrochemical facilities exposed to hurricane
events. In Section 3, quantification of regional ethylene production
infrastructure resilience and consequential excess CO emissions
estimates is illustrated using the proposed models. Here, the utility
of the framework is illustrated within a practical case study that
evaluates the impacts of a regional risk mitigation strategy in the
Houston Ship Channel region, shown in Figure 1. Finally, the
paper concludes with a discussion of the results and future research
opportunities for both the improvement and implementation of the
proposed models.

2 Materials and methods

2.1 Framework overview

This study proposes the use of data-driven Bayesian
networks to predict the excess CO emissions volumes of
ethylene-producing petrochemical complexes when exposed
to hurricane events. Carbon monoxide is an odorless,
colorless gas which is released as a result of the incomplete
combustion of fossil fuels, and elevated outdoor levels of
CO can cause various health complications, particularly for
individuals suffering from respiratory or cardiovascular disease
(United States Environmental Protection Agency EPA, 2023).
Following hurricane hazard-induced disruptions, CO is one of
the highest reported criteria air pollutant quantities released in
the form of excess emissions by petrochemical facilities (Xa et al.,
2017). Bayesian networks present an optimal modeling approach
for this problem due to their ability to model multistate variables
and capture component dependencies in complex systems, and the
opportunity they present for probability updating based on new
observations.

A Bayesian network is a directed acyclic graph comprised of a set
of nodes, which represent the model variables, and a set of directed
edges, which represent the conditional probabilities between the
variables (Bensi et al., 2013). These directed edges represent a causal
relationship between the parent variables, which are the nodes with
outgoing edges, and the child variables, which are the nodes with
incoming edges. It is possible for any given node in the network to
have multiple parent variables as well as multiple child variables.
Every node within the network contains a finite set of mutually
exclusive states. The conditional probabilities of each child variable
given its parent variables is required to fully define the network.
For child variables possessing a single parent variable, only one
conditional probability expression is needed, while child variables
with more than one parent variables each require the definition
of a conditional probability table (CPT) to be fully characterized.

For root variables, or nodes with no parent variables, marginal
probabilities are required to be fully characterized.

If a Bayesian network is defined over a set of n nodes U = {X1,
X2, … , Xn}, in which Xi is a variable with a finite set of states, the
probability of occurrence ofXi, or P(Xi), is computed using the joint
probability table P(U) = P (X1, X2, … Xn). The Bayesian network
defined overU represents the joint distribution given by the product
of the conditional probabilities (Bensi et al., 2013):

P(U) =
n

∏
i=1

P(Xi|pa (Xi)) (1)

where pa (Xi) is the parent set of node Xi. To minimize the
subjectivity of the proposed Bayesian network model, parameter
learning over an assembled empirical dataset is performed to
compute each node’s conditional probability distribution for the
ultimate determination of the causal relationships between all
parent-child variable pairs in the proposed network.

2.2 Database development

Given the lack of existing models together with facility-level
complexities of petrochemical facilities and varied root causes of
failures, this paper emphasizes the assemblage of a first of its
kind empirical database of hurricane hazard-induced petrochemical
facility shutdowns and their idle time and restart durations.
Furthermore, this database includes accompanying excess CO
emissions quantities reported due to each observed shutdown event.
In addition to enabling statistical empirical model development,
this database also provides prospective opportunities for alternative
resilience and consequence modeling approach validation. The
empirical data collection conducted herein is limited to the 25
petrochemical facilities located within the U.S. Gulf Coast region
(Bernhardt, 2022).Due to data availability and reliability constraints,
this database limits its consideration to hurricane events that have
impacted the U.S. Gulf Coast region over the past 20 years and is
comprised of 81 observations. Collected, derived, and organized
features include petrochemical facility characteristics, hurricane
hazard intensity measures, facility open/closure status, idle time and
restart period durations, and excess CO emissions volumes where
applicable. Table 1 presents the complete set of collected database
features and their accompanying high-level descriptions, while the
following subsections present detailed variable descriptions and an
explanation of collection and derivation methodologies adopted.

The first data collection task in the development of this
proposed database is the assemblage of Gulf Coast hurricane
hazard-induced petrochemical facility failures, idle time
durations, and restart period durations. This database derives
estimates for facility idle times and restart period durations
from reports of petrochemical facility shutdown and restart
activities by various chemicals news sources such as Independent
Commodity Intelligence Services and S&P Global Commodity
Insights (Independent Commodity Intelligence Services,
2024; Global Commodity Insights, 2024) and Texas
Commission on Environmental Quality (TCEQ) air emission
event reports (Texas Commission on Environmental Quality TCEQ,
2023) for the 25 facilities under study over the past 20 years.
The onset of idle time is presumed to begin at the start of the
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FIGURE 1
Houston Ship Channel oil and gas processing infrastructure

earliest reported closure date determined using either news reports,
company press releases, or the closure date identified in the TCEQ
air emission event report for a given hurricane event, where
applicable. Petrochemical complex restart transitions denote the
end of a given facility’s period of post-hurricane event idle time
and the start of that facility’s restart activity period. Idle time
duration is computed as the total number of days a given facility
is completely offline prior to facility restart activity commencement.
The end of a given facility’s restart activity period is marked by
either news reports, company press releases, or TCEQ air emission
event reports noting normal operating levels have been reached
post-event. Restart activity period duration is similarly calculated

as the total number of days a given facility is restarting prior to
resuming normal operations. Due to the scarcity of data related
to observed product output levels during a facility’s restart activity
period as the facility ramps back up to normal operating levels,
both the idle time and restart activity period are assumed to be
intervals of negligible product output by the petrochemical complex.
The authors acknowledge that further research into this highly
uncertain period is warranted and should be included in any future
investigation in this space. Moreover, this database does not include
occurrences of facilities operating at a reduced rate following restart
and resumption of normal operating product output levels following
the end of the restart period is assumed.
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TABLE 1 Gulf Coast petrochemical complex downtime consequences
database of facility and storm characteristics variable descriptions.

Facility Characteristic
Features

Storm-Related Features

Facility Location (Longitude,
Latitude)

Facility Idle Time Duration (days)

Facility Footprint (km2) Facility Restart Period Duration
(days)

Ethylene Production Capacity
(Mmtpd)

Excess CO Emissions (mt)

Refinery Collocation Collocated Refinery Idle Time
Duration (days)

Processing Feedstock by Naphtha (%) Maximum Flood Depth at Facility (m)

Facility Secondary Conversion
Complexity

Maximum Wind Speed at Facility
(m/s)

Maximum Single Day Rainfall (mm)

Total Cumulative Rainfall (mm)

Storm Category (Saffir-Simpson)

Of the 25 petrochemical complexes included in this study, nine
facilities are collocated with petroleum refineries, as determined
using a global refinery infrastructure dataset published on the
Natural Hazards Engineering Research Infrastructure (NHERI)
DesignSafe Cyberinfrastructure (Rathje et al., 2017; Capshaw and
Padgett, 2022). It is highly likely that these collocated facilities
share some degree of overlap in various utility, workforce, and
logistical domains. For example, following Hurricane Katrina in
2005, both the Shell Norco chemical plant and collocated refinery
sustained significant damage, but the company announced its
decision to prioritize restarting the refinery at the expense of the
chemical plant’s potential restart expeditiousness (Shell Media Line,
2005). As such, consideration of the extent of damage sustained
by a given petrochemical facility’s collocated refinery during a
hurricane event is expected to be meaningful in the determination
petrochemical facility idle times and restart period durations.
Collocated refinery idle time, which is indicative of the degree of
damage sustained by a facility due to hurricane-induced hazards
following a storm event, is therefore additionally included in
the dataset defined herein for the petrochemical facilities under
study where applicable. This database derives estimates for the
total refinery idle time duration from refinery shutdown and
restart reports by news sources such as Reuters and Rigzone
(RIGZONE, 2024; Staff, 2024) and post-storm event Department of
Energy Emergency Situation Reports (Office of Cybersecurity and
Energy Security & ER CESER, 2022) for the collocated refineries of
their respective petrochemical complexes under study. Idle time
initiation is presumed to occur at the start of the first reported
shutdown date determined using either company press releases or
public media reports, or the initial date noted in the corresponding
Emergency Situation Report for a given hurricane event, where
applicable. Facility restart announcements mark the end of a given

refinery’s duration of post-hurricane idle time, and downtime
duration is similarly computed as the total number of days the
facility is completely offline prior to restart activity commencement.

The next data collection task in the assemblage of this database
is the computation of total excess CO emissions quantities reported
due to each observed facility shutdown event. Under Title 30 Texas
Administrative Code (TAC) Rule 101.201, Texas petrochemical
facilities are required to report all scheduled maintenance, startup,
and shutdown activity-related emission events via the State of
Texas Environmental Electronic Report System (STEERS) to
the TCEQ (Texas Commission on Environmental Quality TCEQ,
2023; Texas Secretary of State, 2014). These reports include
information on sources, types, descriptions, and quantities
of air contaminants released as excess emissions during a
reportable event (Texas Commission on Environmental Quality TCEQ,
2023). To calculate the total excess CO emissions quantities for each
petrochemical facility over the total duration of facility idle time
and restart activity period for each hurricane event, all listed CO
quantities are summed over each applicable air emission event
report during the total combined downtime duration for a given
failure observation.

Facility footprints and facility locations, in terms of Longitudes
and Latitudes, for the Gulf Coast petrochemical complexes under
study are determined using Geographic Information System
(GIS) processing tools over aerial imagery of the region in
addition to U.S. ethylene cracker inventory polypoint shapefiles
from the EIA (U.S. Energy Information Administration EIA, 2023).

Hurricane-induced demand metrics considered for each
petrochemical facility and historical storm event include
reported Saffir-Simpson Hurricane Wind Scale category
(National Weather Service, 2023), maximum total facility area flood
depths, maximum 10-min averaged wind velocities, maximum
single-day rainfall totals, and cumulative rainfall totals over
the duration of the hurricane event. For each hurricane event
considered, facility flood depths and wind velocities for Louisiana
petrochemical complexes are derived using validated SWAN +
ADCIRC-generated hurricane hindcast model outputs gathered
from the Coastal Emergency Risks Assessment (CERA) database
(CERA, 2022). Facility flood depths and wind velocities for
Texas petrochemical complexes are derived using model outputs
published on DesignSafe (Rathje et al., 2017) by Dr. Clint
Dawson of the Computational Hydraulics Group at UT Austin
(Dawson, 2023; Dawson CN. The Computational Hydraulics Group
Institute for Computational Engineering and Sciences, 2022).
GIS shapefiles of maximum flood depths and maximum wind
velocities from both sources are derived following post-processing
techniques for regional surge visualization (González-Dueñas and
Padgett, 2022a) using SWAN + ADCIRC outputs on DesignSafe
(Rathje et al., 2017; González-Dueñas and Padgett, 2022b). These
generated shapefiles are then geoprocessed over the petrochemical
facility areas of the impacted complexes to determine maximum
facility flood depth and maximum wind velocity experienced at
each location and hurricane event combination under study.

Daily and cumulative rainfall totals experienced at each
petrochemical complex under study are computed using data
from the National Oceanic and Atmospheric Administration
(NOAA) Climate Prediction Center (CPC) Unified Precipitation
Project gauge-based analysis of daily precipitation database (Chen
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and Xie, 2008; Xie et al., 2007; Chen et al., 2008). Dates
bounding duration windows for each hurricane event under study
are identified using the National Hurricane Center’s Tropical
Cyclone Reports (National Hurricane Center, 2022). The maximum
daily rainfall total is calculated using the NOAA CPC Unified
Precipitation Project daily precipitation database (Chen and Xie,
2008) investigated over each hurricane event duration window at
each affected petrochemical facility, and the cumulative rainfall
value is calculated by totaling daily rainfalls over the entire hurricane
event duration window for each affected facility during each
hurricane under study.

In addition to the abovementioned set of hurricane hazard-
related predictors, several site-specific petrochemical complex
characteristics of each facility under study are included in
the proposed database. For each facility under study, the total
ethylene production capacity is determined using the corresponding
record in the Oil & Gas Watch Database (Oil and Gas Watch,
2023). Additionally, the percentage of listed facility processing
capacity typically based on a naphtha feedstock mixture for each
petrochemical complex under study is included in the assembled
database, and is identified using the 2015 International Survey of
Ethylene from Steam Crackers (Koottungal, 2015). Most ethylene
producing facilities in the U.S. are capable of handling natural gas-
based feedstock streams, such as ethane and propane, however some
facilities are also able to process a more diversified portfolio of
feedstocks which include a typical petroleum refining byproduct
mixture known as naphtha (Alshammari et al., 2016). This
additional feedstock handling capability of a given petrochemical
facility would likely increase its post-hurricane hazard-induced
disruption resiliency and some approximate measure of it therefore
warrants inclusion in the proposed database.

Previously developed idle time prediction models for regional
Gulf Coast refinery hurricane hazard-induced disruptions
(Capshaw and Padgett, 2023) included a refinery’s Nelson Complex
Index, a tool typically used to compare the sophistication
and secondary conversion capabilities of various refineries
and computed suing processing unit capacities and industry-
assigned complexity coefficients (Kaiser, 2017), as a predictor
variable. However, as no analogous index for ethylene-producing
petrochemical complexes exists in the literature, this paper
proposes a novel process count-based method for characterizing
petrochemical facility complexity. For each unique feedstock
stream conversion process a given petrochemical facility is capable
of, it receives one point. The complexity total is computed as a
simple summation of all process points for a given petrochemical
facility. Unique feedstock stream conversion processes for a given
petrochemical facility are determined based on back propagation of
the most likely chemical process (Chiyoda Corporation, 2023) for
each output produced by the facility, as noted on publicly available
facility fact sheets generated by facility stakeholders (LyondellBasell,
2023). Unlike refinery NCI computations however, as neither
individual processing unit capacities for a given petrochemical
complex are publicly available nor exhaustive summation of all
possible chemical processes practicable, neither scaling of each
counted unique conversion process nor normalization of the simple
process summation is feasible. Still, the proposed index here allows
a first-time exploration between petrochemical facility complexity

and potential for and duration of shutdown or restart following a
hurricane event.

2.3 Petrochemical facility idle time
duration prediction model development

The first objective of this study is the development of a model
for predicting the likelihood and expected duration of hurricane
hazard-induced petrochemical facility shutdowns. Such models are
lacking in the literature and yet are essential for risk and resilience
modeling not only of petrochemical processing infrastructure, but
also the downstream manufacturing markets that depend on these
products. Disaster resilience of both an individual petrochemical
facility and the regional petrochemical processing infrastructure
is herein described by the total recovery time required for the
restoration of system functionality to the normal operating levels
of the pre-disaster system (Cimellaro et al., 2010). Following a
disaster event, the resilience of a given individual petrochemical
complex is expressed as the total duration of a shutdown, or
the summation of both the period of time during which a
petrochemical facility is idled and the period of time during which
the facility is performing restart activities prior to the resumption
of normal, pre-disaster event operations. This subsection describes
the proposed predictive model for the likelihood of shutdown
and expected idle time duration of petrochemical facilities under
hurricane hazards.

In the interest of model transparency and parsimony, the
modeling approach adopted herein is a two-component hurdle
model consisting of a binary classification component that predicts
whether a facility will experience a shutdown, and a generalized
linear model component that predicts the duration of the idle
time if a shutdown is predicted to occur. This approach is adopted
due to the preponderance of null observations in the assembled
historical dataset and the assumption that a regional Gulf Coast
petrochemical facility hurricane hazard-induced idle time database
might behave similarly when fitted to a complementary idle
time prediction model previously developed for regional Gulf
Coast refinery hurricane hazard-induced disruptions (Capshaw and
Padgett, 2023). Each tested model utilizes the same set of eight
predictor variables for model fitting, shown in Table 2, with a k-
fold cross-validation scheme of k = 4 employed during the model
development process.

The binary classification component of each model tested is a
logistic regression model, in which the probability of the occurrence
of petrochemical facility shutdown zi is modeled by Equation 2:

P(zi = 1) = logit−1(ξXi) (2)

where Xi is the vector of predictors for the ith observation and ξ
is a vector of predictor coefficients estimated using the maximum
likelihood method. For the non-zero idle time duration prediction
component of the investigated hurdle model approach, zero-
truncated Poisson, negative binomial, and gamma distributions are
each adopted and compared. Given zi = 1, the Poisson regression
model for idle time duration yi determination is defined by
Equation 3:

yi ∼ Poisson(eα+βXi) (3)
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TABLE 2 Final idle time model predictor variables.

Variable Name Data Range

X1 Maximum Single Day Rainfall (mm) 0–1136

X2 Total Cumulative Rainfall (mm) 0–2931

X3 Maximum Wind Speed at Facility (m/s) 0–110

X4 Maximum Flood Depth at Facility (m) 0–17.5

X5 Ethylene Production Capacity (Mmtpd) 0.27–11.51

X6 Collocated Refinery Idle Time Duration
(days)

0–71

X7 Storm Category (Saffir-Simpson) 1–4

X8 Processing Feedstock by Naphtha (%) 0–1

where the scalar α and the vector β are again both inferred using
the maximum likelihood method. Similarly, the negative binomial
regression model for idle time duration determination given zi = 1
is defined by Equation 4:

yi ∼ NegativeBinomial(eα+βXi ,φ) (4)

with the additional reciprocal dispersion parameter φ estimated
using the maximum likelihood method. Finally, the gamma
regression model for idle time duration determination given zi = 1
is defined by Equation 5:

yi ∼ Gamma((α+ βXi)
−1,φ) (5)

The R2 value, Akaike information criterion (AIC), root-mean-
square deviation (RMSD), and mean absolute deviation (MAD)
were used to measure the performance of each investigated
model (Hodson, 2022; Khair et al., 2017). These benchmarks were
computed for each of the k = 4 cross-validation folds and averaged
to demonstrate overall model performance. The results of the
goodness-of-fit testing showed that the hurdle model approach
with the logistic regression binary classification component and the
gamma distribution generalized linear model idle time duration
determination component had the best performance. This model
had the lowest AIC, RMSD, and MAD, and the highest R2

value, as shown in Table 3. While there is manifestly capacity for
improvement inmodel accuracy, thismodel is the first of its kind and
reflects a complex phenomenon associated with physical damage,
human decision-making, resource availability, among other factors.
Despite data scarcity constraints and the lack of physics-based
component-level fragility models for petrochemical systems in the
literature, the model developed in this study provides a good basis
for continued investigation into the resilience of this under-studied
yet vital piece of domestic petrochemical processing infrastructure.
To facilitate transferability and reuse of this developed model, the
full set of model parameters are made available in Supplementary
Appendix A1.

TABLE 3 Testing data goodness-of-fit results comparison for developed
and tested idle time prediction models.

Model RMSD
(days)

MAD (days) R2 AIC

Poisson 9.89 5.94 0.38 556.69

Negative
Binomial

10.03 6.06 0.37 409.74

Gamma 9.81 5.94 0.40 384.34

2.4 Petrochemical facility restart period
duration prediction model development

The next objective of this study is the development of a
sufficient predictive model for petrochemical facility restart activity
period duration following a shutdown due to hurricane hazards.
Such models are lacking in the literature for both petroleum
refineries as well as petrochemical complexes and yet are crucial for
providing a complete characterization of facility risk and resilience
following a hurricane event. There currently exists no further
characterization of a facility’s restart period in the literature beyond
a uniform distribution approach over an estimated range based on
estimated minimums and maximums from historical instances of
downtime. As previously defined, the resilience of a given individual
petrochemical complex following a disaster event is expressed as the
summation of both the period of time during which a petrochemical
facility is idled and the period of time during which the facility is
performing restart activities prior to the resumption of normal, pre-
disaster event operations. This subsection describes the proposed
predictive model for the expected restart activity period duration of
petrochemical facilities under hurricane hazards, given a shutdown
has occurred.

With prioritization of model transparency and parsimony
guidingmodelling approach selection decisions, multiple regression
models fitted to subsets of the assembled facility and storm
characteristic variables are explored. Various parameter subsets are
systematically assembled and their variable coefficients are inferred
usingmaximum likelihood estimationwith a k-fold cross-validation
scheme of k = 4 employed during the model development process.
The optimum petrochemical facility restart activity period duration
prediction model with the greatest predictive accuracy, having R2

= 0.49, and minimized number of variables is a multiple linear
regression model with a final set of predictor variables shown
in Table 4. Although this developed model similarly demonstrates
potential for improvement in accuracy, it also stands as a pioneering
effort in capturing the intricate dynamics of physical damage, human
actions, and resource limitations in post-disruption petrochemical
facility recovery despite data limitations. Due to the scarcity
of petrochemical output data and uncertainty associated with
processing outputs as a restarting facility ramps back up to normal
operating levels, the restart activity period is herein assumed to
be a period of negligible product output. The authors acknowledge
this source of uncertainty warrants further investigation and
incorporation in future work. To facilitate transferability and reuse
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TABLE 4 Final restart time model predictor variables.

Variable Name Data Range

X1 Facility Idle Time Duration (days) 2–67

X2 Facility Secondary Conversion Complexity 2–13

X3 Ethylene Production Capacity (Mmtpd) 0.49–11.51

X4 Processing Feedstock by Naphtha (%) 0–1

X5 Collocated Refinery Idle Time Duration
(days)

0–34

of this developed model, the full set of model parameters are made
available in Supplementary Appendix A1.

2.5 Excess emissions bayesian network
model development

The final objective in the development of the proposed
framework is the construction of the overarching Bayesian network
leveraged for excess emissions predictive modeling. An overview
of the proposed Bayesian network structure of the culminating
framework developed herein is shown in Figure 2. This excess
emissions prediction framework utilizes and extends the risk and
resilience insights gleaned from the previously developed models
for hurricane hazard-induced petrochemical complex expected
idle time and restart activity period duration determination to
present a more holistic assessment of risk by capturing losses
beyond the economic cost of facility non-productive time, such as
environmental and fenceline community health consequences.

The structure of the proposed Bayesian network (U) is inferred
for the final set (n = 7) of included nodes based on the variable
characteristics of the developed idle and restart time predictive
models as well as preliminary exploration of the assembled dataset.
For example, the results of the developed predictive models indicate
that as facility complexity is not expected to factor into idle
time duration determination, it is not likely to be an appropriate
parent variable for idle time in the proposed Bayesian network
model either. Additionally, no meaningful correlation is found
between the duration of idle time and reported excess emissions
quantities, however restart activity period duration is found to
influence expected emissions quantities based on the behavior of the
assembled database.

Each node (Xi) in the proposed Bayesian network model is
represented as a multi-state discretization of the corresponding
variable from the developed database. Due to data scarcity-
related constraints, variables are not modeled as continuous in
the proposed Bayesian network model-based excess emissions
prediction framework. Parameter learning is further accomplished
by Bayesian estimation, in which model priors for idle time
and restart activity period durations are determined based on
their proposed respective predictive models, and the model priors
for excess emissions are determined based on the reported
excess emissions due to normal operations. The window for the

characterization of normal petrochemical facility processes is a 2-
year span of uneventful (i.e., no hurricane activity having impacted
the region) operations. This normal operations data is collected
for a range of facility complexity and capacity types to generate
a broadly representative cross section for sufficient model prior
characterization. Conditional probability tables for each parent-
child node set, P (Xi|pa (Xi)), are then learned by Bayesian
estimation leveraging Jupyter Notebooks with associate Python
packages through the DesignSafe Jupyter Hub (Rathje et al., 2017)
and utilizing the proposed model priors and the collected dataset
of historical excess emissions due to hurricane hazard-induced
petrochemical facility disruption observations to fully characterize
the joint distribution P(U) of the proposed Bayesian network as
described by Equation 1.

Leveraging Bayesian networks in the development of this
framework allows for unique modeling approach opportunities
and greater flexibility in model implementation applications. The
first potential application opportunity for this framework is in a
fully Bayesian implementation. For a given petrochemical complex
exposed to a given hurricane event, this approach provides a full
estimation of expected idle time duration state probabilities, restart
activity period duration state probabilities, and excess CO emissions
state probabilities, as demonstrated in Figure 3. Another potential
application for this framework is the implementation of a nested
model approach. For example, for a given petrochemical complex
exposed to a given hurricane event, this approach would include
application of the idle time duration predictive model to estimate
expected idle time as a continuous variable, and application of
the restart activity period duration predictive model to estimate
expected restart duration as a continuous variable. With these
estimates for idle time and restart time, the Bayesian network
model can then be implemented to estimate the expected excess
CO emissions state probabilities, as shown in Figure 4. Finally,
this framework can additionally be implemented in a real-time
application using Bayesian updating to estimate expected excess CO
emissions state probabilities as new observations, such as a known
idle time duration following a hurricane hazard-induced facility
disruption, become available, thereby reducing the uncertainty in
the Bayesian network consequence model outputs, as demonstrated
in Figure 5. Similar applications of Bayesian network approaches for
near real-time predictive modeling have been adopted previously in
the assessment of various civil infrastructure systems (Bensi et al.,
2013; González-Dueñas and Padgett, 2021; Schultz and Smith, 2016;
Khakzad and Van Gelder, 2018; Ebad Sichani and Padgett, 2021).

3 Case study results

A case study considering two hurricane events impacting
the Houston Ship Channel (HSC) and the surrounding region
with and without a coastal protection solution (inclusive of
the proposed Galveston Bay Park Plan (GBPP) (Severe Storm
Prediction Education & Evacuation from Disasters Center, 2015;
US Army Corps of Engineers - Galveston District, 2021) mitigation
strategy) in place is next conducted to gain insight regarding
the regional risk and resilience implications of the mitigated
petrochemical complex downtime predictions and their cascading
consequences on expected excess CO emissions. Home to a number
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FIGURE 2
Bayesian network for excess emissions prediction framework overview.

FIGURE 3
Example of fully Bayesian framework implementation.
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FIGURE 4
Example of nested model framework implementation.

FIGURE 5
Example of real-time updating with known idle time duration framework implementation (from Figure 3 scenario).

Frontiers in Built Environment 10 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1418492
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Capshaw and Padgett 10.3389/fbuil.2025.1418492

of major ethylene production complexes, the HSC represents
a highly concentrated industrial corridor which serves as an
integral part of the U.S. Gulf Coast petrochemical industry. The
processing activities of the ethylene production infrastructure
belonging to this Gulf Coast region are regularly disrupted due to
hurricane events (Khakzad and Van Gelder, 2018).

The proposed GBPP is a multi-functional system of flood and
surge protection infrastructure being designed in collaboration
with the Coastal Spine and offers multiple lines of defense
(Severe Storm Prediction Education & Evacuation from Disasters
Center, 2015). The Coastal Spine is the large-scale coastal storm
risk management and ecosystem restoration project designed by
the U.S. Army Corps of Engineers to provide Texas coastal
communities with diverse defense strategies against coastal hazards
which recently secured full Congressional construction funding
(US Army Corps of Engineers - Galveston District, 2021; Zuvanich,
2023). The proposed complementary mid-bay GBPP project
is currently being prepared for environmental permitting by
conducting a socio-economic and environmental impact analysis
to ensure equitable distribution of protection benefits to all
affected coastal communities (Severe Storm Prediction Education &
Evacuation from Disasters Center, 2015).

The selected storm for use in this case study is FEMA Storm
36, a synthetic hurricane event belonging to the suite of storms
designed for the performance of FEMA’s U.S. Gulf Coast region
comprehensive flood insurance investigation (FEMA, 2013). This
synthetic hurricane corresponds approximately to a 0.2% annual-
chance storm event in the HSC, which approximates the local surge
conditions experienced during a Category 4 hurricane. The physics-
based numerical SWAN + ADCIRC model was used to develop
this synthetic storm, and it was validated using several historical
hurricane events (FEMA, 2013). There are six major ethylene
producing facilities considered to be at risk of disruption due to
the hurricane hazards induced by this case study hurricane which
also lie within the envelope of coastline impacted by the hydraulic
influence of the proposed Coastal Spine and GBPP mitigation
strategies (Severe Storm Prediction Education & Evacuation from
Disasters Center, 2015).The SWAN+ADCIRC runs for the baseline
and mitigated scenarios were independently performed at different
stages of theGBPP study, accounting for variations in the granularity
of surge output data. However, as no petrochemical facilities or
related sites of interest lie within any regions containingmissing data
points, the outcome and conclusions of this study are unaffected.

Case study values for maximum total facility area flood
depth and maximum wind velocity for each affected facility are
calculated from the FEMA Storm 36 SWAN + ADCIRC model
outputs (Dawson, 2021) shared across the NHERI DesignSafe
Cyberinfrastructure (Rathje et al., 2017). However, this synthetic
storm development modeling approach did not include derivation
of expected rainfall-related metrics. Due to this lack of correlated
rainfall data for this storm of interest, the case study analysis is
performed for both a light rainfall-type hurricane event (Storm A)
and a heavy rainfall-type hurricane event (Storm B) to demonstrate
the range of potential implications. Values for maximum single-day
and total cumulative rainfall at each considered facility under the
two different rainfall type events are estimated based on historical
stormsHurricane Laura (2020) andHurricaneHarvey (2017), which

were both Category 4 hurricane events each displaying distinct
rainfall characteristics (National Hurricane Center, 2022).

The area impacted by these case study storms represents a
total ethylene producing capacity of approximately 34 thousand
metric tons per day (Mmtpd), which accounts for over 38% of the
total ethylene producing capacity of the Gulf Coast region. For the
purposes of regional resilience modeling, all ethylene-producing
petrochemical complexes outside of the affected area are assumed to
be experiencing normal operating levels for each modeled scenario.
Case study risk and resilience metrics are computed and visualized
using Python analysis packages in Jupyter Notebooks created
through the NHERI DesignSafe Cyberinfrastructure (Rathje et al.,
2017) Jupyter Hub. The geographic distribution of petrochemical
complex total expected downtime durations, collocated refinery
expected idle time durations, and surge extent and elevation across
the region are shown for all modeled storm event and mitigation
scenarios in Figure 6. The associated regional petrochemical
resilience curves for each modeled storm event and mitigation
scenario are shown in Figure 7, for which regional petrochemical
resilience is defined as percentage of regional ethylene production
capacity online over time. Finally, the geographic distribution of
petrochemical complex expected excess CO emissions released due
to storm-induced facility disruptions and surge extent and elevation
across the region are shown for all modeled storm event and
mitigation scenario combinations in Figure 8.

As shown in Figure 7, due to the severity of the synthetic
FEMA Storm 36 under any considered rainfall scenario and
the limited geographic area considered in this case study, all
facilities are predicted to experience shutdown under each modeled
storm and mitigation combination. Therefore, the robustness
of the regional petrochemical infrastructure under all modeled
scenarios is constant.However, the projected regional petrochemical
infrastructure recovery is expected to vary significantly under
different modeled storm and mitigation combinations. The
surge-induced flood hazard mitigation introduced by the coastal
protection solution contributes to a complex’s ability to initiate
restart activities following shutdown more quickly and therefore
results in improved regional petrochemical infrastructure resilience,
as compared to the unmitigated scenarios.

To quantify the mitigative potential of the proposed coastal
protection solution for HSC petrochemical infrastructure,
regionally-averaged expected petrochemical complex total
hurricane hazard-induced facility downtime risk reduction is
computed and explored. Percentage of risk reduction is herein
calculated as the difference in the regional average of total
petrochemical facility downtime for the mitigated and unmitigated
scenarios normalized by the unmitigated baseline scenario. Under
the light rainfall-type hurricane event, Storm A, the risk reduction
offered by the proposed Coastal Spine andGBPPmitigation projects
is approximately 41%. Due to the relatively low threat of rainfall-
induced flooding at the facilities of interest created by this event, the
surge-induced flood hazard component is of greater importance and
a primary driver of risk. As a result, the significant surge-induced
flood mitigation potential of the proposed coastal protection
solution leads to a dramatic reduction in petrochemical facility
downtime risk. Under the heavy rainfall-type hurricane event,
Storm B, however, the risk reduction offered by the proposed coastal
protection solution drops to approximately 29%. This is due largely
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FIGURE 6
Petrochemical complex downtimes, collocated refinery idle times, and maximum surge levels across impacted region for each modeled storm event
and mitigation scenario combination.

to the threat of rainfall-induced flooding at the facilities of interest
under this event, which is not a hazard type the proposed mitigation
projects are likely to combat as effectively as surge-induced flooding.

Similarly, the combined mitigative impact of the GBPP and
Coastal Spine projects is expected to have a particularly pronounced
effect on the expected excess CO emissions risk under the light
rainfall-type storm event. Likely due to the significant expected idle
time durations of collocated refineries for certain petrochemical
facilities, the restart activity periods of the impacted petrochemical
complexes are estimated to be extensive under both the unmitigated
Storm A scenario as well as both the mitigated and unmitigated
Storm B scenarios. As a result, the excess CO emissions quantities
estimated for both the baseline light rainfall-type event Storm
A as well as the baseline heavy rainfall-type event Storm B are

considerable, and the surge mitigation introduced by the proposed
coastal protection solution has limited impact on expected excess
CO emissions reduction under the heavy rainfall-type storm event.
However, the case study results suggest that the implementation
of the proposed coastal protection solution is likely to reduce the
expected excessCOemissions risk under the light rainfall-type event
Storm A significantly, as shown in Figure 8.

The results from this case study generally demonstrate
the capacity for the proposed framework to model both the
individual petrochemical facility-level risk and resilience when
subjected to hurricane hazards as well as the broader regional-
scale petrochemical infrastructure hurricane risk and resilience,
in addition to its capacity to capture cascading environmental and
fenceline community health consequences by estimating excess

Frontiers in Built Environment 12 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1418492
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Capshaw and Padgett 10.3389/fbuil.2025.1418492

FIGURE 7
Resilience curves for percentage of Gulf Coast regional ethylene
production capacity online over time for each modeled storm event
and mitigation scenario combination.

criteria air pollutant emissions released as a result of hurricane
hazard-induced petrochemical facility disruptions. Furthermore,
this case study demonstrates the expected mitigative impacts of
the proposed GBPP and Coastal Spine projects on regional risk to
petrochemical infrastructure and the surrounding communities due
to hurricane-induced hazards.

4 Discussion

This study identifies and addresses limitations in current data,
modeling tools, and methods for assessing the uncertain impacts
of coastal hurricanes on petrochemical processing complexes and
the widespread and cascading consequences of facility failures.
Recognizing their crucial role in community resilience and risk
assessment, the study tackles the need for models that predict both
hurricane hazard-induced petrochemical infrastructure downtime
as well as cascading consequences. It proposes practical methods
for framework development and demonstrates an approach for
using the proposed framework to gain new insights into regional
petrochemical risk and resilience, including how disruptions affect
surrounding communities. A flexibly implementable framework for
the prediction of petrochemical complex excess emissions due to
hurricane-induced facility failure is proposed leveraging Bayesian
networks and generalized and multiple regression. Additionally,
a method of predicting U.S. Gulf Coast petrochemical complex
idle time due to hurricane-induced hazards is proposed using a
hurdle model approach comprised of a logistic regression binary
classification component and a gamma distribution generalized
linear model idle time duration determination component with a
vector of loss-influencing predictor variables. To provide a more
comprehensive understanding of petrochemical complex hurricane
risk and resilience, a method of predicting facility restart activity
period duration following hurricane hazard-induced shutdown is
additionally proposed using multiple linear regression with a vector
of predictor variables.

The proposed framework is fitted using approximately 80
historical observations from hurricanes impacting petrochemical
processing complexes along the U.S. Gulf Coast over a 20-year
period. The proposed framework is applied to several case study
events of hurricanes impacting the HSC to evaluate the resilience
enhancement and risk reduction effects of various proposed
mitigation strategies. This paper highlights the widespread and
interconnected effects that hurricane-induced failures of crucial
facilities can have on local communities and product markets.
In future applications, this framework could be potentially
integrated with models of other infrastructure systems, as
well as social and economic systems, to better understand
their interdependencies. As an example, this petrochemical
infrastructure-specific framework might be used as one element of
a larger regional hurricane risk and resilience framework, integrated
with corresponding models for other critical infrastructure systems,
such as power, pipelines, ports, roads, and railways, to examine
how these systems interact and recover from hurricane-induced
disruptions.

Further advantages of the Bayesian network modeling approach
employed in the development of this framework include the
opportunity for, and ease of, future model updating as new
data becomes available. As new hurricane hazard-induced
petrochemical facility disruption observations are gathered, the
existing conditional probability tables between the current parent
and child nodes in the Bayesian network become the model priors,
and Bayesian inference can be implemented to easily retrain the
model with the new dataset. This exercise will result in updated
conditional probability tables throughout the network to reflect the
uncertainty reduction enabled by a larger training dataset for the
framework.

In future work, the methodology for the development of
this framework might be applied to other types of emissions
or infrastructure. For example, following hurricane hazard-
induced facility disruptions, oil and gas processing complexes
regularly report excess emissions of other types of criteria
air pollutants, including sulfur dioxide (SO2) and particulate
matter, which can also pose serious acute community health and
environmental threats (Xa et al., 2017; Sexton et al., 2007). The
developed database might be expanded to include other types of
emissions, and model retraining might be undertaken to adapt
the framework for prediction of these additional emissions of
interest. Furthermore, this methodology might be applied to other
types of oil and gas processing infrastructure. Future research
in this space might be conducted to develop a corresponding
cascading consequence modeling framework for other types of
natural gas processing infrastructure as well as crude refining
facilities.

While the proposed framework and its application in risk and
resilience assessment fill important gaps in current knowledge,
some limitations offer opportunities for future development. For
example, the incorporation of additional data for model training
and validation as it becomes available will be crucial to model
performance improvement. This might allow the framework to
be confidently applied beyond the regionally specific case of the
U.S. Gulf Coast. Additionally, enriching the idle time and restart
period duration prediction models by combining elements such
as expert opinion, organizational failure models (Robert Taylor,
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FIGURE 8
Petrochemical complex excess CO emissions and maximum surge levels across impacted region for each modeled storm event and mitigation
scenario combination.

2020), and individual petrochemical processing facility component
failure models (Esouilem et al., 2020) could offer a valuable
complement to the purely empirical approach presented herein.This
might improve not only model accuracy but also pave the way for
modeling recovery from disaster events beyond hurricanes, such as
seismic or extreme temperature events.

Further investigation through sensitivity analyses could also
provide deeper insights into the influence of different predictor
variables within the framework and the relative importance of
downtime uncertainty compared to other factors in comprehensive
risk-based resilience assessments. Finally, consideration of partial
facility shutdowns should be included in future work. Hurricane
hazards may occasionally result in facilities operating at a reduced
capacity rather than full shutdown of production, which can still
significantly impact output and consequently regional risk and

recovery. Accounting for thesemore nuanced scenarios will improve
the accuracy and usefulness of the framework.
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