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The human body, composed of interconnected subsystems with complex
dynamic behavior, is often oversimplified or neglected by structural designers
and building codes. Human-induced loads, whether passive (e.g., standing,
sitting) or active (e.g., walking, dancing, jumping), considerably impact the
dynamic response of structures such as grandstands, slender slabs, and
pedestrian bridges, highlighting the necessity for their consideration in design.
This study introduces three closed-loop control models to represent the
human-structure interaction (HSI) effect: a Proportional Integral (PI) controller,
the Pole Placement control algorithm (PP), and the Linear Quadratic Regulator
with an Observer (LQR + L). While well-established in robotics and automation
engineering, these control algorithms represent a novel and transformative
approach when applied to HSI. They offer an intuitive and effective framework
for modeling the dynamic feedback mechanisms inherent in HSI. The model
parameters are obtained using global optimization and curve fitting methods,
followed by experimental validation on a test structure. The results of this study
indicate that feedback controllers accurately predict the experimental structural
response for different subjects. These findings highlight the importance of
incorporating HSI effects into structural design, promising the design of safer
and more comfortable structures in human-occupied environments.

KEYWORDS

human-structure interaction, standing human, vibration serviceability, feedback
control, full-scale testing, dynamics analysis, sub-structuring method, state-space
modeling

1 Introduction

In recent years, the use of novel materials and design methods has allowed a growing
trend toward the construction of lightweight, slender, and aesthetically appealing structures,
including thin staircases, long-span bridges, composite slabs, and grandstands (Jones et al.,
2011; Chen et al., 2018; Feng et al., 2019; Huang et al., 2020). These flexible structures are
typically characterized by low natural frequencies and damping, making them susceptible
to vibration serviceability issues as human-induced vibrations (Gomez et al., 2021). Despite
their importance, the dynamic effect of passive occupants is often neglected in structural
analysis, leading to unexpected structural behavior (Sachse et al., 2004; Busca et al., 2014).
Several studies have reported significant changes in the dynamic characteristics of structures
due to the presence of people (Reynolds and Pavic, 2004; Wei et al., 2019). One of the most
well-known examples of unexpected behavior due to human activities on structures is the
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Millennium Bridge in England, which experienced excessive
vibrations on its opening day (Dallard et al., 2001; Strogatz et al.,
2005). This case sparked great concern about Human-Structure
Interaction (HSI) and the importance of accurately predicting the
response of slender structures.

Most structural designers, codes, and guidelines simplify the
effects of human activities on structures by considering them as a
static uniformly distributed load per unit area with a reference value
(Eurocode 1, 2006; ASCE, 2013). Despite numerous studies and
tests attempting to establish realistic values for live loads, significant
differences in suggested values persist. This variability can lead to
either overestimation or underestimation of the impact of human
activities, potentially causing unexpected vibrations in structural
elements. Serviceability limits are typically set to ensure that a
structure remains functional and comfortable for its intended use.
While these vibrations may not directly damage the structure, they
can cause discomfort for occupants, disrupt sensitive equipment,
and interfere with the structure’s normal operation (Zhu et al., 2020).
Therefore, guidelines and design codes set a lower limit for the
equivalent static live load and the expected natural frequency to
enhance structural vibration serviceability (Eurocode 5, 2006; NBC,
2015). This approach aims to prevent occupant discomfort and
minimize the risk of resonant responses due to human activities.
However, by neglectingHuman-Structure Interaction (HSI), current
codes and guidelines often lead to inaccurate predictions of a
structure’s dynamic response, typically underestimating the impact
of occupants (Matsumoto and Griffin, 2003; Subashi et al., 2006).
To address this, the dynamic effects of stationary individuals
should be more thoroughly investigated and integrated into the
structural analysis and design of elements like thin slabs and
grandstands (Gomez et al., 2018).

Considering the different dynamic characteristics of the
human-structure system compared to the empty structure, it
is crucial to treat both humans and the structure as dynamic
systems (Reynolds and Pavic, 2004; Busca et al., 2014). Therefore,
researchers have approached the standing human as an equivalent
mass-spring-damper (MSD) system, considering from a single
degree of freedom (SDOF) to higher-order systems, instead of
treating the human as an added mass (Wei and Griffin, 1998;
Matsumoto and Griffin, 2003; Zhang, 2013; Hashim et al., 2020).
However, models based on lumped systems often fail to depict
standing humans. This is attributed to the complexity of the
human body, encompassing intricate subsystems that respond
variably to different vibration levels, ultimately introducing
considerable uncertainty into the models (Ortiz and Caicedo,
2019; Calonge et al., 2023). Biomechanical studies have attempted
to understand the human response to vibration by investigating
factors such as the ability to generate feedback to maintain balance
and the apparent mass and stiffness, which can vary according
to different parameters (Subashi et al., 2006; Subashi et al., 2008;
Bierbaum et al., 2011). Chagdes et al. (2013) analyzed the stability of
a standing human on an unstable platform as a coupled system with
nonlinear muscle stiffness, significant sway, and a time delay in the
neuromuscular feedback. Consequently, accurate prediction of HSI
effects requires precise models that capture this complex behavior.

This study develops and evaluates three feedback control-
based models to represent the effects of HSI. Section 2 defines
the HSI, establishing the theoretical framework for the analysis.

Section 3 outlines the experimental program designed to evaluate
theHSI. Section 4 describes the proposed feedbackmodels, detailing
how the Proportional Integral (PI) controller, the Pole Placement
(PP) controller, and the Linear Quadratic Regulator with an
Observer (LQR + L) are applied to represent the influence of a
standing human. Section 5 outlines the fitting process and compares
the similarity between the results obtained from the proposed
models and the experimental data. The document concludes with
a summary of the key findings, underscoring the development of
control models capable of representing HSI.

2 The HSI effect

Researchers have experimentally demonstrated that a human in
passive and active conditions contributes not only additional mass
but also affects the frequency and damping properties of a structure
(Brownjohn, 2001; Pedersen, 2008; Ortiz et al., 2012; Gomez et al.,
2021). Through free vibration and forced-vibration tests, they
compared the responses of structures loaded with sandbags,
equivalent in weight to a human, to those loaded with humans
in a passive condition. The results revealed differences depending
on the participant’s weight and posture. These findings emphasize
the relevance of developing strategies that accurately represent
this behavior.

The HSI is defined as the mutual dynamic effect of the
human and the structure on each other (Ahmadi et al., 2019).
HSI encompasses two parts: 1) the effect of the human body
on the structural dynamic properties and 2) the influence of
structural vibrations on human behavior. These two components
interact in a feedback loop (Lin et al., 2021), resulting in dynamic
changes in the human-structure system, such as changes in
natural frequencies and modal damping due to human presence
(Brownjohn, 1999; Busca et al., 2014). Like a feedback control
system, which employs measured responses to optimize system
performance and achieve desired outcomes, humans exhibit a
similar capability when interacting with structures. HSI is not
confined to active scenarios like dancing or running; it also occurs
when individuals are stationary, such as sitting or standing. Even
in passive conditions, the human body influences the structure
by interacting with it through factors like body sway, posture
adjustments, and changes in mass distribution. Consider the
scenario where a structure experiences excessive vibrations, a
standing human detects these vibrations and instinctively responds
to maintain balance while reducing the vibrations. This interaction
directly affects the structural response, making human behavior a
natural feedback control system that instinctively adjusts tomaintain
balance and mitigate vibrations.

Control systems engineering encompasses the modeling of
diverse physical systems and uses these models to synthesize control
strategies that provide the desired performance characteristics of
system. A control system integrates multiple components, forming
an interconnected system configuration (Ogata and Brewer, 2010).
Typically, control systems are depicted using block diagrams that
visually represent the relationship between each system component,
and this technique allows each system element to be modeled
separately. Similarly, the HSI examines the relationship between a
structure with readily representable behavior and the human part

Frontiers in Built Environment 02 frontiersin.org

https://doi.org/10.3389/fbuil.2024.1524027
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Lopez et al. 10.3389/fbuil.2024.1524027

FIGURE 1
Feedback block diagram, representing the free vibration tests.

whose behavior depends on several parameters associated with high
uncertainties. Partitioning the coupled HSI system enhances the
understanding of subsystem dynamics, making control theory a
straightforward and intuitive approach to describing the HSI effect.

Figure 1 illustrates a closed-loop control system, where an
impact hammer hits the structure (known as the plant) and
generates a disturbance signal d, resulting in a vibration response
denoted as y. The standing person, acting as the controller,
perceives this response and generates a control action f to maintain
equilibrium and minimize the structural response. Notably, this
control system framework considers external disturbances and
uncertainties commonly encountered in practical scenarios, thus
accurately representing the complex dynamics inherent in human-
structure interaction.

3 Experimental program

The structure employed for testing is a cantilever steel structure
consisting of 5× 4× 1/4 steel tubes. The structure comprises four
supports, two fixed and located in the middle, providing an
adjustable span to change the structure’s stiffness. Additional
concrete blocks allow mass customization, ensuring the structure
has a fundamental frequency below 5 Hz associated with flexible
structures prone to suffer significant dynamic responses due to
human loads (Figure 2). Free vibration tests using an impact
hammer are particularly convenient due to their simplicity and
effectiveness in assessing the dynamic properties of structures. An
impulse force applied with a hammer induces vibrations in the
system, facilitating the easy identification of natural frequencies,
damping ratios, and mode shapes through frequency analysis. This
method requires minimal equipment, and the non-intrusive nature
of the hammer test allows for quick and repeatable measurements,
providing reliable data without the need for extensive setup or
complex instrumentation.

The experimental data used in this study were obtained
from impact hammer tests conducted by Ortiz (2016). For this
experiment, the structure was equipped with two accelerometers
positioned in the vertical and horizontal directions at the midpoint

of the cantilever. Impact forces were applied to concrete blocks
within less than 0.1 m from the edge. Data were sampled at 1,652 Hz
and filtered using a low-pass filter with a cutoff frequency of 20 Hz
to eliminate higher frequencies. Two distinct sets of tests were
performed. The first set of tests focused on characterizing the
dynamic properties of the empty structure (Figure 2A). The second
set involved testing the structure with a person standing on it,
thereby capturing the HSI and the overall response of the entire
human-structure system (Figure 2B). During the test program, nine
subjects participated, each with their corresponding properties
detailed in Table 1. Three tests were conducted for each subject to
ensure repeatability; however, only one record was used for the
analysis. The participants gave informed consent, with approval
from the University of South Carolina Institutional Review Board.

Figures 3, 4 show a reduction in natural frequencies across
all participants. Notably, the frequency response in the vertical
direction exhibited a more significant decrease in magnitude,
suggesting a stronger control action in this orientation. Additionally,
the responses imply that disturbances in the vertical direction induce
vibrations in both vertical and horizontal axes. In line with previous
studies onHSI (Brownjohn, 2001; Busca et al., 2014;Wei et al., 2019),
the experimental frequency responses from the occupied structure
indicate that human presence can lower natural frequencies and
increase damping within the coupled system.

4 Feedback models to represent the
HSI

This section introduces the proposed models to represent the
HSI depicted by Figure 1. The framework allows for independent
modeling of each subsystem, enabling a more comprehensive
understanding of how each component of the coupled human-
structure system contributes to the overall response. Using a
state-space approach reduces the complexity of the mathematical
expressions in this Multiple-Input Multiple-Output (MIMO). In the
occupied structure, the impact hammer and human control actions
act as inputs, while the acceleration responses in both vertical and
horizontal directions are the outputs. The framework captures the
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FIGURE 2
Experimental configuration for conducting HSI tests. Adapted from Ortiz (2016). (A) Empty structure. (B) Occupied structure.

TABLE 1 Properties of subjects involved in tests.

ID Age Height Mass BMI

(years) (m) (kg) (kg ⋅m−2)

P1 30 1.73 73 24.4

P2 17 1.68 67 23.7

P3 17 1.56 86 35.3

P4 16 1.78 72 22.7

P5 23 1.83 73 21.8

P6 34 1.81 72 22.0

P7 19 1.85 69 20.2

P8 30 1.71 88 30.1

P9 28 1.83 78 23.3

bidirectional interactions between the structure and the human,
where each affects the other. These interactions alter the dynamic
characteristics of the combined subsystems. The mathematical
formulation for each component is detailed below.

4.1 Structure subsystem model

Based on the sensor placement at the middle-end of the
cantilever (Figure 5) and the observed frequency response, the
structure is modeled as a two DOFs linear system (Equation 1),
accounting for both vertical (usv) and horizontal (ush) response
directions.

Mü (t) +Cu̇ (t) +Ku (t) = rd (t) +n f (t) (1)

Referring to the structural displacement defined as u(t) =
[usv(t) ush(t)]T and the relation defined in Equation 2, the

equation of motion is described using the modal formulation, as
outlined in Equation 3 as

u (t) =Φq (t) (2)

Iq̈ (t) +Zq̇ (t) +Ωq (t) =ΦTrd (t) +ΦTn f (t) (3)

where Z and Ω are diagonal matrices defined by the natural
frequencies (ω) and damping ratios (ξ) as

Z = 2[

[

ξ1ω1 0

0 ξ2ω2

]

]
, Ω = [

[

ω2
1

0 ω2
2

]

]
,

Φ is the modal normalized shape matrix, q is the corresponding
generalized coordinate, and the forces caused by the hammer and
the human are denoted by d(t) and f(t), respectively. The directions
in which these forces are applied are given by the influence vectors
r = [1 0]T and n = [1 0]T. In the case of the hammer impact,
the force is applied only in the vertical direction. While the exact
directionality of the human control actionmay not be fully identified
using the available setup, it is assumed to occur solely in the
vertical direction. The preference for the modal formulation over
the geometric formulation arises from the inherent uncertainty
surrounding the structure mass and stiffness values. In contrast,
experimental data can easily provide accurate measurements of
natural frequencies and modal shapes, making the modal approach
a more straightforward and effective method.

The structure subsystem incorporates both the hammer force
and the human control force. However, when the structure is
empty, there is no f action, leading to a simplified state-space
representation. Equation 4 defines the state-space formulation for
the structure, derived from Equation 3:

ẋ (t) = Asx (t) + [Bs Bp][

[

d (t)

f (t)
]

]
(4)

where

As = [
0 I
−Ω −Z

]
4x4

, Bs = [
0

ΦTr
]
4x1

, and Bp = [
0

ΦTn
]
4x1
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FIGURE 3
Experimental time response for the empty (black line) and occupied (gray lines) structure. (A) Acceleration in the vertical direction. (B) Acceleration in
the horizontal direction.

FIGURE 4
Experimental transfer functions for the empty (black line) and occupied (gray lines) structure. (A, C) show the magnitude and phase in the vertical
direction, respectively. (B, D) show the magnitude and phase in the horizontal direction.
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FIGURE 5
Schematic representation of the experimental structure and the setup.

and the defined states (x) correspond to the modal displacement
and velocity for each direction. The acceleration time response is
the output, defined by Equation 5 as

y (t) = Csx (t) + [Ds Dp][

[

d (t)

f (t)
]

]
(5)

where

Cs = [−ΦΩ−ΦZ]2x8, Ds = [ΦΦTr]2x1, and Dp = [ΦΦTn]
2x1
.

4.2 Human subsystem models

The human control action consists of three key components:
sensory organization, central motor planning, andmotor execution,
which work together to select appropriate responses and adjust
the system in a closed-loop manner (Ortiz and Caicedo, 2015).
First, sensory organization occurs through mechanisms such as
the visual, vestibular, and proprioceptive systems, which gather
information about the environment. Second, the brain processes this
sensory input (controlling) and generates commands to maintain
the desired state, such as equilibrium. Third, motor execution
(acting) occurs through the coordinated interaction of muscles and
the skeletal system to apply the necessary forces (Fransson et al.,
1998). This process mirrors the fundamental elements of a control
system, allowing human behavior to be modeled using control
theory techniques, which provides deeper insights into its dynamics.
Viewing humans through this control-system perspective offers a
novel approach to understanding how they interact with structures
in response to vibrations.

Typically, controller design implies several design performance
criteria, such as control effort, overshoot, and state error. These
criteria help ensure the system achieves the desired performance
while minimizing energy consumption and improving response
accuracy. However, in this study, the controller parameters
were adjusted by comparing the experimental data with the
modeled responses to minimize the error between them. This
approach ensures that the modeled system closely replicates the
observed behavior.

FIGURE 6
Block diagram of the PI controller representing the HSI.

4.2.1 Human as a PI controller
The Proportional Integral (PI) controller is a variation of the

widely used Proportional Integral Derivative (PID) controller, both
of which are extensively applied in industrial settings. The PID’s
versatility proves advantageous, as it can be applied to different
dynamic systems, even in cases where the mathematical model of
the plant is not entirely known (Ogata and Brewer, 2010; Dorf,
2017). Specifically, the PI controller is defined by Equation 6, and the
control action is computed from the estimated vertical acceleration
response of the structure, as depicted by Equation 7; Figure 6,
where Kp and Ki are the proportional and integrative coefficients,
respectively (Ogata and Brewer, 2010).

H (s) = Kp +
Ki

s
(6)

f (t) = Kp ̈usv (t) +Ki∫ ̈usv (t)dt (7)

The PID controller was also evaluated. However, there was no
significant difference with the fit obtained with the PI, showing that
including the derivative term does not contribute significantly to
the response in this case. The PI with only two terms can represent
the changes observed in the response both in the frequency and
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time domains. Hence, for its simplicity, it is preferred over the
PID. It is also noteworthy that this controller has been previously
used to represent the HSI through a closed-loop control system,
yielding similar values for a structure with a single dominant
frequency (Ortiz and Caicedo, 2015).

4.2.2 Human as a PP controller
The Pole Placement (PP) algorithm, or pole assignment,

involves selecting desired pole locations in the complex plane
corresponding to specific dynamic characteristics, such as
stability and responsiveness. By strategically positioning these
poles, the control system can achieve the desired transient
and steady-state performance. The desired closed-loop pole
locations are determined experimentally from the transfer
function, rather than through predefined design criteria. This
method assumes that all state variables are both measurable
and available for feedback, and that the system is fully
state-controllable.

The states refer to a set of variables that capture the
essential characteristics of a dynamic system at any given time.
These variables, such as position and velocity, are sufficient to
predict the system’s future behavior when the current inputs
are known. In this model, the states not only represent physical
quantities but also serve as the foundation for computing the
control action. Thus, in contrast to the PI model where the
control action is derived solely from system outputs, the PP
algorithm directly generates the control force using a set of
defined states x to drive the system toward the desired dynamic
performance.

The desired locations of the closed-loop poles are determined
by the experimental transfer function. By leveraging state feedback,
the algorithm places the closed-loop poles in specific locations
on the complex plane, ensuring the system behaves as required.
This process is achieved through an appropriate state feedback
gain matrix, K, which can be calculated using Ackermann’s
formula, shown in Equation 8. This approach provides flexibility, as
the PPmethod allows for positioning the poles at any location in the
complex plane to meet the stability and performance requirements
of the HSI system.

K = [0 0 … 0 1]

[Bs ⋮ AsBs ⋮ ⋯ ⋮ As
n−1Bs]

−1 ϕ (As) (8)

The whole human-structure system through this approach is
depicted in Figure 7.

By substituting Equation 9 into Equation 4, the closed-loop
system equation (Equation 10) is obtained.This equation highlights
the changes in the system matrix corresponding to the closed-
loop system and, consequently, its eigenvalues. This observation
exhibits how the controller can effectively capture changes in
the structural dynamics induced by human interaction without
introducing complexity to the closed-loop system.This ensures that
the closed-loop system maintains the same number of poles and
zeros as the empty structure.

f (t) = −Kx (t) (9)

ẋ (t) = (As −BsK)x (t) +Bp f (t) (10)

FIGURE 7
Block diagram of PP method representing the HSI.

4.2.3 Human as a LQR + L controller
The third model representing the subject includes two essential

components: a Linear Quadratic Regulator (LQR), which calculates
the control action, and a Luenberger observer (L), which estimates
the system’s states to enable accurate control.TheLQRprovides a key
advantage over the Pole Placement (PP) method by systematically
determining the state feedback matrix through optimization.
Specifically, the gainmatrixK in the LQR is obtained byminimizing
a performance index, JLQR, expressed as shown in Equation 11:

JLQR = ∫
∞

0
(xTQx+ fTR f)dt (11)

where matrices Q and R assign weights to the significance of the
state variables x and the control action f, respectively. Solving
this optimization problem yields an optimal solution for control;
however, it may not produce a change in the system’s closed-
loop frequencies. This limitation may induce the estimated closed-
loop states (üs) less suitable, given the discrepancies between the
estimated (üs) and the experimental ( ̈̃us) responses.

The Luenberger observer enhances the accuracy of closed-
loop state estimations by using the difference between measured
and estimated responses to provide a precise assessment of the
system’s actual states. This approach combines sensed data with
knowledge of the control system to estimate the states (x̂), which
are then incorporated into a state feedback controller, as shown
in Figure 8 and defined by Equation 12. These estimated states
represent approximations of internal variables within a dynamic
system that cannot be measured directly. Since the current setup
does not allow for direct measurement, observer-based estimation
techniques infer these states using available data and the structural
model. Accurate state estimation is essential for feedback control,
as it enables the controller to compute control actions that drive
the system response to the desired outcome, ensuring the model’s
robustness and precision in dynamic environments.

The state estimation is computed, as Equation 12 shows. To
address potential inaccuracies in the system matrices As and Bs, an
additional term L, known as the observer gainmatrix, is introduced.
This term adjusts the estimated states by weighting the difference
between the actual measured output and the estimated output. As
outlined in Equation 4, the estimated system output y corresponds
to the acceleration response (üs). The control action f in this model
is computed bymultiplying the feedback control matrix by the states
estimated by the observer. This approach maintains accuracy in
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FIGURE 8
Block diagram of LQR + L control.

the control process, even if potential uncertainties exist within the
system model.

̇̂x = Asx̂+Bsu+ L(y−Csx̂)

= (As − LCs) x̂+Bsu+ Ly
(12)

5 Results and discussion

The parameters of the proposed models are fitted using a global
optimization algorithm inMATLAB.This process aims to minimize
the Normalized Mean Square Error (NMSE) between the model
response, xmod, and the experimental acceleration response, xexp.
This optimization is conducted in both the time and frequency
domains and accounts for vertical and horizontal directions. The
NMSE is computed as follows:

NMSE =
∑[xexp − xmod]

2

∑[xexp −mean(xexp)]
2 (13)

The cost function J, described in Equation 13, serves as
a combined metric, capturing the accuracy of the model in
predicting the dynamic behavior of the structure during the
conducted tests across both time and frequency domains. It is
defined by Equation 14 as the weighted average of the responses:

J = 0.25Etv + 0.25Eth + 0.25Emv + 0.25Emh (14)

where the NMSE of the vertical and horizontal acceleration time
responses are denoted as Etv and Eth, respectively. While the NMSEs
of the vertical and horizontalmagnitudes of the Frequency Response
Functions (FRFs) are represented by Emv and Emh, respectively.

As outlined in Equations 4, 5, the proposed state-space model
for the empty structure accounts for two distinct vibration modes.
The first mode has an identified frequency of 3.47 Hz and a damping
ratio of 0.32%, while the second mode exhibits a frequency of

3.93 Hz and a damping ratio of 0.74%.Thismodel framework allows
for a detailed analysis of the human influence over both modes.
With an average fit of 96.84%, this representation indicates a close
match between the experimental and modeled time and frequency
responses of the empty structure, as illustrated in Figures 9, 10,
respectively. This confirms that the structural formulation based on
dynamic properties effectively captures the behavior in both time
and frequency domains.

Once the structure has been characterized, the interaction
between the subject and the structure is represented using
feedback control algorithms. For the occupied structure, the
parameters for each human model are estimated using data
from six individual subjects. The estimation process involved
determining the parameters that best fit the experimental responses
for each subject (Table 2). Subsequently, the model derived from
the average parameter (Avg.) values is subjected to validation using
the data from the remaining three subjects. All human-structure
coupled models considered in this study successfully capture the
decreased natural frequencies and the additional damping observed
in the occupied system. This is achieved by adjusting the closed-
loop poles to more stable positions, accurately reflecting the
influence of HSI.

The first model considered is the PI controller, with the
optimization process yielding proportional (Kp = 152) and integral
(Ki = 453) constants.These parameters allow the controller to adjust
the closed-loop system’s response effectively (Figure 11). A key
advantage of this controller is that it does not introduce additional
poles, preventing the appearance of unwanted frequencies that could
negatively impact the system behavior. As a result, it maintains a
more consistent phase across the evaluated frequency range. While
the PI controller tends to predict responses more accurately in
the vertical direction, it shows a more pronounced out-of-phase
behavior in the horizontal direction (Figure 12).

ThePPmethod enables for the precise positioning of the system’s
closed-loop poles at specific locations in the s-plane.This location is
significant because the poles correspond to the system’s eigenvalues,
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FIGURE 9
Experimental time response (solid line) and state-space model prediction response (dashed line) for the empty structure. (A) Acceleration in the vertical
direction. (B) Acceleration in the horizontal direction.

FIGURE 10
Experimental frequency response (solid line) and state-space model prediction response (dashed line) for the empty structure. (A, C) show the
magnitude and phase in the vertical direction, respectively. (B, D) show the magnitude and phase in the horizontal direction, respectively.

determining its dynamic response. By adjusting the feedback gain
matrix K, based on the estimated states of the structural model, the
method provides precise control over the system’s behavior without
introducing additional frequencies. Although tuning this method is
more complex than the PI controller, PPmethod effectively captures
essential system changes, such as increased damping and reduced
natural frequencies, without increasing the overall complexity of the
closed-loop system (Figures 13, 14).

The LQR + L controller calculates the control action
by incorporating the difference between the measured and
estimated responses, rather than depending solely on estimated

values. As shown in Figure 15, this approach results in a
more accurate agreement with the time-domain response,
demonstrating the model’s effectiveness in capturing the
system’s behavior. Additionally, the closed-loop response
successfully captures the variations observed in the experimental
frequency response (Figure 16), making the LQR + L controller a
more robust solution for managing uncertainties and accounting for
unmodeled dynamics.

Each modeling approach for HSI introduces a varying level
of complexity to the overall human-structure system. The PI
controller provides a simple representation of HSI, requiring only
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TABLE 2 Summary of the controller parameter values obtained during the fitting process.

Subject ID

Controllermets
P1 P2 P3 P4 P5 P6 Avg

PI
Kp 151.3 150.9 178.7 139.5 150.4 142.3 152.2

Ki 486.3 641.1 301.3 410.9 454.7 425.1 453.2

PP

K1 2,333 2037 2,613 2,216 2,388 2,291 2,313

K2 −1,248 −1,358 −1,436 −1,148 −1,203 −1,148 −1,257

K3 −28.12 −43.86 −31.65 −21.78 −25.08 −26.48 −29.49

K4 −1.37 −3.11 −1.83 0.71 0.81 0.08 −0.78

LQR + L

K1 −2,605 −2,699 −2,608 −2,632 −2,620 −2,686 −2,642

K2 1,221 1,139 1,219 1,199 1,210 1,152 1,190

K3 −257.1 −256.9 −257.1 −257.1 −257.1 −257 −257.05

K4 465.6 470.7 465.8 467 466.4 469.9 467.57

L1 −2.20 −15.21 −2.61 −6.63 −4.67 −13.72 −7.50

L2 1.34 9.30 1.60 4.05 2.86 8.39 4.59

L3 −102.59 −30.13 −100.28 −77.89 −88.78 −38.43 −73.02

L4 62.72 18.42 61.31 47.62 54.28 23.49 44.64

FIGURE 11
Experimental time response (solid line) and PI controller prediction response (dashed line) for the occupied structure. (A) Acceleration in the vertical
direction. (B) Acceleration in the horizontal direction.

two additional parameters. In contrast, the Pole Placement approach
does not rely on the system’s acceleration response to compute the
control action; instead, it uses the calculated states.This assumes that
the human perceives (or estimates) the velocity and displacement
as states and generates a control action based on these states

without adding complexity to the closed-loop system. The LQR + L
controller refines this by using the difference betweenmeasured and
estimated states to compute the control action, allowing it to account
for unmodeled dynamics and improve accuracy, particularly in
capturing uncertainties in the system’s behavior.
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FIGURE 12
Experimental frequency response (solid line) and PI controller prediction response (dashed line) for the occupied structure. (A, C) show the magnitude
and phase in the vertical direction, respectively. (B, D) show the magnitude and phase in the horizontal direction, respectively.

FIGURE 13
Experimental time response (solid line) and PP controller prediction response (dashed line) for the occupied structure. (A) Acceleration in the vertical
direction. (B) Acceleration in the horizontal direction.

While these control models do not directly correspond to a
physical representation of human behavior, they offer a simpler
and more efficient alternative to traditional mass-spring-damper
(MSD) models. By requiring fewer parameters, they result in a
less complex closed-loop system, thereby reducing computational
demand for calculating the system response. Moreover, these
models, particularly the LQR + L controller, demonstrate strong
accuracy in predicting the response of the occupied system in
both time and frequency domains, as illustrated in Figure 17.
Each controller achieves different errors relative to experimental

data, even in validation cases where information not used in the
adjustment process is involved.

Although these control models do not directly correspond to a
physical representation of human behavior, they provide a simpler
and more efficient alternative to traditional mass-spring-damper
(MSD) models. By requiring fewer parameters, they reduce the
complexity of the closed-loop system and minimize computational
demands for calculating the system response. Notably, thesemodels,
particularly the LQR + L controller, exhibit high accuracy in
predicting the response of the occupied system across both time
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FIGURE 14
Experimental frequency response (solid line) and PP controller prediction response (dashed line) for the occupied structure. (A, C) show the magnitude
and phase in the vertical direction, respectively. (B, D) show the magnitude and phase in the horizontal direction, respectively.

FIGURE 15
Experimental time response (solid line) and LQR + L controller prediction response (dashed line) for the occupied structure. (A) Acceleration in the
vertical direction. (B) Acceleration in the horizontal direction.

and frequency domains, as shown in Figure 17. Each controller
achieves different error levels relative to the experimental data, even
in validation scenarios involving information not used during the
fitting process.

6 Conclusion

This study develops three feedback control models to represent
Human-Structure Interaction (HSI) using experimental data from

free vibration tests on a cantilever steel frame occupied by a
standing human. The results reveal consistent changes in the
structural response, including reductions in natural frequencies
and increases in damping, with a more pronounced impact
observed in the vertical direction. This suggests that standing
subjects exert greater control along this axis, which aligns with the
direction of the external load. Each control algorithm introduces
varying levels of complexity, with more advanced controllers
generally achieving lower errors compared to experimental
data, even in atypical cases such as subjects with higher Body
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FIGURE 16
Experimental frequency response (solid line) and LQR + L controller prediction response (dashed line) for the occupied structure. (A, C) show the
magnitude and phase in the vertical direction, respectively. (B, D) show the magnitude and phase in the horizontal direction, respectively.

FIGURE 17
Obtained average NMSE error relative to experimental data.

Mass Index (BMI). These models offer greater flexibility in
adjusting closed-loop poles, while ensuring that no frequencies
beyond those observed in the experimental data are introduced.
Additionally, their simplicity enables faster analysis, making
them highly practical for scenarios demanding computational
efficiency. Among the tested controllers, the Linear Quadratic
Regulator with an Observer (LQR + L) demonstrates superior
performance, achieving the lowest Normalized Mean Square
Error (NMSE) across all validation subjects, with NMSE values
of 7.67%, 9.90%, and 9.17% for subjects P7, P8, and P9, respectively.
These findings underscore the importance of integrating HSI

effects into structural design through advanced feedback control
models, offering a deeper understanding of human influence on
structural dynamics. Future research should focus on refining these
models and exploring their broader applicability across diverse
structural systems.
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