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Compressive strength prediction
of fiber-reinforced recycled
aggregate concrete based on
optimization algorithms

Suping Duan*

Shanxi Vocational University of Engineering Science and Technology, Civil Engineering and
Architecture, Taiyuan, China

With the growing emphasis on sustainable development in the construction
industry, fiber-reinforced recycled aggregate concrete (BFRC) has attracted
considerable attention due to its superior mechanical properties and
environmental benefits. However, accurately predicting the compressive
strength of BFRC remains a challenge because of the complex interaction
between recycled aggregates and fiber reinforcement. This study introduces
an innovative predictive framework that combines the XGBoost machine
learning algorithmwith advanced optimization algorithms, including the Seagull
Optimization Algorithm (SOA), Tunicate Swarm Algorithm (TSA), and Mayfly
Algorithm (MA). The unique integration of these algorithms not only improves
predictive accuracy but also optimizes model performance by enhancing
parameter tuning capabilities. Experimental results demonstrated that the TSA-
XGBoost model achieved an exceptional R2 of 0.9847 and a minimum mean
square error (MSE) of 0.255958, outperforming other models in predicting
BFRC’s compressive strength. This novel predictive approach offers an efficient
and accurate tool for assessing BFRC’s mechanical performance in practical
applications, thus supporting its broader adoption in sustainable construction.

KEYWORDS

fiber-reinforced recycled aggregate concrete (BFRC), steel fibers, compressive strength,
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1 Introduction

The increasing focus on sustainability in construction has led to greater interest
in fiber-reinforced recycled aggregate concrete (BFRC) for its mechanical strength
and environmental benefits (Amudha et al., 2021; Wang et al., 2023; Zhang et al.,
2020; Wang et al., 2024; Bhattacharyya et al., 2020). Recycled aggregates help reduce
construction waste and reliance on natural resources, though cracks can negatively
impact concrete’s durability and performance (Ghoneim et al., 2020; Zhang et al.,
2024; Chen et al., 2014; Eady et al., 2023). The addition of fibers slows crack
propagation, improving construction quality. Fiber-reinforced concrete, distinct from
traditional concrete, incorporates fibers that enhance its mechanical properties (Zaid et al.,
2022; Shahjalal et al., 2023). Studies by Yang et al. (2021) and Nikolenko et al.
(2021) have shown that increasing fiber volume or aspect ratio can significantly
boost compressive strength and elastic modulus, while uniformly distributed fibers
prevent crack formation. Research on basalt fiber-reinforced concrete highlights its high
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tensile strength and durability (Zhou et al., 2020; Zheng et al., 2022;
Khan et al., 2022), with basalt fibers enhancing compressive and
flexural strengths (Elshazli et al., 2022; Li et al., 2022; Fang et al.,
2018). Despite these benefits, excess fibers may alter concrete’s
pore structure, reducing strength (Wu et al., 2023; Heeralal et al.,
2009). Steel fibers, randomly distributed, mitigate crack growth,
improving both tensile and compressive properties (Weli et al.,
2020; Raza et al., 2021; Wang et al., 2021). Predicting BFRC’s
compressive strength is essential for ensuring structural safety, but
traditionalmodels struggle due to the complex properties of recycled
aggregates, underscoring the need for accurate predictive models.

Kang et al. (2021) explored machine learning algorithms
to predict the compressive and flexural strengths of steel fiber-
reinforced concrete (SFRC), showing that tree-based and boosting
models, particularly XGBoost, outperformed traditional models
like K-nearest neighbors and linear regression. XGBoost’s ability
to handle nonlinear relationships and high-dimensional data has
made it the leading method for predicting BFRC performance
(El Mahdi Safhi et al., 2023). demonstrated XGBoost’s effectiveness
in predicting SCC workability, while Sun et al. (2024) and
Tao et al. (2024) applied optimized XGBoost models for predicting
splitting tensile strength and ultimate compressive strength,
respectively, achieving R2 values above 0.9. To improve predictive
accuracy, recent advancements have integrated optimization
algorithms, such as SOA (Sankar et al., 2022), TSA (Qiu et al.,
2022), and MA (Asselman et al., 2023), which significantly
enhance XGBoost’s performance by dynamically adjusting model
parameters, increasing both accuracy and robustness.

In this study, three types of steel fibers (copper-coated, hooked,
and wavy) were incorporated into BFRC at different volume
fractions, and the effects of these fibers on the compressive
strength of basalt fiber-reinforced concrete were comprehensively
analyzed through mechanical tests. By integrating the XGBoost
algorithm, a predictive model for BFRC compressive strength
was established, providing a theoretical basis for its strength
prediction. Furthermore, by incorporating optimization algorithms
such as SOA, TSA, and MA, the model’s predictive accuracy
was further improved, offering an effective method and
support for predicting the mechanical properties of basalt fiber
steel fiber-reinforced recycled aggregate concrete in practical
engineering applications.

In summary, prior research has primarily focused on traditional
predictive models for concrete properties or fiber-reinforced
concrete, with significant advancements in machine learning
applications for these materials. However, current models still
face limitations, especially in terms of accuracy when dealing
with complex materials such as fiber-reinforced recycled aggregate
concrete. This study builds on the limitations observed in
previous studies by integrating optimization algorithms with
machine learning, which aims to enhance prediction accuracy
and model robustness. The research presented here provides
an innovative approach by combining advanced optimization
techniques with established machine learning frameworks, creating
a more comprehensive and accurate model for predicting the
compressive strength of fiber-reinforced recycled aggregate
concrete.This approach addresses the complex interactions between
different material compositions and their mechanical performance,
establishing a novel framework for future studies.

2 Model principles

2.1 XGBoost

XGBoost builds on the Gradient Boosting Decision Tree
(GBDT) algorithm, employing decision trees, particularly
Classification and Regression Trees (CART), for classification and
regression (Sagi and Rokach, 2021; Mohan et al., 2024). In GBDT,
sequential base CART estimators are assigned weights adjusted
during training, creating a robust ensemble model. For regression, a
sample’s predicted value results from the weighted sum of each leaf
node’s predictions in the decision trees, as shown in Equation 1.

̂yi =
K

∑
k
βkhk(xi) (1)

In the formula: ̂yi represents the predicted value; K denotes
the total number of trees; βk is the weight of the k-th tree; hk(xi)
represents the prediction result of the k-th tree; and xi represents the
feature vector corresponding to the i-th sample.

TheXGBoostmodel uses an iterative approach, combining weak
learners and controlling complexity to discover complex nonlinear
statistical relationships between the target variable and the observed
features. Through this iterative process, the model continuously
optimizes performance during training (Che and He, 2022). The
objective function of the XGBoost model, combining the predicted
results, as shown in Equations 2, 3.

Obj =
M

∑
i=1

l(yi, ̂yi) +
K

∑
k=1

Ω( fk) (2)

Ω( fk) = γT+
1
2
λ

K

∑
k=1

ω2
k (3)

In the formula: M represents the total number of samples in
the dataset; yi  denotes the true value; l(yi, ̂yi) is the loss function,
which measures the difference between the predicted and actual
values; Ω( fk) represents the complexity of the model, which acts as
a regularization term to help prevent overfitting; T is the number of
leaf nodes; ωk is the weight of the leaf nodes; and γ and λ are pre-
defined hyperparameters that control the number and scores of the
leaf nodes.

The XGBoost model enhances the additive training process
by iteratively advancing. In each iteration, it trains a new model
and adds it to the previous ensemble, gradually reducing the loss
function. As shown in Equations 4–6.

̂yqi =
Q

∑
q
fk(xi) =

Q−1

∑
q

fk(xi) + fq(xi) (4)

K

∑
k
Ω( fk) =

Q−1

∑
q
Ω( fk) +Ω( fq) (5)

Obj =
M

∑
i=1
[ fq(xi)gi +

1
2
fq(xi)

2hi] +Ω( fq) (6)

In the formula: Q represents the number of iterations; yqi denotes
the true value in the q-th iteration; ̂yqi BB is the predicted value in the
q-th iteration; fq refers to the optimal tree in the q-th iteration; gi and
hi are the first and second derivatives of the loss function l(y

q
i , ̂y
(q−1)
i )

with respect to yq−1i ; and l(yqi , ̂y
(q−1)
i ) is obtained by performing a

Taylor expansion on fq(xi).
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2.2 Optimization algorithms

2.2.1 Seagull Optimization Algorithm (SOA)
The Seagull Optimization Algorithm (SOA), introduced by

DhimanG andKumarV, is a swarm intelligence algorithm formulti-
objective optimization (Naga Sai Kalyan et al., 2022; Liu et al., 2023).
Inspired by seagull migration and attack behaviors, SOA enhances
global exploration and local search. It updates seagull positions
in two phases: migration for wide-ranging search and attack for
local optimization, incorporating spiral movements linked to the
objective function. Key parameters such as population size, iteration
limits (Tmax ), variable bounds (ul and ub), and spiral factors ( fc, u, v)
are initialized, followed by the calculation of fitness values to guide
the search process.

The initial position of the seagulls is given by the
following Equation 7:

Positions = rand(SearchAgents,1) × (ub− lb) + lb (7)

In the equation, ul represents the upper limit of the variable, and
ub represents the lower limit.

After calculating the fitness values, the seagull population is
sorted in ascending order using the sort (fitness, index) function.
This process identifies the best value for each seagull and the global
best (Pbest). Based on the sorting index, the positions are updated
from their initial locations to new coordinates (x), and the iterative
optimization process begins (Anand et al., 2024).

During migration, seagulls move toward the optimal
position while avoiding collisions, ensuring they approach the
global optimum. To prevent overlapping, an additional variable
(A) is introduced to compute the seagulls’ new positions.
As shown in Equation 8.

{{
{{
{

Cs = X∗A

A = fc − t∗(
fc

Tmax
)

(8)

In the equation, f represents the current iteration number, and
the parameter linearly decreases from 2 to 0.

The optimal position direction coefficient ensures Ms that the
seagull moves towards the best position while avoiding collisions.
As shown in Equation 9.

{{{{
{{{{
{

rd = rand(1, dim)

B = 2∗A2 ∗ rd

Ms = B∗ (Pbest−X)

(9)

The coefficient Ds represents the movement toward the optimal
position. The seagull moves in the direction of the best position,
and once it reaches the new position, the migration process ends.
As shown in Equation 10.

Ds = |Cs+Ms| (10)

In the equation,Ds is the new position of the seagull that satisfies
the three conditions.

When the seagulls attack their prey, they perform spiral
movements in the air. The three components x, y, and z of the spiral

motion are expressed as follows Equation 11:

{{{{
{{{{
{

θ = rand(1, dim) ∗ 2π

r = u∗ eθ∗v

x = r∗ cos θ,y = r∗ sin θ,z = r∗ θ

(11)

In the equation, θ is a random number within the range [0, 2π],
expressed in radians.

Finally, the formula for the seagull’s attack behavior is given
as shown in Equation 12

Xnew = x∗ y∗ z∗Ds + pbest (12)

2.2.2 Tunicate Swarm Algorithm (TSA)
The Tunicate Swarm Algorithm (TSA) is a swarm intelligence

algorithm inspired by tunicate foraging behavior in the ocean.
This behavior includes jet propulsion, utilizing individual gravity,
seawater flow, and interaction forces to avoid collisions while
moving toward an optimal target. Swarm behavior also updates
the global best position based on perceived environmental cues.
Tunicates use their nervous system to sense water flow and light
sources from others, collectively guiding the swarm toward food.
During jet propulsion, collision avoidance ismanaged by calculating
new positions for each individual. As shown in Equation 13.

A = G
M

(13)

In the formula, G represents the gravity of the tunicate
individual, and M denotes the interaction force between tunicate
individuals. The value of M is calculated as shown in Equation 14.

M = Pmin + c(Pmax − Pmin) (14)

In the equation, Pmax and Pmin refer to the initial interaction
velocity values of the individuals, typically assigned values Pmax =
4 and Pmin = 1, while c is a random number between [0, 1]. After
avoiding collisions between neighboring individuals, the search
agents move towards the optimal individual. At this stage, the
distance between the i-th individual and the optimal individual at
the t-th iteration is calculated. As shown in Equation 15.

PDt
i =∣ positions

t
best − rand ⋅ x

t
i ∣ (15)

In the formula, “rand” is a uniformly distributed random
number in the range [0, 1], positionstbest represents the optimal
individual’s position at the t-th iteration, which is the current best
global position of the population, and BBB xti denotes the position
of the i-th tunicate individual in the population at the t-th iteration.

The formula for each tunicate individual moving towards the
optimal individual is shown in Equation 16.

xti =
{
{
{

 positionstbest +A ⋅ PD
t
i,rand ⩾ 0.5

 positionstbest −A ⋅ PD
t
i,rand < 0.5

(16)

2.2.3 Mayfly Algorithm (MA)
The Mayfly Algorithm (MA) consists of three main stages:

male mayfly movement, female mayfly movement, and mayfly
mating andmutation.Male mayflies gather together and adjust their
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positions based on their own experience and the experience of their
neighbors. Assuming that xti represents the position of the i-th male
mayfly at generation t, its updated position at generation t+1t+1t+1
is shown in Equation 17:

xt+1i = x
t
i + v

t+1
i (17)

In the equation, vt+1i represents the velocity of the male mayfly
at generation t+1t+1t+1. To evolve towards a better position, the
velocity of the male mayfly is adjusted based on its own historical
best position and the overall best position of the population. When
it becomes the best in the population, it performs a “wedding dance”
to avoid falling into local optima. As shown in Equation 18.

vt+1ij =
{{{{
{{{{
{

wvtij + a1 exp(−βr
2
p)(pij − xij) + a2 exp(−βr

2
g)

×wvtij + dR, f(xi) ⩽ f(pg)

wvtij + dR, f(xi) ⩽ f(pg)

(18)

In the equation, vtij represents the velocity of the i-th mayfly
at generation t in the j-th dimension; w is the inertia weight; a1 
and a2 are positive attraction constants that measure cognitive and
social components, respectively; β is the fixed visibility coefficient,
controlling the visibility of the mayfly; pi is the historical best
position of the i-th mayfly; DDD is the global best position of the
mayfly population; pg is a random number within the range [−1,1];
and d is the marriage dance coefficient, whose iteration formula is
shown in Equation 19:

dt+1 = dt ⋅ dd (19)

Where: dd is the damping factor for the dance of the mayfly to
its historically best position and to the globally best position. The
Cartesian distance is calculated as shown in Equation 20:

r = xi −X i = √
n

∑
j=1
(xij −Xij)

2 (20)

Where: xij is the position of the i-th mayfly in the j-th dimension, and
Xij is the historically best position or globally best position of the i-th

mayfly in the j-th dimension.
Unlike male mayflies, female mayflies do not gather together

but instead fly towards male mayflies for mating and reproduction.
Suppose yti is the position of the i

-th female mayfly at generation t, its
position is updated as shown in Equation 21:

yt+1i = y
t
i + v

t+1
i (21)

Where: vt+1i is the velocity of the female mayfly at generation t+1.
It is assumed that the attraction process of male mayflies to female
mayflies is deterministic: the fittest female mayfly is attracted to the
fittestmalemayfly, the second fittest female is attracted to the second
fittest male, and so on. The velocity of the female mayfly is updated
as shown in Equation 22:

vt+1ij =
{
{
{

wvtij + a3 exp(−βr
2
mf(x

t
ij − y

t
ij)), f(y

t
i) > f(x

t
i)

wvtij + f1R, f(y
t
i) ⩽ f(x

t
i)

(22)

Where: r2mf is the Cartesian distance between the female mayfly
and the male mayfly; f1 is the random walk coefficient, and female

mayflies not attracted by males will fly randomly. The iteration of f1
is as shown in Equation 23:

ft+11 = f
t
1 ⋅ fd (23)

Where: fd is the random flight damping factor.
The mating process of mayflies is the same as the

attraction process: the fittest female mates with the fittest
male, the second fittest female mates with the second
fittest male, and so on, producing two offspring. As shown
in Equation 24:

pos1 = L ⋅ pm + (1− L) ⋅ pf
pos2 = L ⋅ pf + (1− L) ⋅ pm

}
}
}

(24)

Where: pos is the offspring mayfly; pf is the female mayfly;
pm is the male mayfly; L is a random number, L∈[0,1]. A
normally distributed random number is added to the selected
offspring variable, and the offspring mutation formula is shown
in Equation 25:

pos = pos + σN(0,1) (25)

Where: N(0,1) is the standard deviation of the normal distribution,
and B is a random number drawn from a normal distribution with
a mean of 0 and a variance of 1.

2.3 Cross-validation

Cross-validation is a common method to assess model
performance on unseen data by partitioning the dataset into
several exclusive subsets, then iteratively training and testing
on these. In this study, we use k-fold cross-validation (k =
5), dividing the dataset into five equal subsets. Each subset
serves as a validation set once, while the remaining k-1
subsets form the training set. This cycle repeats k times,
and the average performance metrics across all iterations
provide a stable and reliable assessment of model performance.
As shown in Figure 1.

For the i-th fold, the model uses the i-th subset as the
validation set, and the remaining k-1 subsets are combined to
form the training set, yielding the performance metric Mi  for
that fold. The overall model performance M is the average of the
performance metrics from all k folds, denoted as M = 1

k
∑ki=1Mi.

This average reflects the model’s comprehensive performance across
the entire dataset and helps assess the model’s generalization
ability. The key advantage of cross-validation is that it reduces
the risk of overfitting by training and testing on different
subsets, providing a more stable performance evaluation. This is
especially useful when dealing with limited data, as cross-validation
makes full use of every data point, improving the reliability of
model assessment. In this study, cross-validation is applied to
evaluate the performance of different optimization algorithms in
predicting the mechanical properties of fiber-reinforced recycled
aggregate concrete. By comparing the cross-validation results,
we can objectively determine which algorithm performs best in
practical applications.
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TABLE 1 Fiber types and their parameters.

Fiber type d (mm) l (mm) l/d ρ (kg/m³) fcu (MPa) Cross-section

Copper-coated Steel Fiber (RPC) 0.3 12 40 7850 2000 Circular

Wavy Steel Fiber (WF) 0.8 32 40 7850 800 Rectangular

Hooked-end Steel Fiber (SF) 0.5 35 70 7850 800 Circular

Basalt Fiber (BF) 0.015 18 1200 2650 3000 Circular

TABLE 2 Fiber concrete mix ratio.

No. Bs/% c/(kg·m-3)

Cement Sand Coarse aggregate Water Superplasticizer Basalt fiber

RPC0.8 33 385 614 1 246 208 3.85 2.6

RPC1 .0 33 381 610 1 234 206 3.81 2.6

RPC1 .2 33 377 606 1 222 204 3.77 2.6

SF0.8 33 385 614 1 246 208 3.85 2.6

SF1 .0 33 381 610 1 234 206 3.81 2.6

SF1 .2 33 377 606 1 222 204 3.77 2.6

WF0.8 33 385 614 1 246 208 3.85 2.6

WF1 .0 33 381 610 1 234 206 3.81 2.6

WF1 .2 33 377 606 1 222 204 3.77 2.6

BF 33 310 618 1 258 168 3.70 2.6

3 Experimental design and results
analysis

3.1 Experimental materials

The experiment utilized C30 concrete mixed with P.O
42.5 cement. Crushed pebbles (5–20 mm) were used as coarse
aggregate, and natural river sand (0.075–4.750 mm) served as
fine aggregate, with a fineness modulus of 2.8. A polycarboxylate
superplasticizer, at 1.0% of the cementweight, improvedworkability.
Key parameters of the steel and basalt fibers are shown in Table 1,
where d is the fiber diameter, l is the fiber length, and l/d is
the ratio affecting concrete performance. Fiber density (ρ) was
crucial for determining volume percentage, while fcu referred to
tensile strength.

3.2 Experimental design

The experimental design of this study carefully considered
various factors affecting the compressive strength of basalt fiber-
reinforced recycled aggregate concrete (BFRC), including fiber type,

FIGURE 1
5-Fold cross-validation.

volume fraction, curing age, and testing conditions. A C30 concrete
mix was used, with P.O 42.5 cement, crushed pebbles (5–20 mm) as
coarse aggregate, and river sand (0.075–4.75 mm) as fine aggregate.
Each specimen was molded into a standard 100 mm cubic mold
and cured in a controlled environment at a constant temperature
of 20°C ± 2°C and relative humidity of 95% for 3, 7, 14, and 28
days. Compressive strength testing followed the “Standard for Test
Methods of Mechanical Properties of Ordinary Concrete” (GB/T
50,081–2019), with each specimen tested on a hydraulic press at
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FIGURE 2
Mix Compressive strength of fiber concrete.

FIGURE 3
Stress-strain curves.

a loading rate of 0.5 MPa/s. Additionally, in line with the “Test
Methods for Steel Fiber Reinforced Concrete” standards, variables
such as curing age, fiber content, and fiber type were integrated
into the design. To ensure stability and repeatability of results, a
total of 40 experimental groups were set, each containing three
specimens, amounting to 120 specimens in total. The concrete
mix ratios are provided in Table 2, where c represents material
quantities and Bs denotes the sand rate. During each test, stress-
strain behavior was also monitored alongside compressive strength
to provide deeper insights into thematerial’s ductility and toughness
under load (Saud et al., 2020).

This study primarily analyzes the impact of different types
and volume fractions of steel fibers on the compressive strength

of basalt fiber-reinforced concrete (BFRC) at curing ages of 3,
7, 14, and 28 days. According to previous research, the optimal
content of basalt fibers in BFRC is 2.6 kg/m³ (Shahjalal et al.,
2023; Sharma et al., 2022; Yang et al., 2021; Nikolenko et al.,
2021), which was set as a fixed value in this study. The reference
group is BFRC, labeled as BF. In the specific experiments, the
volume fractions of hooked-end steel fibers were set at 0.8%,
1.0%, and 1.2%, corresponding to the specimen labels SF0.8,
SF1.0, and SF1.2. The volume fractions of wavy steel fibers were
similarly set at 0.8%, 1.0%, and 1.2%, with the corresponding
labels WF0.8, WF1.0, and WF1.2. The volume fractions of
copper-coated steel fibers were consistent with the previous ones,
labeled as RPC0.8, RPC1.0, and RPC1.2.
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FIGURE 4
Compressive form of concrete.

3.3 Compressive strength results analysis

The compressive strength of cubic specimens was measured
according to the “Standard for Test Methods of Mechanical
Properties of Ordinary Concrete” (GB/T 50,081–2019). The
relationship between different types of steel fiber volume fractions,
curing age (ta), and compressive strength (fcu) is shown in Figure 2.

This study primarily investigates the effects of different types and
volume fractions of steel fibers on the compressive strength of basalt
fiber-reinforced concrete (BFRC) at curing ages of 3, 7, 14, and 28
days. Based on prior research, the optimal content of basalt fibers
in BFRC is determined to be 2.6 kg/m³, which was thus set as a
constant parameter in this study. The control group, representing
BFRC without steel fibers, is labeled as BF. For the experiments,
hooked-end steel fibers were added at volume fractions of 0.8%,
1.0%, and 1.2%, labeled as SF0.8, SF1.0, and SF1.2, respectively.
Likewise, the volume fractions of wavy steel fibers were set at 0.8%,
1.0%, and 1.2%, with the labels WF0.8, WF1.0, and WF1.2, while
copper-coated steel fibers followed the same volume fractions and
were labeled as RPC0.8, RPC1.0, and RPC1.2.

As shown in Figure 2, although steel fibers are primarily
intended to reinforce tensile strength, their inclusion also enhances
the compressive strength of BFRCwithin a specific range.This effect
occurs because an optimal amount of steel fibers improves the bond
between the concrete matrix and fibers, effectively inhibiting crack
propagation. Dispersed steel fibers within the concrete can help
reduce stress concentration at crack tips and defect points, thereby
enhancing compressive strength. However, when the fiber volume
becomes excessive, the increased surface area of steel fibers leads to
insufficient cement mortar to fully encapsulate both aggregates and
fibers, resulting in compromised overall integrity and a decline in
compressive strength, demonstrating an initial increase followed by

a decrease (Zhao et al., 2022; Weli et al., 2020; Wang et al., 2021;
Wang et al., 2022; Zhang and Liu, 2023).

The copper-coated steel fibers form a dense oxide layer,
providing a good bond with the concrete and reducing susceptibility
to corrosion during curing, which achieves the highest compressive
strength at 28 days. In contrast, the hooked-end and wavy steel
fibers, lacking corrosion resistance treatment, exhibited rust on
the fiber surfaces as the curing period progressed. This rust
led to volume expansion from Fe(OH)₂ and Fe(OH)₃ formation,
which, in turn, weakened compressive strength, causing the 14-day
compressive strength to exceed that of the 28-day mark.

As shown in Figure 3, the concrete specimen was subjected to
compression, radial cracking appeared around the specimen, while
the middle portion, due to the weaker hoop effect, experienced
localized lateral spalling of the concrete and the formation of fine
cracks, as shown in Figure 4. Upon reaching the ultimate load,
the specimen failed with a muffled sound, and through-cracks
appeared. However, no fiber breakage was observed. At the location
of the longitudinal cracks, the overlapping of steel fibers was clearly
visible. Unlike typical BFRC, the specimen did not shatter, and its
integrity was well-maintained during the failure process, exhibiting
characteristics of plastic failure.

3.4 T2 spectrum analysis

Nuclear magnetic resonance (NMR) uses the CPMG pulse
sequence test on fully saturatedwater samples to obtain decay signals
from spin echoes, which are then transformed into T2 spectra using
Fourier transform. The distribution of the T2 spectrum reflects the
pore size. In this experiment, the MesoMR-60 NMR instrument
was used to analyze the concrete structure. Figure 5 shows the T2
spectrum obtained from the nuclear magnetic resonance test.

Figure 5A shows the T2 relaxation time spectra of BFRC with
different volume fractions of end-hooked steel fibers at the 28-day
curing period, where Is represents signal intensity. It can be seen
that the internal pore distribution of the concrete exhibits a positive
correlation. As the volume fraction of steel fibers increases, the
spectrum area first decreases and then increases. The SF1.0 group
has the smallest spectrum area, confirming that a 1.0% volume
fraction is the optimal dosage for end-hooked steel fibers. The
introduction of steel fibers results in a significant narrowing of the
main peak and a slight reduction in the area of the secondary peak.
However, when the volume fraction of steel fibers exceeds 1.0%,
the internal pores in the concrete increase, and the spectrum area
expands. This may be due to excessive fiber content, leading to a
larger specific surface area, which prevents full encapsulation of the
fibers by the cement paste.

Figure 5B studies the changes in the internal micro-pore
structure of BFRC with a 1.0% volume fraction of end-hooked
steel fibers as the curing period progresses. At 3 days of curing,
the spectrum presents a “three-peak” structure, while at 7, 14, and
28 days, it transitions to a “two-peak” structure, indicating that
the internal pore structure and quantity evolve over time, which
in turn affects the compressive strength. Since the spectrum area
is proportional to the volume of fluid in the concrete, it also
reflects changes in pore volume. The number of peaks corresponds
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FIGURE 5
(A) Different volume fractions of end-hooked steel fiber BFRC at 28 days. (B) Different curing periods for BFRC with 1% volume fraction of end-hooked
steel fiber. Nuclear magnetic resonance T2 spectrum.

FIGURE 6
(A) BFRC with different volume fractions of end-hooked steel fibers at 28 days. (B) Porosity and saturation changes for BFRC with 1% volume fraction of
end-hooked steel fibers at different curing times. Nuclear magnetic resonance T2 spectrum.

to the distribution characteristics of the pore structure. At the 3-
day curing period, the main peak reaches the highest value, and
the spectrum area is the largest, indicating that the hydration
reaction of the cement is not yet complete, leaving many unfilled
pores, which leads to lower compressive strength. As the curing
time extends, harmful pores (“three-peak” structure) gradually
disappear, and the area of harmless pores (“two-peak” structure)
decreases with time.This is due to the progressive filling of pores by
cement hydration products, increasing the density and improving
the compressive strength. However, during the 14- to 28-day
curing period, steel fibers undergo corrosion, and the resulting iron
compounds expand in volume, weakening the bond between the
steel fibers and the cementitiousmatrix.This not only fails to prevent
the expansion of micro-cracks but also interferes with the formation
and filling of cement hydration products, leading to a decrease in
density and an increase in pore size.

3.5 Analysis of porosity and saturation

The concept of fluid saturation was introduced to analyze the
internal pore structure changes of BFRC. Bound fluid exists within
the micro-pores of the concrete, and the greater the bound fluid
saturation, the more micro-pores in the concrete, indicating higher
compactness.

Figure 6A shows the trend of saturation (S) and porosity (θpd)
of BFRC with different volume fractions of end-hooked steel fibers
at the 28-day curing period. As the volume fraction of steel fibers
increases, the saturation of the bound fluid in the concrete initially
rises and then falls. It can be observed that the SF1.0 group
exhibits the highest bound fluid saturation, with an 18.53% increase
compared to the control group. Porosity is an important indicator
that reflects the ratio of pore volume to the volume of the concrete
matrix. The smaller the porosity, the fewer internal pores, and the
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FIGURE 7
Pore size distribution.

more compact the structure. The SF1.0 group’s porosity is 0.242%
lower than the control group.

Figure 6B shows the changes in porosity and saturation over
time for BFRC with a 1% volume fraction of end-hooked steel
fibers. Similar to Figure 6A, bound fluid saturation increases first
and then decreases as curing time progresses. At the 14-day
curing period, due to the hydration reaction of cement filling
the pores, porosity decreased by 0.121% compared to the 3-
day period, while bound fluid saturation increased by 35.88%.
By the 28-day curing period, rust spots had appeared on the
surface of the steel fibers, leading to changes in the pore structure.
Porosity slightly increased by 0.012%, and bound fluid saturation
decreased by 1.61%.

3.6 Analysis of porosity and saturation

The pore distribution within the concrete can be determined
through the transverse relaxation time (T2). The internal pores are
classified into three types: gel pores (T2 < 1 m), capillary pores
(1 m < T2 < 100 m), and non-capillary pores (T2 > 100 m). The
presence of gel and capillary pores has no significant impact on the
compressive strength of the concrete and is therefore referred to as
harmless pores. In contrast, non-capillary pores have larger pore
sizes, and the greater the number of non-capillary pores, the more
they negatively impact the compressive strength of the concrete,
thus being referred to as harmful pores. Figure 7 shows the pore
size distribution.

From Figure 7, it can be observed that after 28 days of hydration,
the proportion of harmless pores in BFRC reaches 64.6%. With the
increase in steel fiber content, the proportion of harmless pores
initially increases and then decreases. When the volume content
of hooked-end steel fibers is 1.0%, the proportion of harmless
pores reaches a maximum of 81.9%, indicating that the internal
structure of the concrete is most compact at this point. However,
when the steel fiber content increases to 1.2%, the proportion of

harmful pores rises from 18.1% to 21.4%. This phenomenon is
primarily due to the excessive amount of steel fibers, which increases
the specific surface area, preventing the cement paste from fully
enveloping the fibers. This is consistent with the trend observed in
the bound fluid saturation, further confirming that the rusting of
steel fibers impacts the internal pore structure of the concrete. As the
number of harmful pores increases, the compressive strength of the
concrete decreases.

4 Optimization algorithms applied to
the performance prediction of
fiber-reinforced recycled aggregate
concrete

4.1 Data preparation

The dataset used in this study consists of 120 experimental
data points, primarily aimed at predicting the compressive strength
of fiber-reinforced recycled aggregate concrete (BFRC). Each data
point includes multiple input feature variables, such as the type
of steel fiber, fiber volume content, curing age, water-cement
ratio, and sand ratio. The dataset also includes the corresponding
output target variable, which is the compressive strength of
the concrete.

To ensure the reliability and generalization capability of the
model, we divided the 120 data points into a training set and a
test set at an 8:2 ratio, yielding 96 points for training and 24 for
testing. For model optimization and to avoid overfitting, we applied
five-fold cross-validation to the training data. In this process, the
training data was divided into five subsets, with each subset used
once as a validation set while the other four subsets trained the
model. This procedure fine-tuned model parameters and ensured
a robust evaluation of model performance. Figure 8 shows the
data distribution (Figure 8A) and a correlation heatmap (Figure 8B)
illustrating the relationships among variables.
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FIGURE 8
(A) Data Distribution Characteristics. (B) Correlation of Indicators.
Dataset distribution and correlation heatmap.

The correlation analysis in Figure 8B highlights the relationships
between key variables. Cement content has a strong positive
correlation (0.5) with compressive strength, signifying that as
cement content increases, compressive strength also improves.
Water content exhibits a moderate positive correlation (0.3) with
compressive strength, indicating that although water contributes
to strength, its impact is less significant than that of cement.
Similarly, the water-reducing agent shows a correlation of 0.28
with compressive strength, suggesting that it enhances mechanical
properties by lowering the water-cement ratio. Conversely, sand and
aggregate contents have negative correlations of −0.28 and −0.38,
respectively, with compressive strength, suggesting that higher
sand and aggregate proportions may reduce concrete strength.
The highest correlation, 0.8, is observed between curing age and

compressive strength, consistent with the known effect of increased
strength over time.

4.2 Evaluation metrics

In the process of model evaluation, MSE (Mean Squared Error),
MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage
Error), and R2 (Coefficient of Determination) are commonly
used performance metrics (Song et al., 2021; Chen et al., 2023).
MSE amplifies larger errors and is therefore sensitive to extreme
values, helping to capture the model’s response to outliers. MAE,
on the other hand, calculates the absolute value of the error
and is not affected by the direction of the error, making it
more suitable for reflecting the overall prediction accuracy of the
model, especially when focusing on the overall error magnitude.
Additionally, MAPE expresses the error as a percentage, making
it easier to compare data across different scales, and it is suitable
for datasets with varying units or magnitudes. R2 provides a
relative measure, assessing the model’s explanatory power based
on the linear relationship between predicted and actual values.
For regression tasks, an R2 value close to one indicates strong
explanatory power, while an R2 value near 0 suggests poor
model performance, indicating that the model fails to capture the
relationship between the data.

To ensure comprehensive model evaluation, multiple metrics
are typically combined to analyze model performance holistically.
For example, while both MSE and MAE can measure error, MSE
emphasizes the impact of large errors, whereas MAE focuses on
the average level of error. MAPE provides information about the
relative size of the error, making it more comparable across different
datasets. R2, on the other hand, offers an intuitive evaluation of the
model’s goodness-of-fit, allowing for a quick assessment of overall
performance.The calculation formulas for each metric are as shown
in Equations 26–29:

MSE = 1
n

n

∑
i=1
(yi − ̂yi)

2 (26)

MAE = 1
n

n

∑
i=1
|yi − ̂yi| (27)

MAPE = 1
n

n

∑
i=1
|
yi − ̂yi
yi
| × 100% (28)

R2 = 1−

n

∑
i=1
(yi − ̂yi)

2

n

∑
i=1
(yi − y)

2
(29)

4.3 Model training and parameter
optimization

To ensure the generalization ability of the model across
different datasets, this study utilized five-fold cross-validation
for model training and parameter optimization. Cross-validation
allows the model’s performance to be validated on various data
splits, effectively reducing overfitting and enhancing the model’s
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FIGURE 9
Model loss functions.

TABLE 3 Best parameters for each model.

Model Name Parameter values

SOA-XGBoost learning_rate = 0.1, n_estimators = 100, max_depth = 6,
subsample = 0.8

TSA-XGBoost learning_rate = 0.12, n_estimators = 120, max_depth = 5,
colsample_bytree = 0.7

MA-XGBoost learning_rate = 0.08, n_estimators = 110, max_depth = 7,
subsample = 0.75

GWO-XGBoost learning_rate = 0.2, n_estimators = 90, max_depth = 4,
subsample = 0.85

SSA-XGBoost learning_rate = 0.15, n_estimators = 95, max_depth = 6,
subsample = 0.8

robustness. Figure 9 shows the cross-validation loss functions for
each optimized model.

The above figure demonstrates the mean squared error (MSE)
variations for five different optimization algorithms applied to
the XGBoost model (SOA-XGBoost, TSA-XGBoost, MA-XGBoost,
GWO-XGBoost, and SSA-XGBoost) over 200 iterations. As shown
in the figure, the MSE values of the three optimized models,
SOA-XGBoost, TSA-XGBoost, and MA-XGBoost, are significantly
lower than those of the traditional GWO-XGBoost and SSA-
XGBoost, indicating faster convergence and reduced errors. This
further verifies the advantage of the new optimization algorithms
in enhancing the prediction accuracy of the model. The MSE
values of the traditional optimization algorithms, GWO-XGBoost
and SSA-XGBoost, are initially higher and tend to stabilize over
time, but their final error values remain higher than those
of the newer optimization algorithms. The optimal parameter
combinations for the models, based on the minimum error, are
provided in Table 3.

4.4 Prediction performance comparison

4.4.1 Single model prediction performance
analysis

This section compares the predictive performance of the
XGBoost model against Random Forest, Support Vector Machine
(SVM), and Decision Tree for forecasting the compressive strength
of BFRC. Key performance indicators such as MSE, MAE, MAPE,
and R2 are used to assess each model’s strengths and limitations,
as shown in Figure 10.

Based on the data and experimental results shown above, the
XGBoost model outperforms other models in all performance
metrics. Specifically, the XGBoost model achieved the best results
in R2, MSE, MAE, and MAPE, with an R2 value of 0.913109,
indicating a good fit. Additionally, XGBoost’s MSE is 2.161113,
MAE is 1.352917, and MAPE is 4.426169, demonstrating its
clear advantage in prediction accuracy. In comparison, other
models, such as Decision Tree (DT) and Random Forest (RF),
although providing relatively high prediction accuracy, still fall
behind XGBoost in key metrics. Particularly, the Decision Tree
model has an MSE of 6.012483 and an MAE of 2.256667,
indicating a relatively higher prediction error. The Support Vector
Machine (SVM) shows some advantage in handling nonlinear
relationships, with an MAE of 1.660417, slightly higher than
XGBoost. However, in terms of MSE and MAPE, it still lags
behind XGBoost, revealing its limitations in overall predictive
capability.

The XGBoost model, leveraging the benefits of ensemble
learning and gradient boosting, effectively captures nonlinear
relationships in complex data, outperforming other models across
all performance metrics. This is especially evident in predicting the
performance of Fiber Reinforced Recycled Aggregate Concrete, a
complex task. Therefore, the XGBoost model can be considered the
best choice for this type of prediction task, as it exhibits greater
robustness and generalization ability.
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FIGURE 10
Single machine learning model prediction performance analysis.

4.4.2 Optimized Model Prediction Performance
Analysis

In this section, a detailed analysis was conducted on the
prediction performance of Fiber Reinforced Recycled Aggregate

Concrete by combining different optimization algorithms with the
XGBoost model. By comparing the prediction results of SOA-
XGBoost, TSA-XGBoost,MA-XGBoost, and traditional optimization
models like GWO-XGBoost and SSA-XGBoost, Figure 11 clearly
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FIGURE 11
Optimized model prediction performance analysis.

demonstrates the differences in model fitting accuracy and
prediction error.

The data in Figure 11 highlights notable differences in the
predictive performance of various optimization models for Fiber

Reinforced Recycled Aggregate Concrete. The three models
enhanced by optimization algorithms—SOA-XGBoost, TSA-
XGBoost, and MA-XGBoost—demonstrated excellent performance
across all evaluation metrics, with R2 values of 0.9847, 0.9897, and
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0.9889, respectively. These values indicate high fitting accuracy,
showing that the models effectively captured the relationship
between input features and target outputs. Additionally, these
models exhibited low MSE and MAE values, with TSA-XGBoost
achieving the best results, reaching an MSE of 0.255958 and an
MAE of 0.364167.

In comparison, the traditional optimization models GWO-
XGBoost and SSA-XGBoost underperformed. Although GWO-
XGBoost maintained moderate fitting accuracy with an R2

of 0.9338, it had relatively high error values, with an MSE
of 1.646958 and an MAE of 1.258333. SSA-XGBoost showed
similar performance, with an R2 of 0.9101 and an MSE of
2.234958, reflecting inadequate prediction accuracy, especially
for data points with larger errors. The MAPE values for GWO-
XGBoost and SSA-XGBoost were 4.100240% and 4.809841%,
respectively, further emphasizing their limitations in overall
predictive performance.

Integrating SOA, TSA, and MA optimization algorithms with
the XGBoost model significantly enhances prediction accuracy,
especially in reducing errormetrics likeMSE andMAE, compared to
traditional GWO and SSA models. This improvement suggests that
these newer optimization algorithms offer substantial advantages
for handling complex nonlinear problems, effectively capturing
intricate feature relationships in high-dimensional data, and yielding
more accurate and robust predictions.

5 Discussion

This study conducted an experimental and analytical evaluation
of how different steel fiber types and dosages affect the compressive
strength of basalt fiber-reinforced recycled aggregate concrete
(BFRC). By employing the XGBoost model enhanced with SOA,
TSA, and MA optimization algorithms, we achieved improved
prediction accuracy, highlighting the potential of these methods
for accurately forecasting BFRC performance. The results indicated
that an appropriate amount of steel fiber enhances concrete’s
ductility, toughness, and compressive strength. However, excessive
steel fiber led to increased porosity, reducing mechanical strength,
and highlighting the need for balanced fiber dosages.

The applicability of these predictive methods to broader
engineering contexts is promising but requires consideration
of practical constraints. For instance, although the SOA, TSA,
and MA optimizations effectively boost model accuracy, their
computational complexity and associated costs may limit real-
world implementation in large-scale projects. Addressing these
constraints involves optimizing algorithmic efficiency while
retaining predictive accuracy. Additionally, expanding the model
to account for varying material types and environmental factors
would strengthen its adaptability across diverse engineering
applications. Future work should thus focus on refining
machine learning models for operational feasibility and on
extending the scope of variables, potentially including other
fiber types and optimizing combinations, to reinforce BFRC’s
performance further. These efforts can support the wider adoption
of fiber-reinforced recycled aggregate concrete in practical
construction applications, ultimately advancing sustainable
engineering practices.

6 Conclusion

(1) In this study, we experimentally validated the impact of
different types and dosages of steel fibers on the compressive
strength of BFRC. The results indicated that an appropriate
dosage of steel fibers effectively improved compressive
strength, with strength initially increasing and then decreasing
as fiber content increased. Copper-coated steel fibers exhibited
the best reinforcement effect, with compressive strength
peaking at 28 days. In contrast, hooked and wavy steel fibers
showed a decline in compressive strength over time due to
environmental influences.

(2) As the steel fiber dosage increased, the ductility and toughness
of the concrete gradually improved, while porosity initially
decreased and then increased. Bound fluid saturation also
showed an increase followed by a decrease. A moderate
amount of steel fibers reduced harmful pores and improved the
compactness of the concrete, while excessive fibers increased
porosity due to a larger specific surface area, negatively
impacting overall performance. With longer curing times,
the internal pore structure of the concrete was optimized,
and hydration reactions made the concrete more compact.
However, the issue of steel fiber corrosion became evident over
time, reducing the bond strength between fibers and thematrix
and lowering compressive strength.

(3) The XGBoost model combined with different optimization
algorithms, such as Seagull Optimization Algorithm (SOA),
Tunicate Swarm Algorithm (TSA), and Mayfly Algorithm
(MA), demonstrated high accuracy in predicting BFRC
compressive strength, particularly the TSA-XGBoost model,
which achieved an R2 of 0.9897, with MSE and MAE of
0.255958 and 0.364167, respectively, outperforming other
models. These optimization algorithms significantly improved
the predictive performance of XGBoost by efficiently tuning
model parameters.

This study not only provides theoretical insights into predicting
the compressive strength of BFRC but also demonstrates the
broad application potential of machine learning algorithms in
civil engineering. The XGBoost model, enhanced by optimization
algorithms, delivers more accurate and stable prediction results,
offering valuable references for predicting concrete performance in
practical engineering.
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