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an inerter-based structural
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A tuned viscous mass damper (TVMD) and a tuned inerter damper (TID) have
been proposed as devices that can achieve weight reduction by replacing the
mass element of a structural dynamic vibration absorber (DVA) with an inerter.
In the TID, the damping element is arranged in parallel with the spring, making
its device topology the same as conventional dynamic vibration absorbers. In
contrast, in the TVMD the damping element is arranged in parallel with the
inerter. This parallel mechanism of inerter and damping element can be realized
in a single device, and the member of the building that supports the device can
be used as the spring element, making the TVMD highly practical. In fact, TVMDs
with a mass effect equivalent to thousands of tons have been commercialized
and applied to high-rise buildings in Japan. This paper aims to clarify the effects
of the choice of objective functions and damping element arrangement on
the seismic response control effectiveness of inerter-based structural DVAs,
providing guidelines for structural engineers in selecting suitable devices to
achieve desired control effects. The method of investigation considers a model
that encompasses both TVMD and TID configurations and formulates a multi-
objective optimization problem to simultaneously minimize the displacement
amplification factor and floor response acceleration amplification factor. The
results of the multi-objective optimization reveal that the TVMD is optimal when
the focus is on controlling displacement response, while the TID is optimal when
prioritizing the control of floor response acceleration. It was found that the floor
response acceleration amplification factor of a structure containing TVMD could
be significantly improved by slightly compromising the displacement response
amplification factor, leading to the recommendation of adopting the TVMD
configuration as an inerter-based structural DVA.

KEYWORDS

inerter, tuned viscous mass damper, tuned inerter damper, tuned mass damper, multi-
objective optimization, Pareto front

1 Introduction

Owing to simplicity and independence from external power supplies, passive
control technologies are widely applied in practice to suppress undesirable
vibrations, including viscous and viscoelastic dampers (Housner et al., 1997;
De Domenico et al., 2019; Licari et al., 2015; Kim et al., 2006; Mazza and
Labernarda, 2020). However, these conventional dampers generate insufficient control
forces when subjected to long-period ground motions, and thus their seismic
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FIGURE 1
TVMD device installed in a telecommunications building.

performance is compromised (Keivan et al., 2017; Luo et al., 2019;
Luo and Ikago, 2021). Inerter-based vibration control systems
(IVCSs) that can enhance energy dissipation at certain frequencies
have been proven to be more effective in addressing this challenge
(Ikago et al., 2012a; Lazar et al., 2014; Zhang et al., 2020;
Ji et al., 2020; Wang et al., 2024).

An inerter produces force proportional to the relative
acceleration between its two terminals, serving as a crucial element
in mechanical networks (Smith, 2002; Makris and Moghimi, 2022).
The physical realization methods of an inerter include the use
of hydraulics (Nakamura et al., 1988; Domenico et al., 2019;
Wang et al., 2011), ball-screw mechanisms (Arakaki et al., 1999;
Hwang et al., 2007; Papageorgiou et al., 2009; Watanabe et al.,
2012; Kida et al., 2012; Nakamura et al., 2014), rack-and-
pinion systems (Smith, 2002; Papageorgiou et al., 2009; Saitoh,
2012; Makris and Kampas, 2016), and living hinges (John and
Wagg, 2019). Owing to the attractive characteristics of mass
amplification effects and frequency-dependent negative stiffness
yielded by inerters, various types of inerter-based vibration
control systems (IVCSs) have been proposed (Ma et al., 2021).
Ikago et al. (2012a) developed a tuned viscous mass damper
(TVMD) consisting of a supporting spring connected in series
with a parallel arrangement of an inerter and dashpot, and they
verified its control effectiveness through numerical analysis and
shaking table tests. Watanabe et al. (2012) and Kida et al. (2012)
introduced a force-restriction mechanism to the TVMD to limit
excessive control forces caused by the large mass amplification
effects and extreme excitations. TVMD devices have been put
to practical use in high-rise buildings in Japan (Sugimura et al.,
2012; Ogino and Sumiyama, 2014; Ishii et al., 2014). Figure 1
is a photograph of a rotary inerter-damper having 6,400 tons
of inertance incorporated into a telecommunications building in
Sendai, Japan.

Zhao et al. (2016) proposed a viscoelastically supported viscous
mass damper (VeVMD) by connecting a viscoelastic element to
a parallel inerter-damper device in series and investigated its
application to base-isolated structures. Unlike TVMD and VeVMD,
the configuration of the tuned inerter damper (TID) proposed
by Lazar et al. (2014) is similar to that of a traditional tuned

mass damper (TMD). Another way of using an inerter to improve
the performance of a TMD is the tuned mass damper inerter
(TMDI) proposed by Marian and Giaralis (2014). Further different
configurations of IVCSs have been investigated by Hu and Chen
(2015) and Pan and Zhang (2018).

Analytical solutions for the H∞ and H2 control designs for
a single-degree-of-freedom (SDOF) structure containing an IVCS
have been presented (Ikago et al., 2012a; Marian and Giaralis,
2014; Hu et al., 2015). It is difficult to directly extend the design
formulas for a SDOF structure to a multi-degree-of-freedom
(MDOF) structure because a MDOF system containing IVCSs
is generally non-classically damped, and thus modal interactions
and the device distribution pattern significantly influence their
performance (Qiao et al., 2023). Ikago et al. (2012b) found
that the fixed-point method can be expanded to a MDOF
shear building structure containing TVMDs when their inertance
distribution is proportional to the primary stiffnesses. Kang and
Ikago (2023) derived an approximated closed-form design formula
for a concentratedly arranged TVMD in aMDOF structure by using
the Sherman–Morrison formula. In the tuning of aMDOF structure
containing a TID, Lazar et al. (2014) assumed that only the first
vibration mode was significant ingnoring the modal interaction the
modal interaction. Numerical algorithms were also adopted in the
optimization of IVCSs for MDOF structures (Ji et al., 2021; Cao
and Li, 2022; Caicedo et al., 2021).

Although single-objective optimum design using relative
displacement or floor response acceleration as an objective function
is simple and thus convenient for the design of IVCS systems, more
than two response values that are in a trade-off relationship are
considered simultaneously in structural design practice. Pan et al.
(2018) examined a multi-objective optimum design problem
(MODP) to minimize response and cost for a TVMD-variant
damper by using an ε-constraint approach. Taflanidis et al. (2019)
developed a design method that considered suppressing seismic
responses and control forces simultaneously and sought Pareto
optimal designs for three types of IVCS: TVMD, TID, and TMDI.
However, the selection of proper devices for diverse seismic control
demands remains unclear for structural engineers, particularly
when dealing with long-period ground motions.

This study intends to identify the benefits and drawbacks of
the IVCSs in controlling displacement and absolute acceleration
through illustrative multi-objective designs of the VeVMD with
a device topology that encompasses those of the two major
inerter-based structural DVAs studied in the literature—the
TVMD and TID. The peak displacement and peak absolute
acceleration amplification factors employed as objective functions
are highly associated with damage to structural and nonstructural
components, which are highlighted as major issues for the seismic
resilience of high-rise buildings (Ji et al., 2020). The rest of this
paper is organized as follows. In Section 2, an analytical model
of a SDOF structure containing a VeVMD is presented, and two
transfer functions are introduced as objective functions for a multi-
objective optimum design problem. Section 3 shows how the multi-
objective optimum design of VeVMD converges to TVMD and TID
device topologies when the focus is on displacement and absolute
acceleration control, respectively. In Section 4, an analytical example
using a ten-story shear building equipped with TVMD and TID
subjected to strong ground motions, demonstrating that the H∞
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FIGURE 2
Analytical model of a SDOF structure containing a VeVMD.

control designs effectively mitigate seismic displacement responses
and floor response accelerations, respectively. Section 5 concludes
this study.

2 Amplification factors

2.1 Single-degree-of-freedom structural
model and equations of motion

The analytical model of a SDOF structure equipped with
a VeVMD is presented in Figure 2. The mass and stiffness of
the primary SDOF structure are m and k, respectively. The
SDOF structure is assumed to be undamped for simplicity’s sake.
As shown in Figure 2, the VeVMD comprises an inerter-damper
and viscoelastic element in series. The inertance and stiffness of the
VeVMD aremd and kb, respectively.The damping coefficients of the
dampers arranged in parallel with the inerter and spring are cd and
cb, respectively.The device topology of aVeVMDencompasses those
of TVMD and TID. When the dashpot arranged in parallel with the
inerter is removed—cd = 0—theVeVMDreduces to a TID. Similarly,
the VeVMD reduces to a TVMD when the dashpot arranged in
parallel with the spring is removed—cb = 0.

x is the displacement of the primary mass relative to the
ground. xb and xd are the deformations of the spring and inerter,
respectively. Accordingly, the equations of motion of the SDOF
structure equipped with a VeVMD are

{{{{
{{{{
{

m ̈x+ kx+md ̈xd + cdẋd = −m ̈x0
md ̈xd + cdẋd = kbxb + cbẋb
x = xb + xd

. (1)

Table 1 summarizes the notations used in this paper.

2.2 Transfer functions

Here we consider a harmonic ground excitation ̈x0 = −
ω2X0e

iωt = −A0e
iωt, where i = √−1, ω, and t are the imaginary unit,

excitation angular frequency, and time, respectively. The responses
of the primary structure and VeVMD are expressed in Equation 2.

x = Xeiωt, ̈x = −ω2Xeiωt = −Aeiωt,xd = Xde
iωt,xb = Xbe

iωt. (2)

Accordingly, Equation 1 can be rewritten as

−mω2X+ (k+K (iω))X =mA0 =mω2X0, (3)

K (iω) =
(cbiω+ kb)(cdiω−mdω

2)
kb −mdω

2 + (cb + cd) iω
, (4)

where K(iω) represents the dynamic stiffness of the VeVMD.
In this study, we examined two transfer functions, HX(iω) and

HA(iω), which are defined as a transfer function from the ground
acceleration (A0) to the displacement of the primary structure
relative to the ground (X) and a transfer function from the ground
acceleration (A0) to the absolute response acceleration of the
primary structure (A+A0), respectively.

HX (iω) =
X (iω)
A0

HA (iω) =
A (iω) +A0

A0
.

(5)

Substituting Equations 3 and 4 into Equation 5 obtains

ω2
0HX (iω)

=
k{kb −mdω

2 + (cb + cd) iω}

(−mω2 + k){kb −mdω
2 + (cb + cd) iω} + (cbiω+ kb)(cdiω−mdω

2)
,

(6)

HA (iω)

=
k{kb −mdω

2 + (cb + cd) iω} + (cbiω+ kb)(cdiω−mdω
2)

(−mω2 + k){kb −mdω
2 + (cb + cd) iω} + (cbiω+ kb)(cdiω−mdω

2)
.

(7)

Introducing the nondimensional parameters are
expressed in Equation 8.

ω0 = √
k
m
,μ =

md

m
,η =

kb
k
,hd =

cb + cd
2√mk
,α =

cb
cb + cd
,γ = ω

ω0
. (8)

Equations 6 and 7 can be rewritten as

ω2
0HX (iω)

=
η− μγ2 + 2hdγi

(1− γ2)(η− μγ2) − μηγ2 − 4h2dα (1− α)γ
2 + 2{1− γ2 + η (1− α) − αμγ2)}hdγi

,

(9)

HA (iω)

=
η− μγ2 − μηγ2 − 4h2dα (1− α)γ

2 + 2{1+ η (1− α) −αμγ2)}hdγi

(1− γ2)(η− μγ2) − μηγ2 − 4h2dα (1− α)γ
2 + 2{1− γ2 + η (1− α) −αμγ2)}hdγi

.

(10)

Note that ω2
0 is multiplied to both sides of Equation 9 such that

they are dimensionless.
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TABLE 1 Nomenclature.

x = Xeiωt = Aeiωt/ω2 Displacement of the primary structure relative to the ground

̈x0 = −A0e
iωt = −ω2X0e

iωt Ground acceleration

xd = Xde
iωt Deformation of inerter damper

xb = Xbe
iωt Deformation of viscoelastic element

m Mass of primary structure

k Stiffness of primary structure

md Inertance of inerter damper

kb Stiffness of viscoelastic element

cd Damping coefficient of inerter damper

cb Damping coefficient of viscoelastic element

ω Excitation angular frequency

ω0 = √k/m Fundamental angular frequency of undamped primary structure

μ =md/m Ratio of inertance to primary mass

η = kb/k Ratio of stiffness of viscoelastic element to that of primary structure

hd = (cd + cb)/(2√mk) Ratio of total damping coefficient in VeVMD to the critical damping coefficient of primary structure

α = cb/(cb + cd) Ratio of damping coefficient of viscoelastic element to total damping coefficient of VeVMD

γ = ω/ω0 Frequency ratio

hod,X Optimum damping ratio of VeVMD to minimize peak displacement amplification factor derived from fixed-point method

hod,A Optimum damping ratio of VeVMD to minimize peak absolute acceleration amplification factor derived from fixed-point method

ηod,X Optimum stiffness ratio of VeVMD to minimize peak displacement amplification factor derived from fixed-point method

ηod,A Optimum stiffness ratio of VeVMD to minimize peak absolute acceleration amplification factor derived from fixed-point method

3 Single- and multi-objective H∞
optimization

3.1 Fixed-point method for
single-objective H∞ optimization

The dimensionless displacement transfer function shown in
Equation 9 can be rewritten as Equation 11.

|ω2
0HX| = √

B2 +D2 ⋅ 4h2d
E2 +G2 ⋅ 4h2d

, (11)

where B and E are the real parts of the numerator and denominator
of Equation 9, respectively; D and G are the imaginary parts of
the numerator and denominator of Equation 9 divided by 2hd,
respectively. There exist fixed points at which the curves of the
transfer function pass though regardless of the damping ratio
h2d when B2/E2 = D2/G2 (Hartog, 1985). The condition can be
rewritten as

(η− μγ2)2

{(1− γ2)(η− μγ2) − μηγ2 − 4h2dα (1− α)γ
2}2
= 1
{1− γ2 + η (1− α) − αμγ2}2

.

(12)

The denominator of the right-hand side of Equation 12 indicates
that E is independent of h2d when α = 0 and 1. Thus, α should be
0 (TVMD) or 1 (TID) for fixed-points to exist. Indeed, the fixed-
point method can be used to derive H∞ optimum designs of a
SDOF structure equipped with TVMD (α = 0) and TID (α = 1)
(Ikago et al., 2012a; Lazar et al., 2014; Hu and Chen, 2015; Lobato
and Steffen Jr, 2017). This method utilizes the feature that transfer
function curves pass through fixed points regardless of damping,
and decreasing the ordinate of one of the fixed points increases
that of another in TVMD and TID. Provided that the values of
transfer function never fall below those of fixed points, the H∞
norm can be minimized by equalizing the ordinates of the fixed
points and rendering the transfer function to take peak values at
the fixed points. It is similar with the acceleration transfer function
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TABLE 2 H∞ control design for inerter-based structural DVAs derived from the fixed-point method (Ikago et al., 2012a; Lazar et al., 2014;
Saito et al., 2008; Hu et al., 2015).

System Objective function

displacement control (ω2
0X)/A0 acceleration control (A+A0)/A0

TVMD
(α = 0)

ηTVMD
X = μ

1−μ

hTVMD
d,X =

μ
2
√ 3μ
(1−μ)(2−μ)

ηTVMD
A = 2μ

1−2μ+√1−2μ

hTVMD
d,A = √

3(1−√1−2μ)
8

TID
(α = 1)

ηTIDX =
μ
(1+μ)2

hTIDd,X =
μ

2(1+μ)
√ 3μ

2(1+μ)

ηTIDA =
μγ2L{μγ

4
L−2(1+μ)γ

2
L+2}

2{γ4Lμ(1+μ)−(1+2μ)γ
2
L+1}

hTIDd,A = √
h2M+h

2
N

2

where

γ2L =
1
μ
+ 3

2
+√( 1

μ
− 3

2
)
2
+ 4

μ

h2M,N = [
ηTIDA −μ(1+η

TID
A )γ

2
M,N

1−μγ2M,N
]
2
×

{ μ(1+η
TID
A ){2−(1+2μ)γ

2
M,N}−(2μγ

2
M,N−η

TID
A )(1−μγ

2
M,N)

4γ2M,N
}

γ2M and γ2N are solutions of the following equation with respect to γ2

γ4 −{ 2(η
TID
A +1+μη

TID
A +μ)−γ

2
L

μ
}γ2 + 2

μ2γ2L
= 0

FIGURE 3
Non-inferiority. (A) Inferiority, (B) superiority, and (C) non-inferiority.

(Equation 10). Table 2 summarizes the closed-form expressions of
the optimumdesigns obtained by the fixed-pointmethod for TVMD
(α = 0) and TID (α = 1) (Ikago et al., 2012a; Saito et al., 2008;
Lazar et al., 2014; Hu et al., 2015), where superscript o denotes
optimum designs. Subscripts X and A denote optimum designs of
displacement and absolute acceleration control, respectively.

3.2 Definition of non-inferiority

Since we consider a multi-objective minimization problem
in this study, the following definitions apply (Fonseca and
Fleming, 1993) (Figure 3).

3.2.1 Inferiority
A vector u = (u1,u2,…,un) is said to be inferior to v =
(v1,v2,…,vn) if and only if v is partially less than u which is
expressed by Equation 13.

∀j = 1,2,…,n: vj ≤ uj ∧∃j = 1,2,…,n: vj < uj. (13)

3.2.2 Superiority
A vector u = (u1,u2,…,un) is said to be superior to v =
(v1,v2,…,vn) if and only if v is inferior to u.

3.2.3 Non-inferiority
Vectors u = (u1,u2,…,un) and v = (v1,v2,…,vn) are said to be

non-inferior to one another if v is neither inferior nor superior to
u.

3.3 Multi-objective optimum design
problems

Here, Equation 14 defines the infinity norms of the transfer
functions as follows:

ρX= ω
2
0max

ω
{HX (iω)} ,

ρA=max
ω
{HA (iω)} .

(14)
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The multi-objective optimum design problem is formulated
as shown in Equation 15. [MODP]

Find ν = {μ,η,α}

tominimize {ρX,ρA}

subject to
{{{{
{{{{
{

0 ≤ μ ≤ 1.0

0 ≤ η ≤ 1.0

0 ≤ α ≤ 1.0.

(15)

The solution of this problem is not a single design but a set of
non-inferior designs, referred to as the “Pareto-optimal set”.

Here, the total damping coefficient in the VeVMD is preset such
that hd = 0.1 (cb + cd = 0.1× 2√mk), and the ratio α determines the
distribution of damping coefficient assigned to cb and cd.TheMODP
can be converted to a series of single objective optimum design
problemswith varyingweight ξ = [0,1] as follows (Marler andArora,
2010; Steuer, 1986; Japan Society of Seismic Isolation, 2013):

[Scalarized optimum design problem]

Find ν

tominimize σ (ξ) = (1− ξ)ρX + ξρA

subject to
{{{{
{{{{
{

0 ≤ μ ≤ 1.0

0 ≤ η ≤ 1.0

0 ≤ α ≤ 1.0,

(16)

where σ(ξ) is a scalarized objective function.

3.4 Pareto-optimal set

The Pareto-optimal set obtained by solving Equation 16 are
functions of ξ and are represented by νo(ξ) = {μo(ξ),ηo(ξ),αo(ξ)}.
The objective functions given by νo(ξ) are represented by ρoX(ξ) and
ρoA(ξ). Similarly, the value of scalarized objective function yielded
by an optimum design for ξ is represented by σo(ξ) = (1− ξ)ρoX(ξ) +
ξρoA(ξ). Figures 4A and B show the optimum designs and the values
of the objective functions yielded by them with respect to ξ varying
from0 to 1with an interval of Δξ = 0.002. ρoA(ξ)naturally decreases at
the expense of ρoX(ξ) as the weight ξ increases.While ξ is in between 0
and 0.9, a slight change is observed in the optimum design variables.
However, when ξ increases beyond 0.9, αo(ξ) suddenly jumps from
a value around 0 to that around 1. This indicates that an optimal
design of theVeVMDgives a design that is close to theTVMDdevice
topology (α = 0) while ξ is between 0 and 0.9; once ξ exceeds 0.9, it
shifts to the TID device topology (α = 1).

Thus, as shown in Figure 5A, the optimum designs are classified
into TVMD, VeVMD, and TID configurations when αo < 0.05,
0.05 ≤ αo < 0.95, and 0.95 ≤ αo and identified by red, black, and blue
colors, respectively. Figure 5 plots {ρoX,ρ

o
A} for a series of ξ varying

from 0 to 1 with an interval of Δξ = 0.002, which is referred to as
the Pareto front. In Figure 5B, the colors of the solid circle notations
represent ξ value as indicated by the color bar. The minima of
the peak displacement amplification factor ρoX(ξ) and peak absolute
acceleration amplification factor ρoA(ξ) are attained at ξ = 0 and ξ =
1, respectively. The TVMD and TID configurations thus perform
effectively in mitigating displacement and absolute acceleration,

respectively. This is because, while the excitation frequency is
relatively low, the dynamic stiffness of the inerter is relatively low
compared to the spring element in the VeVMD (Figure 2), resulting
in larger motion and thereby efficient energy dissipation in the
damper arranged parallel to the inerter (cd). As the excitation
frequency increases, the dynamic stiffness of the inerter increases to
hinder the motion of the damper arranged parallel to it, which lead
to the dominated energy dissipation in the damper arranged parallel
to the spring (cb).

As shown in Figure 5B, the inclination of the Pareto front
curve significantly changes at the inflection point of the curve at
ξ = 0.5. The improvement of ρoX(ξ) demands significant expense of
ρoA(ξ) when ξ < 0.5, whereas the sensitivity of ρoA(ξ) with respect
to ξ significantly decreases beyond ξ = 0.5. Thus, the solution at
the inflection point, which is hereafter referred as the inflection
point design, is one of the best options for structural engineers
to pick from the Pareto-optimal set. Another benefit of choosing
the inflection point design is that its device topology is TVMD
that has been put to practical use in real-life buildings. The rest of
this paper exclusively focuses on the inflection point design for the
multi-objective optimum design problem.

3.5 Comparison between single- and
multi-objective optimum designs

Here, we compare the single objective optimum designs and
inflection point design derived from the multi-objective optimum
design problem. Table 2 summarizes the closed form expressions for
single objective optimum designs (Ikago et al., 2012a; Lazar et al.,
2014; Saito et al., 2008; Hu et al., 2015).The superscript of the design
variables, TVMD and TID, represents the device topologies. The
subscript X and A represent displacement and absolute acceleration
control designs, respectively. For example, ηTVMD

X ,hTVMD
d,X represent

theH∞ control design of TVMD tominimize the peak displacement
amplification factor.

To compare the performance of the inflection point design
of the multi-objective optimum design problem and the solution
obtained from fixed point methods, the values of design variables
are determined under the constraint that all systems maintain an
identical damping ratio hd = 0.10.

For the H∞ control of displacement amplification factor of
TVMD system as shown in Equation 17;

hTVMD
d,X =

μ
2
√

3μ
(1− μ)(2− μ)

= 0.10 (17)

was solved with respect to μ and accordingly ηTVMD
X was

obtained. μTVMD
A ,ηTVMD

A ,μTIDA , and ηTIDA were calculated in a
similar manner. Table 3 summarizes the optimum designs of IVCSs
when hd = 0.10.

Figure 6 plots the H∞ norms of the IVCSs. Any point on
the curve of the Pareto-optimal set in Figure 6 is noninferior
to another according to the definition of noninferiority
presented in Section 3.2., demonstrating the validity of the
scalarization method in deriving multi-objective optimal design.
The multi-objective design problem at ξ = 0 yields TVMD
configuration minimizing the peak displacement amplification
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FIGURE 4
Optimum designs (hd = 0.10): (A) infinity norms {ρoX,ρ

o
A} given by optimum designs, (B) optimum designs {μo,ηo,αo}.

FIGURE 5
Pareto front (hd = 0.10): (A) categorization of optimum designs; (B) relationship between Pareto optimal designs and scalar weight ξ.

TABLE 3 Optimum designs of IVCSs incorporated into the SDOF structure.

System Objective function α μ η hd

VeVMD(TVMD) Multi-objective (at inflection point ξ = 0.5) 0.00 0.25 0.42 0.10

TVMD Displacement amplification factor 0.00 0.26 0.35 0.10

TVMD Absolute acceleration amplification factor 0.00 0.24 0.39 0.10

TID Absolute acceleration amplification factor 1.00 0.40 0.24 0.10
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FIGURE 6
H∞ norms of IVCSs.

factor, which is equivalent to the single-objective design problem
to minimize the peak displacement amplification factor of the
TVMD system. However, the H∞ norm obtained from the fixed-
point method represented by red downward triangle notation
is dislocated from the upper-left endpoint of the Pareto front.
Similarly, the H∞ norm of the fixed-point solution minimizing
the peak absolute acceleration amplification factor represented by
blue triangle notation is dislocated from the bottom-right endpoint
of the Pareto front. This is because the closed form solutions are
approximations.

The inflection point design (solid black circle in Figure 6)
improves ρoA by 27% at the 12% expense of ρoX compared to the fixed-
point TVMD displacement control design (solid red downward-
pointed triangle), while it improves ρoX by 17% at the 6% expense
of ρoA compared to the fixed-point TID acceleration control design
(sold blue triangle).

Figure 7A depicts the displacement amplification factors when
hd = 0.10. The H∞ optimum design to minimize ρX shown in a red
dashed line exhibits two aligned peaks attaining the minimum peak
displacement amplification factor among the four optimum designs,
and other optimum designs exhibit uneven peaks because they are
detuned in terms of displacement control objective. Conversely,
the red dashed line exhibits slightly uneven peaks, whereas the
other three optimum designs with the acceleration control objective
exhibit aligned peaks (Figure 7B).

From Table 2, the single objective H∞ control design of
TVMD to minimize peak acceleration amplification factor
(μTVMD

A = 0.24,ηTVMD
A = 0.39), is similar to that of the inflection

point design derived from the multi-objective optimum
design problem (μo = 0.25,ηo = 0.42), which results in similar
amplification factor curves shown by black solid and gray
dashed lines in Figures 7A and B. This means that the
closed form expression of TVMD acceleration control design
(μTVMD

A ,ηTVMD
A ,hTVMD

d,A ) serves as an excellent initial guess in seeking
a numerical solution for the inflection point design. The fixed-
point TVMD acceleration control design can be an acceptable
alternative to the inflection point design when a high precision
in manufacturing the device is not required.

Figure 8 demonstrates that the fixed-point TVMD acceleration
control designs give good approximations of the inflection point
designs in general cases, including those other than hd = 0.10.

3.6 Robustness of TVMD with respect to
the variation in design variables

To examine the robustness of a TVMD with respect to the
variation of design variables, Equation 18 defines two indices.

ζX (μ,η) =
ρX (μ,η,α = 0)

ρoX
, ζA (μ,η) =

ρA (μ,η,α = 0)
ρoA

. (18)

Since we examine TVMD exclusively, α = 0.

FIGURE 7
Amplification factors: (A) displacement amplification factor and (B) absolute acceleration amplification factor.
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FIGURE 8
Comparison of Pareto fronts with a different additional damping ratio
hd.

Figures 9A and B show the contour of ζX(μ,η) and ζA(μ,η)when
hd = 0.10. The solid-colored circles represent the Pareto optimal
designs of the VeVMD. The colors represent ξ value as indicated by
the color bar. The fixed-point TVMD acceleration control design
(μTVMD

A ,ηTVMD
A ), represented by solid gray diamond notation and

inflection point design (μo(ξ = 0.5),ηo(ξ = 0.5)) represented by a
solid black circle are located in an area where contour lines are
sparse (less sensitive). On the other hand, the fixed-point TVMD
displacement control design (μTVMD

X ,ηTVMD
X ), represented by a solid

red downward-pointing triangle, is located in an area where contour
lines are dense (sensitive), indicating that the fixed-point TVMD
acceleration control design (μTVMD

A ,ηTVMD
A ), and inflection point

design (μo(ξ = 0.5),ηo(ξ = 0.5)) are more robust to variations in
design variables than fixed-point TVMD displacement control
design (μTVMD

X ,ηTVMD
X ).

4 Analytical example

4.1 Ten-story shear building

To examine the performance of inflection point design
and fixed point designs in a multi-story structure, we use a
ten-story benchmark shear building model presented by the
Japan Society of Seismic Isolation (2013). Figure 10 shows the
analytical model of the benchmark structure. mj,kj,cj, and xj are
the mass, stiffness, damping coefficient, and the displacement
relative to the ground, respectively. ̈x0 is the ground acceleration.
Table 4 lists the mass and stiffness distribution of the structural
model. The inherent damping is assumed to be 2% of the critical
damping. Thus, cj =

2 × 0.02
ω(1)

kj, where ω(1) = 3.12 is the fundamental
natural angular frequency of the structure. As for conventional
viscous damper design, the additional damping is set to 6% of the
critical damping and the damping coefficients ca,j =

2 × 0.06
ω(1)

kj. The
structure is assumed to remain elastic when subjected to strong
ground motions. Table 5 lists the fundamental natural periods and
modal effective mass ratio of the first three modes.

FIGURE 9
Performance indices: (A) displacement amplification factor and (B) absolute acceleration amplification factor.
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FIGURE 10
Ten-story benchmark shear building (Japan Society of Seismic 
Isolation, 2013).

TABLE 4 Mass and stiffness distribution of the ten-story shear building.

Story Mass (ton) Stiffness (kN/m)

10 875 158,550

9 649 180,110

8 656 220,250

7 660 244,790

6 667 291,890

5 670 306,160

4 676 382,260

3 680 383,020

2 628 383,550

1 700 279,960

4.2 VeVMD parameters

The structure is equipped with VeVMDs tuned to the first and
second modes. The inertance, stiffness, damping coefficient of the
damper parallel to the inerter, and that parallel to the spring in
a VeVMD are m(r)d,j ,k

(r)
b,j ,c
(r)
d,j , and c(r)b,j where r and j are the target

TABLE 5 Fundamental natural periods and modal effective mass ratio.

Mode Period (s) Modal effective mass ratio

1st 2.01 0.82

2nd 0.76 0.11

3rd 0.46 0.04

mode and the story where the device is installed, respectively. If the
distribution of inertance of the VeVMDs is stiffness proportional
and the ratio of the modal effective inertance and modal effective
mass of the primary structure for the rth mode is μ(r), the inertance
of VeVMD tuned to the rth mode (Ikago et al., 2012b) can be
expressed by Equation 19.

m(r)d,j =
μ(r)

{ω(r)}2
kj (r = 1,2) . (19)

Similarly, letting the stiffness ratio and damping ratio for the
VeVMD tuned to the rth mode be η(r) and h(r)d , respectively, obtains
Equations 20, 21.

k(r)b,j = η
(r)kj, (20)

c(r)b,j + c
(r)
d,j =

2h(r)d
μ(r)ω(r)

kj. (21)

4.3 Damping ratio

Before designing VeVMDs, the total damping coefficient
assigned to the devices is determined as shown in Equation 22.

2

∑
r=1

10

∑
j=1
(c(r)b,j + c

(r)
d,j) = (

2

∑
r=1

2h(r)d
μ(r)ω

(r)
)

10

∑
j=1

kj =
2he
ω(1)

10

∑
j=1

kj, he = 0.06.

(22)

Thus, Equation 23 holds.

2

∑
r=1

2h(r)d
μ(r)ω

(r)
=

2he
ω(1)
. (23)

The damping distribution factor λ determines the damping
allocated to the second mode:

2h(1)d
μ(1)ω

(1)
= (1− λ)

2he
ω(1)
, (24)

2h(2)d
μ(2)ω

(2)
= λ

2he
ω(1)
. (25)

For a fixed-point design, substituting h(r)d obtained from
Equations 24 and 25 into hd (Table 2) and solving them with
respect to μ(r) obtains the inertance ratio of VeVMD tuned to
the rth mode. Then, η(r) can be obtained. For a flection point
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TABLE 6 IVCS parameters.

Device Objective function Mode r μ(r) η(r) h(r)d m(r)d,1(ton) k(r)b,1(kN/m) c(r)b,1 + c
(r)
d,1(kN⋅s/m)

VeVMD, αo = 0(TVMD) Multi-objective
1 0.13 0.16 0.03 3,777 46,218 5,378

2 0.23 0.35 0.08 921 94,076 5,377

TVMD
Displacement 1 0.13 0.14 0.03 3,597 40,404 5,378

Control 2 0.23 0.29 0.08 922 81,886 5,377

TID
Absolute acceleration 1 0.15 0.12 0.03 4,337 34,193 5,379

Control 2 0.33 0.21 0.08 1,343 59,923 5,379

TABLE 7 Design ground motions (recorded ground motions, scaled to PGV = 0.5 m/s).

No. Event Year Station Component

1 Imperial Valley Earthquake, CA, USA 1940 El Centro N–S

2 Tokachi-oki Earthquake, Japan 1968 Hachinohe Harbor N–S

3 Kern County Earthquake, CA, USA 1952 Taft E–W

TABLE 8 Synthetic design ground motions whose spectra are compatible with design spectrum.

No. Source record of the phase properties PGV

Event Year Station Component

4 Imperial Valley Earthquake, CA, USA 1940 El Centro N–S 53.1

5 Kern County Earthquake, CA, USA 1968 Taft N–S 61.7

6 Kobe Earthquake 1995 Japan Meteorological Agency at Kobe E–W 64.6

design, μ(r), η(r), and α(r) are numerically derived for a given
h(r)d following the procedure discussed in Section 3.3. Table 6
summarizes the parameters obtained through the above
procedures.

4.4 Input ground motions

As for design ground motions, three historic ground motion
records, three synthetic ground motions, and three long-period
ground motion records (listed respectively in Tables 7–9) are
used. The first six ground motions were selected in accordance
with the practice in Japan, and three long-period ground
motions (Xu et al., 2008) were added to examine the effect
of long-period ground motion on the displacement control
performance of TVMD. Figure 11 depicts the response velocity
spectra of recorded ground motions (No. 1–3, 7–9).

When conducting seismic response analyses using normalized
ground motion records, the variability in maximum response tends
to be smaller when the records are normalized by PGV rather
than by PGA, particularly for structures with natural periods of

TABLE 9 Design ground motions (long-period ground motions, scaled
to PGV = 0.5 m/s).

No. Event Year Station Component

7 Chi-Chi earthquake 1999 ILA003 E–W

8 ILA056 E–W

9 TCU010 E–W

2 s or longer (Editorial Committee of Structural Design Practice of
High-rise Buildings, 2019). For this reason, it is standard practice in
Japan to normalize ground motion records by PGV when designing
high-rise buildings. Adopting this approach, the recorded ground
motions (No. 1–3 and 7–9) are scaled such that their peak ground
velocities (PGVs) are 0.5 m/s.

In Japanese structural design practice, artificial ground motions
whose response spectra are compatible with the design response
spectrum are used to avoid underestimating responses when the
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FIGURE 11
Response velocity spectra of recorded ground motions (Nos
1–3 and 7–9).

FIGURE 12
Response acceleration spectra of synthetic ground motions (Nos 4–6).

natural period of a building coincides with that of a notch in the
spectra of recorded ground motions.

The synthetic ground motions are generated such that
their response acceleration spectra are compatible with the
design response acceleration spectra of Japan’s building code
(Figure 12). They adopt the phase properties of recorded
ground motions (Table 8).

The detailed parameters to derive the design spectrum
can be found in Supplementary Figures S1 and S2 and
Supplementary Table S1. Soil type 2 as the most common soil
type in Japan is adopted for the surface subsoil type. The target
spectrum shown in black solid line in Figure 12 is obtained by
multiplying the response acceleration spectrum at the bed rock
shown in Supplementary Figure S1 by the type 2 soil amplification
factor shown in Supplementary Figure S2. As the amplitudes of the
synthetic ground motions are determined by the target spectrum,
their PGVs are not exactly 0.5 m/s (Table 8).

4.5 Analytical results and discussion

dqj and a
q
j represent themaximum inter-story drift of the ith story

and maximum floor response acceleration of the ith floor yielded by
the No. q ground motion.

We first compare the seismic response analysis results
with the damping coefficient allocated to the second mode
λ = 0.5. Figures 13A and B compare the maximum inter-story
drift ({dqj ; i = 1,2,…,10;q = 1,8}) and maximum floor response
acceleration ({aqj ; i = 1,2,…,10;q = 1,8}) yielded by El Centro 1940
N–S (No. 1) and ILA056 1999 E–W records (No. 8). Figures 14A and
B compare the maximum response in the entire building through
all the ground motions: maxj,q{d

q
j } and maxj,q{a

q
j }. ‘
∗’ represents

the performance of the conventional viscous damper design. These
figures suggest that fixed-point TID acceleration control design
performs the best inmitigating floor response acceleration response,
whereas the fixed-point TVMD displacement control design
performs better in mitigating inter-story drift. Inflection point
design slightly improves both the inter-story drift and floor response
acceleration yielded by the fixed-point TVMD displacement control
design except for long-period ground motions.

Figures 15A and B plot (maxj,q=1,2,…,6{d
q
j },maxj,q=1,2,…,6{a

q
j }) and

(maxj,q=7,8,9{d
q
j },maxj,q=7,8,9{a

q
j })with respect to varying λ. The color

bars indicate the λ value. As shown in the figure, acceleration
responses yielded by inflection point design and fixed-point TVMD
displacement control design significantly decrease when λ increases,
whereas displacement responses yielded by the fixed-point TID
acceleration control design increase significantly. The displacement
responses yielded by inflection point design and fixed-point TVMD
displacement control design are barely affected by the variation of λ.
Similarly, the acceleration responses yielded by the fixed-point TID
acceleration control design are barely affected by the variation of
λ. Allocating 80∼90% of damping coefficient to the second mode
control yielded excellent performance for TVMD configuration
designs, whereas allocating 0∼10% of damping coefficient to
the second mode control yielded excellent performance for TID
configuration design. The TVMD topology designs with λ = 0.8
and TID topology designs with λ = 0 are not inferior to each
other for the design ground motions (Figure 15A). Nonetheless,
the fixed-point TVMD displacement control design with λ = 0.8
represented by a downward-pointing triangle notation is superior
to any inflection point designs represented by solid circles for
long-period ground motions (Figure 15B). When subjected to
design ground motions (No. 1–6), both the TVMD and TID
configuration designs outperform the conventional damper design
in inter-story drifts with slightly increased absolute accelerations.
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FIGURE 13
Maximum seismic responses (λ = 0.5, El Centro 1940 N-S and ILA056 1999 N-S): (A) inter-story drift; (B) floor response acceleration.

FIGURE 14
Maximum seismic responses (λ = 0.5): (A) inter-story drift; (B) floor response acceleration.

Nonetheless, for the long-period ground motion cases, the TVMD
configuration designs simultaneously suppress inter-story drifts
and absolute accelerations whereas the TID configuration designs
have no significant advantage.

5 Conclusion

This paper has examined the effect of damper arrangement
in inerter-based structural DVAs. Therefore, a comprehensive
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FIGURE 15
Performance curves: (A) design ground motions (Nos 1–6); (B) long-period ground motions (Nos 7–9).

multi-objective optimization was performed on a VeVMD with
a device topology to encompass those of two major inerter-
based structural DVAs—the TVMD and TID. Removing a damper
arranged parallel to the spring in a VeVMD yields a TVMD device
topology, while removing a damper arranged in parallel to the
inerter yields a TID device topology. Multi-objective optimization
to simultaneously minimize peak displacement and peak absolute
acceleration amplification factors of a SDOF structure containing
VeVMD subject to the constraint on the total supplemental damping
coefficient revealed that the designs that has advantage in controlling
displacement and absolute accelerations converge to TVMD and
TID device topologies, respectively. There is an inflection point on
the Pareto frontier curve where the inclination of its tangential line
drastically changes. The Pareto optimum design on the inflection
point is found to be robust against the variation of design variables,
offering one of the best options for effective simultaneous control of
displacement and floor response acceleration. The device topology
yielded by the inflection point design is that of TVMD, and its
solution can be approximated by the closed-form formula derived by
the fixed-point method for a TVMD to minimize the peak absolute
acceleration amplification factor.

An analytical example using a ten-story shear building
model demonstrated that the multi-objective optimum designs
to minimize peak amplification factors are effective in mitigating
seismic responses. The inflection point design and fixed-point
TVMD displacement control design performed effectively
in mitigating displacement response, while fixed-point TID
acceleration control design effectively mitigated floor response
acceleration. This means that the performances of TVMD and
TID with the same total damping coefficient are not inferior to

one another. The inflection point design slightly outperformed
fixed-point TVMD displacement control design for design ground
motions, whereas there are cases in which fixed-point TVMD
displacement control design outperformed the inflection point
design for long-period ground motions. For such motions,
the TVMD configuration designs generally outperform the
conventional damper design in both inter-story drifts and absolute
accelerations.

In this study, the device topology optimization was conducted
on a SDOF structure and exclusively focused on the TVMD and
TID. As for a MDOF structure, the effectiveness of IVCSs is
also affected by the installation positions along the height, which
should be further studied. Furthermore, topological configurations
of IVCSs other than TVMD and TID should be considered in
future studies.
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