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Improving soil strength and reducing the anticipated settlement and
construction cost is a great paradox for civil as well as geotechnical
engineers. In this paper, these aspects and other suitable types of ground
improvement are discussed based on the principles of using geosynthetics
for soil reinforcement. A series of load-settlement tests were also performed
to compare strength and settlement of the silty sand reinforced with lime
and one layer of geotextile. The study finds the maximum insertions of
geotextile at 0.2D (3.0 cm) beneath the square footing base, and the lime
percentage of 5.0% increases the UBC substantially. The UBC of lime-treated
and geotextile-reinforced silty sand was to an optimum of 1,360 kN/m2

that has shown an enhancement of 258% compared to that of untreated
and unreinforced silty sand that is approximately 380 kN/m2. Furthermore,
comparative analysis between two ANN models was performed to provide
improved estimate of the UBC, namely artificial neural network (ANN) and
extreme learning machine (ELM). The developed computational models were
then compared with experiment data, which proved that such models are
more economical and effective than the expensive and time consuming
conventional techniques. Consequently, based on the results, it was further
validated that ELM possesses better generalization capability compared to ANN
for predictive efficiency and thereby proves the efficiency of the model in
estimating the ultimate bearing capacity of square footings incorporated with
geotextile and lime-treated silty sand. This places the ELM model as a useful
tool in the initial conceptual as well as the design for improvement steps of
soil reinforcement.
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1 Introduction

Enhancing soil characteristics in construction endeavours
remains an ongoing challenge. Ground improvement holds a
crucial position in civil construction, and various innovative
technologies and approaches have been devised to assist
geotechnical engineers in delivering cost-effective solutions for
construction on complex sites (Yousuf et al., 2024; Yousuf et al.,
2023; Zhang C. et al., 2022; Huang et al., 2023; Huang et al., 2022;
Xu et al., 2022; Yu et al., 2021).

The idea of reinforcing with fibres has a history spanning
over 5,000 years, as early civilizations utilized materials such as
straw and hay to bolster the stability of mud blocks (Abtahi et al.,
2009). Ancient Chinese, Romans, and Incas implemented diverse
techniques to improve soil strength, and some of these methods
have endured through the ages. In India, the contemporary era
of soil stabilization commenced in the early 1970s, although
antiquated approaches resulted in a diminishing regard for
soil stabilization practices. The process of soil stabilization
entails altering the geotechnical properties of soil to align with
engineering specifications. Soils are generally categorized into
gravel, sand, silt, and clay, with some containing high amounts
of montmorillonite, leading to swelling and shrinkage with water
(Steinberg, 2000).

Subgrade preparation for pavement construction can be time-
consuming, especially when dealing with soft subgrade conditions.
Traditional methods, such as recompacting the subgrade or
undercutting and replacement, are labour-intensive and costly.
Alternative methods involve treating weak soil with lime or
reinforcing it with geosynthetics like geotextiles or geogrids. Lime-
soil treatment involves a chemical process in which lime reacts
with clay particles within the soil, forming a cementitious matrix.
Geosynthetics reinforce the soil mechanically through separation,
confinement, and/or reinforcement. Recently, soil stabilization has

gained renewed attention due to increased demand for economic
development, basic materials, and fuel. Advanced research, building
materials, and equipment have made soil stabilization a recognized
and cost-effective method for soil improvement (Malhotra and
John, 1986).

Studies have shown the effectiveness of adding brick pieces to
fly ash-lime stabilized expansive soil, resulting in improved strength
and durability at a lower cost than conventional materials (Malhotra
and John, 1986). Geosynthetics, such as geofabrics, geotextiles,
geomembranes, and geogrids, constructed from polymers
like polyester and polypropylene, are engineered to improve
geotechnical and engineering characteristics. Geosynthetics can
serve various functions, including separation, reinforcement,
drainage, and containment (Das and Khing, 1994). In pavement
design, the widespread utilization of geotextiles and geogrids aims
to enhance performance, decrease thickness, and prolong the
service life (Cancelli et al., 1992; Guram et al., 1994). Geogrids
of high stiffness have shown better performance, and their
use has been associated with improved pavement thickness
reduction (Miura et al., 1990).

The adoption of artificial intelligence (AI) techniques, such
as artificial neural networks (ANN), for predicting parameters
in pavement design has gained prominence in recent decades.
AI has been applied to identify and analyse pavement surface
cracks, predict the resilient modulus of subgrade soil, and
assess subgrade soil stabilization (Kaseko and Ritchie, 1993;
Sadrossadat et al., 2016; Zaman et al., 2010). AI methods, including
ANN, have also been utilized to anticipate the settlement and
load-bearing capacity of piles in foundation engineering issues
(Rahman et al., 2001; Liu et al., 2020). In the present study, the
author employs two computational approaches, ANN and extreme
learning machine (ELM), to validate experimental data (ultimate
bearing capacity) withmultiple input variables.The objectives of this
investigation include:

FIGURE 1
Representation of particle size distribution curve of silty sand.
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TABLE 1 Characteristics of silty sand from a geotechnical perspective.

Serial No. Geotechnical
Properties

Symbols
and Units

Numerical
Values

1. Specific gravity G 2.67

2. Optimum
moisture content

OMC (%) 22.00

3. Maximum dry
density

MDD (kN/m3) 14.52

4. Bulk density γ (kN/m3) 17.71

5. Liquid limit WL (%) 25.00

6. Plastic limit WP (%) Nil

7. Coefficient of
Uniformity

CU 2.8

8. Coefficient of
Curvature

CC 1.4

9. Coefficient of
Permeability

K (m/sec) 8.91× 10-5

10. California
Bearing Ratio

CBR (%) 17.70

11. Cohesion C (kN/m2) 4.5

12. Angle of internal
friction

∅ (Degree) 34°

13. Natural moisture
content

W (%) 5.00

14. Sand content (%) 85.40

15. Silt content (%) 12.92

16. Clay content (%) 1.68

17. Maximum void
ratio

emax 0.936

18. Minimum void
ratio

emin 0.712

19. Silty sand SM —

1. Determine the ultimate bearing capacity (UBC) solely for the
untreated silty-sand soil.

2. EvaluateUBCof soil with varying percentages (%) of lime only.
3. Assess the ultimate bearing capacity of the soil with a single

layer of geotextile at different depths exclusively.
4. Determine the UBC of the soil under the combined influence

of geotextile and lime.
5. Examine the ideal lime percentage and the optimal depth of

geotextile to achieve the ultimate bearing capacity (UBC) for
square footing.

6. Verify the experimental results of ultimate bearing capacity
(UBC) using computational models, such as ANN and ELM.

TABLE 2 Geotextile properties.

Serial No. Properties Test
Standard

Values

1. Opening size O90 EN ISO 12956 ≥ 0.0 and ≤ 0.08
mm

2. Mass per unit
area

BE EN 965 ≥ 400 gm/m2

3. CBR puncture
resistance

EN ISO 12236 ≥ 4000 N

4. Tensile strength EN ISO 10319 ≥ 20.0 kN/m

5. Elongation at
(MD)

EN ISO 10319 ≥ 60% and ≤
100%

6. Elongation at
(CMD)

EN ISO 10319 ≥ 40% and ≤
100%

7. Permeability EN ISO 11058 ≥ 2 × 10-3 m/s

8. U.V resistance ASTM D4355 ≥ 70% of original
tensile strn.

FIGURE 2
Image of woven and nonwoven geotextile (source:
geosyntheticmagazine.com).

2 Methodology

This section provides a detailed account of the materials utilized
in the study, including silty-sand, lime, and geotextile, along
with their compositions and geotechnical properties. Furthermore,
the section provides clarity on the experimental procedures,
outlining the creation of computational models like ANN and
ELM, along with the crucial statistical performance metrics
utilized to evaluate the efficiency of these models. Notably, the
study concurrently conducted both computational methods and
experimental investigations. In essence, the validation of test results
was conducted using computational models to anticipate the
ultimate bearing capacity of soils.
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TABLE 3 Admixture quick lime Chemical composition.

Serial No. Chemical
Composition

Chemical
Formula

Weight (%)

1. Calcium Oxide CaO 92.0

2. Magnesium Oxide MgO 2.2

3. Carbon dioxide CO2 1.5

4. Silicon dioxide SiO2 1.3

5. Manganese Oxide Mn2O3 1.2

6. Calcium
Carbonate

CaCO3 0.83

7. Alumina Al2O3 0.5

8. Iron Oxide Fe2O3 0.4

9. Sulphur trioxide SO3 <0.05

10. Free Carbon C <0.01

11. Phosphorous
pentoxide

P2O5 <0.01

TABLE 4 Silty sand chemical composition.

Serial No. Chemical
Composition

Chemical
Formula

Weight (%)

1. Silicon dioxide SiO2 86.29

2. Alumina Al2O3 4.49

3. Iron Oxide Fe2O3 3.71

4. Calcium
Carbonate

CaCO3 3.09

5. Potassium Oxide K2O 1.94

6. Calcium Oxide CaO 0.48

7. Sodium Oxide Na2O —

8. Magnesium Oxide MgO —

2.1 Experimental approach

2.1.1 Materials
Silty sand, sourced from Narora Barrage in Uttar Pradesh,

India, adjacent to the Ganges River, is acknowledged as a residual
material. Employing this silty sand not only provides a cost-
effective option for civil engineering construction but also addresses
environmental concerns such as leaching, waterway obstruction,
and negative impacts on aquatic life. The aim is to derive value from
the waste. Figure 1 illustrates the particle size distribution curve of
the silty sand.

During the laboratory tests, the silty sand consistently
maintained a dry state and exhibited a fineness finer than the
4.75 mm sieve. Table 1 provides the geotechnical properties of
the silty sand. In this study, a polypropylene nonwoven geotextile
supplied by the Central Soil and Materials Research Station in
Delhi was employed. Table 2 outlines the geotechnical properties
of the geotextile, and Figure 2 provides a visual representation of the
geotextile.

The use of lime for stabilisation is a historical and essential
strategy for ground improvement, with major efforts dating back to
1925 (Pal and Ghosh, 2014). Lime is produced by heating limestone
(CaCO3) to a high temperature of 1,100°C. Quicklime (CaO) reacts
with water to generate hydrated lime (Ca(OH)2). The interaction
of hydrated lime with soil particles causes a pozzolanic reaction,
which results in the production of a strong cementitious matrix (Ali
and Korranne, 2011).The chemical reaction between quicklime and
water is described below, in Equation 1.

CaO (S) +H2O (1) ↔ Ca (OH)2 (WhitePowder) (1)

This is an exothermic reaction, and the pH value increases
to approximately 12.5. This scenario is conducive to initiating the
pozzolanic reaction Bose (Bose, 2012). Tables 3, 4 show the chemical
compositions of additive quick lime and silty sand, respectively.

In this study, the quicklime needed for the project was obtained
at a local market in Jamalpur, near the A.M.U. campus. Tables 3,
4 provide details on the chemical compositions of the admixture,
quicklime, and soil. The appearance and chemical content of lime
and silty sand were examined using optical microscopy at Aligarh
MuslimUniversity’s Sophisticated Instruments Facility (USIF) in the
Central Instrumentation Facility Laboratory. Figures 3, 4 show the
SEMandEnergy-dispersiveX-ray spectroscopy (EDS) examinations
of lime and silty sand, respectively.

2.1.2 Experimental approach
In this study, the soil samples underwent treatment with varying

proportions of lime, ranging from 0% to 6%, with aminor increment
of 0.5%. Concurrently, geotextile reinforcement was applied to the
soil at specific depths (0.2D, 0.4D, 0.6D, 0.8D, 1.0D, 1.2D) for each
lime percentage, and the investigation focused on the UBC and
the corresponding soil deflection. A grand total of 91 experiments
were conducted, comprising scenarios both with and without the
use of geotextile. The experiments utilized square footings with a
surface area of 100 cm2, eachmeasuring 10 cm× 10 cm.The variable
‘D' represents the maximum depth of the pressure bulb formed
beneath the footing pedestal. In the case of the square footing, D
is equivalent to 1.5 times the length of the side (10 cm), which
totals 15 cm. Concerning square footing, the specific measurements
for 0.2D, 0.4D, 0.6D, 0.8D, 1.0D, and 1.2D are as follows:
3.0 cm, 6.0 cm, 9.0 cm, 12.0 cm, 15.0 cm, and 18.0 cm, respectively.
The detailed overview of the experimental program is outlined
in Table 5.

2.1.3 Setup for experimental trials
The tank utilized in the experiment had dimensions of 50 cm

in length, 50 cm in width, and 75 cm in height. This configuration
was selected to consider the overlapping pressure zone of the footing
and the potential impact of the tank walls on the pressure zone.
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FIGURE 3
Scanning of electron microscope (SEM) at × 10,000 (A) Lime (B) Silty sand.

FIGURE 4
EDS of (A) Lime (B) Silty sand.

After achieving the required density, a single layer of geotextile
was placed at various depths, as mentioned earlier. The square
footing was positioned at the center of the tank’s top surface.
The entire system was then loaded with a point load applied
axially through a ball positioned in a groove at the center of the
footing. The least counts on the load and settlement dial gauges
were 7.5 N/div and 0.01 mm/div, respectively. Figure 5 illustrates
the experimental load tank along with the load and settlement
dial gauges.

A graph was generated with “Load” plotted on the X-axis
and ‘Settlement’ on the Y-axis to determine the ultimate bearing
capacity (UBC) and the associated settlement. Subsequently, a
graph was produced, and the UBC along with their corresponding
settlement were computed utilizing the “double tangent method,” as
depicted in Figure 6 below.

2.2 Computational method

2.2.1 Statistical performance metrics
A comprehensive set of commonly employed statistical metrics

was utilized to evaluate the effectiveness of the predictive models.
These metrics include the correlation coefficient (R), coefficient
of determination (R2), adjusted determination coefficient (Adj.R2),
weightedmean absolute percentage error (WMAPE), Nash-Sutcliffe
efficiency coefficient (NS), variance account factor (VAF), root
mean square error (RMSE), reduced simple ratio (RSR), Willmott’s
Index (WI), Normalized mean bias error (NMBE), mean absolute
percentage error (MAPE), Legate and McCabe’s Index (LMI), Bias
Factor (BF), Mean absolute error (MAE), Mean bias error (MBA)
and A20-index (Ghani et al., 2021; Ghani and Kumari, 2021a; Ghani
and Kumari, 2021b).
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TABLE 5 Experimental program details.

Test Name Description

A Unreinforced

Reinforced with geotextile together with
six fluctuations in depth (cm)

B1 0.2D = 3.0

B2 0.4D = 6.0

B B3 0.6D = 9.0

B4 0.8D = 12.0

B5 1.0D = 15.0

B6 1.2D = 18.0

Reinforced with geotextile at every depth
along with thirteen variations in

percentage of lime.

C1 0.0% of lime

C2 0.5% of lime

C C3 1.0% of lime

— —

— —

C13 6.0% of lime

The parameters R, R2, and Adj.R2 are employed to assess the
model’s performance in the soil, with the ideal value for these
parameters being 1. The Bias Factor (BF) serves as a constant,
allowing flexibility for optimal performance, and its ideal value is 1.
NS reflects the model’s forecasting capability, and its optimal value
is 1. Willmott’s Index (WI) serves as an indicator of the error in
predicting the targeted value, with its optimal value established at 1.
The Variance Account Factor (VAF) value delineates performance,
and the ideal value for optimal performance is 100. Weighted
Mean Absolute Percentage Error (WMAPE) represents the degree
of accuracy in prediction, and a value closer to zero signifies better
accuracy. Reduced Simple Ratio (RSR) is a parameter reflecting
the precision in prediction, and its optimal value is zero. MAPE
showcases accuracy in forecasting, with a value closer to zero
indicating better accuracy. NMBE demonstrates the percentage of
bias in predicted values from the mean, and its optimal value is
zero. The A20-index assesses the number of samples that align
with prediction values within a deviation of ±20% compared
to experimental values, with an ideal value set at 1. Numerous
researchers have adopted these statistical values to examine the
accuracy and precision of computational models. The tabulated
information for the statistical performance metrices mentioned
earlier is presented in Table 6.

In the given context, UA and UP represent the actual (observed)
and predicted values of U.B.C, respectively, while ‘N' stands for the
number of samples in either the testing data or training datasets.

FIGURE 5
Experimental arrangement featuring load and settlement dial gauges.

n_20 is the count of samples with the ratio of experimental value
over predicted value falling within the range of 0.8 to 1.2. UA and
UP denote the arithmetic average of the observed and predicted
values, respectively. ‘P' signifies the number of variables which are
independent. When the statistics of the above-mentioned statistical
performance metrics closely align with to their optimum values
provided in Table 7 below, it indicates that the models which were
developed (ANN and ELM) are considered highly accurate.

Utilizing these metrices facilitates an easy assessment of the
precision in compiling experimental data and selecting the most
effective forecasting model. Elevated values of R, R2, Adj. R2, NS,
WI, LMI, Bias Factor, A20-index, and VAF signify a higher value
for the developed model. On the other hand, decreased values of
RMSE, WMAPE, RSR, MAE, MBE, NMBE, and MAPE indicate
an enhanced forecasting ability of the model. The following section
offers an in-depth estimation and illustration of these performance
parameters.

2.2.2 Taylor’s diagram
A graphical representation known as a “Taylor’s diagram” is

employed to visually depict and compare the performance of the
established computational models. This diagram was designed to
demonstrate the accuracy of several artificial intelligence systems
in a concise and simply understandable manner Ghani et al. (2021).
With a singular point on the diagram, it displays statistical
performance indicators such as the Pearson correlation coefficient,
RMSE, and standard deviations between the two variations. The
point closest to the “reference point” on the diagram represents
the best effective forecasting model. This study generates Taylor’s
diagrams for the developed computational models, which include
ANN and ELM, while taking into account both training and
testing datasets.

2.2.3 Artificial neural network (ANN)
ANN is a crucial component of expert systems designed to

emulate human cognitive processes. An ANN model can analyze
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FIGURE 6
Load-Settlement Curve in the laboratory model plate-load test for determining Ultimate Bearing Capacity (UBC) and settlement, utilizing the Double
Tangent Method for calculation.

and comprehend given information, efficiently tackling complex
problems that may prove challenging for human or traditional
mathematical approaches. With automatic learning capabilities,
ANNs can produce superior outcomes.

An artificial neural network has three main components:
neurons, network design, and a learning rule. Figure 7 depicts
the standard construction of a model ANN. A lower number
of hidden neurons may result in major training errors, whereas
a higher number of hidden neurons may result in minor
training errors but significant testing errors due to increased
variability.

Artificial Neural Networks (ANNs), akin to human cognitive
processes, utilize rules and laws, referred to as backpropagation,
to generate outcomes. During the training phase, ANNs recognize
patterns and trends in data, whether visual, auditory, or textual.
The system’s network compares predicted values with actual
values, and the difference is adjusted using backpropagation. To
minimize the disparity between actual and predicted values, the
system functions in reverse, moving from the output to the
input units.

The field of artificial neural networks was initiated by
Warren McCulloch and Walter Pitts (McCulloch and Walter,
1943) and subsequent developments include the invention of
calculators by Farley and Clark, (1954) the derivation of continuous
backpropagation basics by Kelley and Bryson (Kelley, 1960; Bryson,
1961) and Rumelhart, Hinton, and Williams (David et al., 1986)
demonstrating backpropagation’s ability to learn representations of
words. Advancements in the field have continued, with applications
ranging from recognizing higher-level concepts to evaluating risks
in geotechnical engineering.

In recent years, ANNs have found success in various
engineering fields, particularly in geotechnical engineering. They
have been effective in predicting pile load capacity, modeling

soil behavior, site description, earth retaining construction, slope
stability, tunnel design, soil liquefaction, porosity, soil contraction,
soil expansion, and soil classification. However, today’s expert
systems, like as ANN, employed to mimic the human brain
are analogous to comparing a paper plane to a supersonic jet.
Mughieda et al. (2009).

A dedicated ANN model has been formulated to predict the
ultimate bearing capacity (UBC) of a square footing, considering
parameters such as length, breadth, footing area, depth of geotextile,
lime percentage, maximum load, maximum settlement, and
settlement corresponding to UBC. The model utilizes a single
hidden layer with 14 neurons and undergoes extensive training
through multiple iterations and confirmation checks.TheMATLAB
code for the ANN is provided in Annexure-1.

2.2.4 Extreme learning machine
ELM technology has recently gained widespread acceptance

among scholars. It proves to be a valuable and resilient method
for establishing connections between input index parameters and
their corresponding output variables. ELM, devised by Guang-Bin
Huang (Huang et al., 2006) represents an adapted version of the
conventional ANN model. Huang claimed that the ELM model is
capable of outperforming networks trained via backpropagation,
such as ANN, in terms of conceptual performance, accuracy, and
speed. ELM stands out as an innovativemachine learningmodel that
randomly selects hidden nodes and systematically calculates weights
within a single-layer feedforward network (Huang et al., 2006;
Huang et al., 2011). The ELM model program was developed using
MATLAB, and Figure 8 illustrates the fundamental operational
principle of the ELMmodel.

The ELM model proved useful in a variety of applications,
including classification, soil liquefaction susceptibility, regression
analysis, bearing capacity prediction. In summary, due to
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TABLE 6 Statistical performance metrics equations.

Statistical Performance Parameters Equation

R =

N
∑
i=1
[(UA−UA) ×(UP−UP)]

√[
N
∑
i=1
( UA−UA)

2×
N
∑
i=1
(UP−UP)

2]

(2)

R2 =
[

N
∑
i=1
(UA−UA)

2−
N
∑
i=1
(UA−UP)

2]
N
∑
i=1
(UA−UA)

2
(3)

Adj.R2 = 1− [(N−1)×(1−R
2)]

(N−P−1)
(4)

WMAPE =

N
∑
i=1
| UA−UP

UA
|×UA

N
∑
i=1

UA

(5)

NS = 1−[

[

N
∑
1
(UA−UP)

2

N
∑
i=1
(UA−UA)

2
]

]
;− ∝ < NS ≤ 1 (6)

VAF = [1− Variance(UA−UP)
Variance(UA)

] × 100 (7)

RMSE = √
N
∑
i=1
(UA−UP)2

N
(8)

RSR = RMSE/√
N
∑
i=1
(UA −UA)

2/N (9)

WI = 1−[
N
∑
i=1
(UA −UP)2/

N
∑
i=1
(|UP −UA| + |UA −UA|)

2]; 
0 <WI ≤ 1

(10)

NMBE = [ 1
N

N
∑
i=1
(UA −UP)/

1
N

N
∑
i=1
(UA)] (11)

MAPE = 1
N

N
∑
i=1
| UA−UP

UA
| (12)

LMI = 1−[
N
∑
i=1
|UA −UP|/

N
∑
i=1
|UA −UA|]; 0 < LMI ≤ 1 (13)

BiasFactor = 1
N

N
∑
i=1
( UP

UA
) (14)

MAE =
N
∑
i=1
|(UP −UA)|/N (15)

MBE =
N
∑
i=1
(UP −UA)/N (16)

A20 − index =
n20
N

(17)

TABLE 7 Ideal values of the statistical performance metrics.

Performance
parameters

Optimum
values

Performance
parameters

Optimum
values

R 1 WI 1

R2 1 NMBE 0

Adj.R2 1 MAPE 0

WMAPE 0 LMI 1

NS 1 Bias Factor 1

VAF 100 MAE 0

RMSE 0 MBE 0

RSR 0 A20-index 1

its swift and systematic learning speed, rapid convergence,
improved generalization capacity, user-friendly application, and
high accuracy, the ELM model offers substantial advantages
in generating correlations between input and output variables
Chen et al. (2017).

A single hidden layer ELM model, incorporating 14 neurons
and leveraging various parameters, has been developed to predict
the ultimate bearing capacity of a square foundation. The model
considers input factors such as length, breadth, footing area,
geotextile position from the bottom of the footing, percentage
of lime, maximum load, maximum settlement, and settlement
corresponding to ultimate bearing capacity. The MATLAB code for
the ELM is provided in Annexure-2.

3 Result and discussions

This section is divided into two parts. Firstly, the outcomes of
adjusting the geotextile position (0.2D, 0.4D, 0.6D, 0.8D, 1.0D, 1.2D,
and without geotextile) are presented to determine the “optimal
depth.” Secondly, the results derived from varying the percentage
(0%, 0.5%, 1.0%, 1.5%, ------, up to 6.0%) of lime at the optimal
geotextile depth are depicted and elucidated in the subsequent
section, aiming to establish the “optimal (%) of lime”. As a result, the
total number of tests completed, considering the optimum depth,
with and without geotextile, is 7 + 13 = 20.

The validity of the results will be computationally tested in the
following part using ANN and ELM. The author applied varying
percentages of lime at each level of the geotextile to match the
data requirements for these computer analyses. As a result, the
total number of tests performed, with and without geotextile, is
7 × 13 = 91. Table 8 summarizes the findings of these ninety-
one tests.

3.1 Outcomes of UBC of square footing for
calculating optimum depth of geotextile

3.1.1 Experimental method
Figure 9 illustrates the correlation between load and settlement

for silty sand with geotextile positioned at different depths from
the base of the footing: 0.2D, 0.4D, 0.6D, 0.8D, 1.0D, and 1.2D.
The study reveals that the maximum failure stress of the soil
occurs when the geotextile is situated at a depth of 0.2D, or
3.0 cm from the base of the square footing. The ultimate bearing
capabilities (kN/m2) of the soil were calculated using the double
tangent method at various geotextile depths. The results show
that the ultimate bearing capacities were 380, 1,120, 880, 780,
560, 550, and 820 kN/m2, when a single layer of geotextile is
placed at different depths such as: without geotextile, 0.2D, 0.4D,
0.6D, 0.8D, 1.0D, and 1.2D, respectively. As a result, the ideal
geotextile depthwas determined to be 0.2D (3.0 cm) from the square
footing’s base.

Figure 10 depicts the load versus settlement curve for
a geotextile positioned at a depth of 0.2D (3.0 cm) from
the footing’s base. The UBC is determined using the double
tangent method to be 1,120 kN/m2.
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FIGURE 7
A typical architecture of ANN.

FIGURE 8
Flowchart of (ELM) model.

3.2 Results for the ultimate bearing
capacity of square footing to determine the
optimal percentage (%) of lime

3.2.1 Experimental method
By securing the geotextile at the optimal depth, the investigation

of lime % variation was expanded. Concurrently, the geotextile was

positioned at a depth of 3.0 cm from the base of the square footing,
and the lime percentage was adjusted from 0.0% to 0.5%, 1.0%, 1.5%,
------, up to 6.0%. Under these conditions, Figure 11 depicts the load
versus settlement plot of silty sand. The figure illustrates that soil
treated with 5.0% lime exhibits the maximum failure load (UBC).
The ultimate bearing capacity (UBC) of the soil (in kN/m2) was
determined using the double tangent method with a single layer of
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TABLE 8 Experimental test data.

SL. No. Length Breadth Area GTEX. Lime % M_Load M_Settle SCUBC U.B.C. (UA)

1 0.1 0.1 0.01 0 0 5.4 4.5 1.5 380

2 0.1 0.1 0.01 0.03 0 12.8 6.1 4.2 1,120

3 0.1 0.1 0.01 0.06 0 11.4 8.55 4.6 880

4 0.1 0.1 0.01 0.09 0 9.6 5.15 3.4 780

5 0.1 0.1 0.01 0.12 0 6.6 3.86 2.8 560

6 0.1 0.1 0.01 0.15 0 6.6 4.6 3.2 550

7 0.1 0.1 0.01 0.18 0 10.2 9.1 5.1 820

8 0.1 0.1 0.01 0 0.5 6 5.1 2.3 500

9 0.1 0.1 0.01 0.03 0.5 6.6 5.2 3.5 530

10 0.1 0.1 0.01 0.06 0.5 7.8 6.3 3.4 620

11 0.1 0.1 0.01 0.09 0.5 8.1 5.94 3.2 620

12 0.1 0.1 0.01 0.12 0.5 5.4 7.1 3.3 430

13 0.1 0.1 0.01 0.15 0.5 4.2 5.1 2 330

14 0.1 0.1 0.01 0.18 0.5 6 6.75 3 420

15 0.1 0.1 0.01 0 1 6 3.4 1.7 540

16 0.1 0.1 0.01 0.03 1 9.6 5.4 3 770

17 0.1 0.1 0.01 0.06 1 8.4 8.7 4.4 690

18 0.1 0.1 0.01 0.09 1 9 8.1 4.4 750

19 0.1 0.1 0.01 0.12 1 7.8 6.9 4.2 670

20 0.1 0.1 0.01 0.15 1 7.8 6.4 3.4 620

21 0.1 0.1 0.01 0.18 1 7.2 5.75 4 615

22 0.1 0.1 0.01 0 1.5 7.2 6.4 3.4 580

23 0.1 0.1 0.01 0.03 1.5 11.4 11 4.8 815

24 0.1 0.1 0.01 0.06 1.5 11.4 7.25 5.6 1,010

25 0.1 0.1 0.01 0.09 1.5 10.8 8 5.6 960

26 0.1 0.1 0.01 0.12 1.5 8.4 6.1 4.8 770

27 0.1 0.1 0.01 0.15 1.5 7.2 4.7 3.5 640

28 0.1 0.1 0.01 0.18 1.5 8.4 6 4.4 750

29 0.1 0.1 0.01 0 2 7.4 4.8 2.8 675

30 0.1 0.1 0.01 0.03 2 11.4 5.9 2.4 850

31 0.1 0.1 0.01 0.06 2 11.4 7 4.5 980

32 0.1 0.1 0.01 0.09 2 10.2 12.05 6.7 760

(Continued on the following page)
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TABLE 8 (Continued) Experimental test data.

SL. No. Length Breadth Area GTEX. Lime % M_Load M_Settle SCUBC U.B.C. (UA)

33 0.1 0.1 0.01 0.12 2 8.4 5.6 3.2 705

34 0.1 0.1 0.01 0.15 2 6.6 5.25 3.2 540

35 0.1 0.1 0.01 0.18 2 7.2 4.5 2.4 620

36 0.1 0.1 0.01 0 2.5 9 6.7 3.6 720

37 0.1 0.1 0.01 0.03 2.5 14.4 9.9 6.1 1,250

38 0.1 0.1 0.01 0.06 2.5 13.8 8.1 6.1 1,270

39 0.1 0.1 0.01 0.09 2.5 10.8 7.9 4.9 930

40 0.1 0.1 0.01 0.12 2.5 8.4 5.44 3.5 680

41 0.1 0.1 0.01 0.15 2.5 9 5.75 3.2 770

42 0.1 0.1 0.01 0.18 2.5 8.4 6.85 4.5 740

43 0.1 0.1 0.01 0 3 8.2 6.2 3.6 750

44 0.1 0.1 0.01 0.03 3 13.2 6.5 5.2 1,220

45 0.1 0.1 0.01 0.06 3 13.2 8.1 5.8 1,220

46 0.1 0.1 0.01 0.09 3 12 7.4 4.6 1,070

47 0.1 0.1 0.01 0.12 3 12 8.4 5.6 1,050

48 0.1 0.1 0.01 0.15 3 9.6 7.5 4.2 820

49 0.1 0.1 0.01 0.18 3 10.2 6.9 4.7 900

50 0.1 0.1 0.01 0 3.5 9 6.2 4.2 840

51 0.1 0.1 0.01 0.03 3.5 13.2 8.7 6 1,130

52 0.1 0.1 0.01 0.06 3.5 13.2 6.91 4.8 1,150

53 0.1 0.1 0.01 0.09 3.5 12.6 7.4 5.4 1,120

54 0.1 0.1 0.01 0.12 3.5 12.6 8.6 4.6 1,000

55 0.1 0.1 0.01 0.15 3.5 10.8 7.2 5.2 940

56 0.1 0.1 0.01 0.18 3.5 10.2 7 5.4 940

57 0.1 0.1 0.01 0 4 10.2 9.8 6.4 910

58 0.1 0.1 0.01 0.03 4 13.8 9.1 4.3 850

59 0.1 0.1 0.01 0.06 4 13.2 8.95 6 1,150

60 0.1 0.1 0.01 0.09 4 13.2 10.3 5.6 1,070

61 0.1 0.1 0.01 0.12 4 12 8.95 6.4 1,060

62 0.1 0.1 0.01 0.15 4 12 9.8 7.6 1,100

63 0.1 0.1 0.01 0.18 4 10.8 9.1 6.8 950

64 0.1 0.1 0.01 0 4.5 11 8.4 4.7 900

(Continued on the following page)
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TABLE 8 (Continued) Experimental test data.

SL. No. Length Breadth Area GTEX. Lime % M_Load M_Settle SCUBC U.B.C. (UA)

65 0.1 0.1 0.01 0.03 4.5 13.8 9 5.6 1,230

66 0.1 0.1 0.01 0.06 4.5 14.4 11.2 6.8 1,250

67 0.1 0.1 0.01 0.09 4.5 11.4 9.1 6.2 1,050

68 0.1 0.1 0.01 0.12 4.5 12.6 10.3 6.8 1,080

69 0.1 0.1 0.01 0.15 4.5 13.2 10 8 1,250

70 0.1 0.1 0.01 0.18 4.5 12 8.9 7.4 1,110

71 0.1 0.1 0.01 0 5 10.8 9.2 5.6 930

72 0.1 0.1 0.01 0.03 5 15 10.9 6.8 1,360

73 0.1 0.1 0.01 0.06 5 14.4 10.85 6.4 1,300

74 0.1 0.1 0.01 0.09 5 12.6 9.02 6.8 1,060

75 0.1 0.1 0.01 0.12 5 12 8.8 5.6 900

76 0.1 0.1 0.01 0.15 5 11.4 8.7 6.5 1,040

77 0.1 0.1 0.01 0.18 5 10.8 9.8 5.7 910

78 0.1 0.1 0.01 0 5.5 11 8.4 4.7 900

79 0.1 0.1 0.01 0.03 5.5 13.2 10 8.0 1,250

80 0.1 0.1 0.01 0.06 5.5 14.4 11.2 6.8 1,250

81 0.1 0.1 0.01 0.09 5.5 11.4 9.1 6.2 1,050

82 0.1 0.1 0.01 0.12 5.5 12.6 10.3 6.8 1,080

83 0.1 0.1 0.01 0.15 5.5 13.8 9 5.6 1,230

84 0.1 0.1 0.01 0.18 5.5 12 8.9 7.4 1,110

85 0.1 0.1 0.01 0 6 10.2 9.8 6.4 900

86 0.1 0.1 0.01 0.03 6 10.8 9.1 6.8 950

87 0.1 0.1 0.01 0.06 6 13.2 8.95 6 1,150

88 0.1 0.1 0.01 0.09 6 13.2 10.3 5.6 1,070

89 0.1 0.1 0.01 0.12 6 12 8.95 6.4 1,060

90 0.1 0.1 0.01 0.15 6 12 9.8 7.6 1,100

91 0.1 0.1 0.01 0.18 6 13.8 9.1 4.3 850

geotextile positioned at a depth of 0.2D (3.0 cm) from the base of
the square footing, while varying the lime percentage from 0.0%,
0.5%, 1.0%, 1.5%, 2.0%, 2.5%, 3.0%, 3.5%, 4.0%, 4.5%, 5.0%, 5.5%
and 6.0%. The UBC values for various lime percentages were 1,120,
530, 770, 815, 850, 1,250, 1,220, 1,130, 850, 1,230, 1,360, 1,250, and
950 kN/m2, according to the results. In simpler terms, the optimal
depth and optimal lime percentage for a square footing are 0.2D

(3.0 cm) and 5.0% of the dry weight of silty sand, respectively. The
equivalent UBC optimal value is 1,360 kN/m2.

Figure 12 illustrates the load versus settlement graph for the
condition where the geotextile is placed at a depth of 0.2D (3 cm)
from the base of the square footing, and the lime percentage is fixed
at 5.0%. The calculated ultimate bearing capacity using the double
tangent approach is 1,360 kN/m2.
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FIGURE 9
Load v/s settlement graph for reinforced as well as unreinforced soil sample without lime, while one layer of geotextile is at varying depths from the
base of the footing. (Experimental Test Data).

FIGURE 10
Load v/s settlement graph when geotextile is at 3.0 cm from the base of the footing.

4 Evaluation of performance using
computational models such as ANN
and ELM

4.1 Experimental method adopted for
square footing reinforced by geotextile

Laboratory experiments were conducted for a square footing
on silty sand, incorporating geotextile reinforcement and lime
treatment. The test data, encompassing parameters such as footing

size, footing area, geotextile depth, lime percentage, maximum
load at failure, maximum settlement at failure, settlement at
ultimate bearing capacity, and ultimate bearing capacity, is
presented in Table 8. This comprehensive experimental dataset will
be further analyzed using two artificial intelligence methods: ANN
and ELM repectively.

In this situation, there are eight independent variables: length of
square footing (m), breadth of square footing (m), area of the footing
(m2), depth of geotextile from the base of the footing “GTEX” (m),
percentage (%) of lime, maximum load “M_Load” (kN), maximum
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FIGURE 11
Load versus settlement graph for changing % of lime when geotextile is placed at a fixed optimum depth of 0.2D = 3.0 cm from the bottom of a square
footing. (Experimental test data).

FIGURE 12
Load v/s settlement graph, lime is 5.0% and geotextile is placed at 3.0 cm from the base of the footing.

settlement “M_Settle” (mm), settlement corresponding to ultimate
bearing capacity “SCUBC” (mm), and one dependent variable
named experimental ultimate bearing capacity. To assess validity,
68 (75%) of the total 91 test data points were chosen at random
for the training dataset, while the remaining 23 (25%) comprise
the testing dataset, as shown in Tables 9, 10 respectively. Both
ANN and ELM estimated ultimate bearing capacity (kN/m2) is
marked by “UP”.

4.2 Computational method for square
footing reinforced by geotextile

This section details the application of the developed computer
models to predict the ultimate bearing capacity. Utilizing
input parameters such as length, breadth, area, geotextile
depth (GTEX), lime percentage, maximum load, maximum
settlement, and settlement corresponding to ultimate bearing
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TABLE 9 Training data.

SL. No GTEX. Lime % M_Load M_Settle SCUBC U.B.C. (UA) ELM (UP) R and R2 ANN (UP)

1 0.09 0 9.6 5.15 3.4 780 744.3 786.2

2 0.12 0 6.6 3.86 2.8 560 522.3 567.8

3 0.15 0 6.6 4.6 3.2 550 519.5 ELM 642.6

4 0.18 0 10.2 9.1 5.1 820 826.7 (Neurons 813.8

5 0 0.5 6 5.1 2.3 500 414.4 = 14) 495.4

6 0.03 0.5 6.6 5.2 3.5 530 520.2 0.985 539.3

7 0.06 0.5 7.8 6.3 3.4 620 569.7 0.9702 606.8

8 0.09 0.5 8.1 5.94 3.2 620 593.3 ANN 622.4

9 0.12 0.5 5.4 7.1 3.3 430 396 TRAINLM 328.6

10 0.15 0.5 4.2 5.1 2 330 330 (Neurons 265

11 0.18 0.5 6 6.75 3 420 420.8 = 14) 422.5

12 0 1 6 3.4 1.7 540 491.1 0.977 546.2

13 0.06 1 8.4 8.7 4.4 690 610 0.9545 692.7

14 0.09 1 9 8.1 4.4 750 692 746.9

15 0.12 1 7.8 6.9 4.2 670 615.5 673.5

16 0.15 1 7.8 6.4 3.4 620 584.7 620

17 0.18 1 7.2 5.75 4 615 588.9 626.5

18 0 1.5 7.2 6.4 3.4 580 531.6 598.9

19 0.03 1.5 11.4 11 4.8 815 798.5 812.9

20 0.06 1.5 11.4 7.25 5.6 1,010 1079.5 1009.6

21 0.09 1.5 10.8 8 5.6 960 980.7 962.1

22 0 2 7.4 4.8 2.8 675 610.3 664.4

23 0.03 2 11.4 5.9 2.4 850 819 857.5

24 0.06 2 11.4 7 4.5 980 1000.4 938.5

25 0.09 2 10.2 12.05 6.7 760 739.2 701

26 0.12 2 8.4 5.6 3.2 705 682.3 712.1

27 0.15 2 6.6 5.25 3.2 540 525.6 535.6

28 0.18 2 7.2 4.5 2.4 620 595.3 622.3

29 0 2.5 9 6.7 3.6 720 706.3 753.9

30 0.03 2.5 14.4 9.9 6.1 1,250 1303.7 1238.9

31 0.06 2.5 13.8 8.1 6.1 1,270 1334.5 1246.5

32 0.09 2.5 10.8 7.9 4.9 930 933.5 922.8

(Continued on the following page)
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TABLE 9 (Continued) Training data.

SL. No GTEX. Lime % M_Load M_Settle SCUBC U.B.C. (UA) ELM (UP) R and R2 ANN (UP)

33 0.12 2.5 8.4 5.44 3.5 680 715 755.8

34 0.15 2.5 9 5.75 3.2 770 738.6 771

35 0.09 3 12 7.4 4.6 1070 1047.7 1051.4

36 0.12 3 12 8.4 5.6 1050 1095.6 1019.3

37 0.15 3 9.6 7.5 4.2 820 773.9 738.3

38 0.18 3 10.2 6.9 4.7 900 903.4 881.8

39 0 3.5 9 6.2 4.2 840 770.6 854

40 0.03 3.5 13.2 8.7 6 1,130 1,227 1,172

41 0.06 3.5 13.2 6.91 4.8 1,150 1185.2 1182.4

42 0.09 3.5 12.6 7.4 5.4 1,120 1,174 1096.6

43 0.12 3.5 12.6 8.6 4.6 1,000 1032.7 1021.9

44 0.15 3.5 10.8 7.2 5.2 940 984.2 939.5

45 0.18 3.5 10.2 7 5.4 940 932.4 904.7

46 0 4 10.2 9.8 6.4 910 869.9 879.9

47 0.03 4 13.8 9.1 4.3 850 1040.3 1132.2

48 0.06 4 13.2 8.95 6 1,150 1211.2 1116.8

49 0.09 4 13.2 10.3 5.6 1,070 1118.5 1020.7

50 0.12 4 12 8.95 6.4 1,060 1128.3 1015.7

51 0.06 4.5 14.4 11.2 6.8 1,250 1309.1 1240.1

52 0.09 4.5 11.4 9.1 6.2 1,050 1039.8 924.2

53 0.12 4.5 12.6 10.3 6.8 1,080 1176.1 1047.1

54 0.15 4.5 13.2 10 8 1,250 1336.8 1227.9

55 0.18 4.5 12 8.9 7.4 1,110 1189.9 1090.9

56 0 5 10.8 9.2 5.6 930 925.9 974.2

57 0.03 5 15 10.9 6.8 1,360 1360 1,343

58 0.09 5 12.6 9.02 6.8 1,060 1215.2 1056.4

59 0.12 5 12 8.8 5.6 900 1059.7 958.5

60 0.06 5.5 14.4 11.2 6.8 1,250 1,317 1252.4

61 0.09 5.5 11.4 9.1 6.2 1,050 1044.7 932

62 0.12 5.5 12.6 10.3 6.8 1,080 1190.8 1019.8

63 0.15 5.5 13.8 9 5.6 1,230 1171.8 1157.5

64 0.18 5.5 12 8.9 7.4 1,110 1197.6 1064.4

(Continued on the following page)
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TABLE 9 (Continued) Training data.

SL. No GTEX. Lime % M_Load M_Settle SCUBC U.B.C. (UA) ELM (UP) R and R2 ANN (UP)

65 0 6 10.2 9.8 6.4 900 916.1 888

66 0.03 6 10.8 9.1 6.8 950 1023.7 940.5

67 0.06 6 13.2 8.95 6 1,150 1,176 1113.8

68 0.09 6 13.2 10.3 5.6 1,070 1108.3 1027.3

TABLE 10 Testing data.

SL.
No.

GTEX. Lime % M_Load M_Settle SCUBC U.B.C. (UA) ELM (UP) R and R2 ANN (UP)

1 0 0 5.4 4.5 1.5 380 330 448.6

2 0.03 0 12.8 6.1 4.2 1,120 1,076 ELM 930.6

3 0.06 0 11.4 8.55 4.6 880 897.5 (Neurons 916

4 0.12 1.5 8.4 6.1 4.8 770 741.6 = 14) 823.9

5 0.15 1.5 7.2 4.7 3.5 640 621.9 0.98 690.3

6 0.18 1.5 8.4 6 4.4 750 732.7 0.9604 767

7 0.18 2.5 8.4 6.85 4.5 740 701.6 665.5

8 0 3 8.2 6.2 3.6 750 662 765.1

9 0.03 3 13.2 6.5 5.2 1,220 1253.6 1182.6

10 0.06 3 13.2 8.1 5.8 1,220 1241.5 1165.7

11 0.15 4 12 9.8 7.6 1,100 1180.7 1,094

12 0.18 4 10.8 9.1 6.8 950 1015.9 929.3

13 0 4.5 11 8.4 4.7 900 907.2 972

14 0.03 4.5 13.8 9 5.6 1,230 1193.7 ANN 1228.4

15 0.15 5 11.4 8.7 6.5 1,040 1089.9 TRAINLM 955.3

16 0.18 5 10.8 9.8 5.7 910 936.2 (Neurons 798.1

17 0 5.5 11 8.4 4.7 900 897 = 14) 997.4

18 0.03 5.5 13.2 10 8 1,250 1,360 0.943 1,178

19 0.12 6 12 8.95 6.4 1,060 1,144 0.889 984

20 0.15 6 12 9.8 7.6 1,100 1,238.8 1,007

21 0.18 6 13.8 9.1 4.3 850 941.2 987

22 0.03 1 9.6 5.4 3 770 752.1 702

23 0.06 5 14.4 10.85 6.4 1,300 1278.9 1222.3

capacity (SCUBC). Two robust computational methodologies,
namely ANN and ELM, were used to predict the UBC.
The generated models exhibit commendable prediction

accuracy, as depicted in Figure 13, illustrating a 2-dimensional
scatter plot of the key input factors and the target output
variable, UBC.
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FIGURE 13
2-D scatter plot of independent variable (A) GTEX (B) lime percentage (C) max_load (D) max_settlement (E) SCUBC.

Figure 14 illustrates the prediction of ultimate bearing capacity
for the training (TR) and testing (TS) datasets utilizing the
constructed computational models, ELM and ANN. In the figures,
the blue dotted line indicates the deviation from the actual plot.
Figures 14A, B showcase the ELM model’s predictive performance
during the training and testing phases, while Figures 14C, D display
the training and testing phases of the ANN model. Correlation plot
for UBC prediction, comparing experimental data to the ELM and
ANNmodels, respectively as given in the supplementary material as
figure a and b. Detailed statistical performance metrics for both the
training (TR) and testing (TS) datasets is provided in table which
is given in the supplementary file as Table a and b respectively. The
constructed ANN and ELM models are considered accurate when
their parameter values roughly line with or meet their optimum
values from Table 7. These factors provide information on the
precision of experimental data gathering and aid in the selection
of the most successful forecasting model. Overall, the constructed
models have excellent prediction accuracy.

Taylor’s diagrams depict the training and testing datasets for
the ELM and ANN models, respectively. The point closest to the

“reference point” signifies the most effective forecasting model
as given in the supplementary file as figure c. The training
dataset, ANN is somewhat closer to the reference point, whereas
ELM is much closer in the testing dataset. Given the larger
importance of performance during the testing phase, the ELM
model outperforms the ANNmodel in forecasting ultimate bearing
capacity. The accuracy matrix of the developed models for both
the training and testing periods has been illustrated in the figure
given in the supplementary file as figure d and e respectively. This
matrix serves as a visual representation of datasets and serves as
an indicator of the prediction capability of any model. During
the testing phase, the ELM model shown exceptional predictive
capabilities, obtaining over 97% accuracy in almost all seven
specified parameters (R, R2, Bias-Factor, NS, VAF, A20-index, and
WI). Moreover, the error matrix of the developed models has been
portrayed in the figure given in the supplementary fil, indicating
that ELM outperforms the ANN model significantly during the
testing phase, exhibiting minimal errors in practically all four
parameters (WMAPE, RSR, NMBE, and MAPE). Furthermore,
during the training period, ELM’s performance improvesmarginally
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FIGURE 14
Actual v/s Predicted graph of UBC for model developed (A) ELM (TR) (B) ELM (TS) (C) ANN (TR) (D) ANN (TS).

whereas ANN’s performance improves dramatically A 3-D surface
plot is utilized to illustrate the relationship between a response
variable and two predictor factors. Figure f in the supplementary
file presents these plots, offering a three-dimensional graph that
facilitates the examination of acceptable response values and
operating conditions. Figures f with sub version (a), (b), (c),
and (d) given in supplementary file showcase the impact of %
lime, geotextile depth, maximum settlement, and maximum load
on UBC. According to the current study, the optimal geotextile
depth for the highest ultimate bearing capacity is 0.2D (3 cm)
from the footing’s base, the optimal percentage of lime is 5.0%
of the dry weight of the silty sand, and the optimal value of
UBC is 1,360 kN/m2.

5 Discussion

Experimental methods for determining ultimate bearing
capacity (UBC) for a footing are complex and time-consuming,
making computer modelling a helpful tool for simplifying this
difficult work. The efficacy of a predictive model is gauged through
statistical performance parameters and Taylor’s diagram, where
closeness to the “reference point” signifies an ideal model. In
this study, Taylor’s diagrams were generated for the developed
computational models, including ANN and ELM, utilizing both
training and testing datasets. The training phase, ANN is slightly
closer to the “reference point,” whereas in testing, ELM significantly
outperforms. Notably, ELM has better statistical performance
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metrics, especially during the testing phase. Given the larger
weightage of performance in testing, the ELM model outperforms
the ANNmodel in terms of forecasting ultimate bearing capacity.

Accuracy and error matrices play a crucial role in constructing
and selecting models with high precision for out-of-sample data.
Therefore, it is essential to evaluate the accuracy of models
like ANN and ELM before generating anticipated values. This
study provides a one-of-a-kind illustration demonstrating the
proposed model’s accuracy and inaccuracy. The Error Matrix
and Accuracy Matrix both show that the generated ELM
model outperforms the ANN model in terms of predictive
capability. In contrast to the ANN model, the ELM model
showcases a robust forecasting capacity with high precision,
attributed to its faster convergence, learning without iteration,
and the inclusion of random hidden nodes, ensuring universal
approximation ability.

6 Summary and conclusions

The laboratory findings of this study reveal several significant
conclusions. First, a novel approach is introduced for effectively
utilizing silty sand and lime, offering a practical method to
enhance the ultimate bearing capacity of weak soils, specifically
silty sand. The research identifies that the optimal geotextile
depth is 0.2D (3.0 cm) beneath the base of the square footing.
Additionally, it determines that an ideal lime percentage of 5.0%
yields the best results, maximizing the ultimate bearing capacity.
Remarkably, the ultimate bearing capacity (UBC) of lime-treated
and geotextile-reinforced silty sand reaches an optimal value of
1,360 kN/m2, indicating a substantial increase of 258% compared
to the UBC of untreated and unreinforced (plain) silty sand,
which is approximately 380 kN/m2. Based on the computational
results, the study concludes that the developed computer models,
namely Artificial Neural Network (ANN) and Extreme Learning
Machine (ELM), effectively replicate the outcomes of the laboratory
investigations, providing a faster and more cost-effective alternative
to experimental methods. This emphasizes the accuracy and
reliability of the laboratory data in determining the optimal
geotextile depth and lime proportion necessary for achieving the
maximum ultimate bearing capacity (UBC). Furthermore, the
ELM model demonstrates superior performance over ANN in
terms of competency and precision in predicting ultimate bearing
capacity. Consequently, the ELM model emerges as a robust
and dependable tool for forecasting the UBC of square footings
placed on silty sand, reinforced with geotextile, and treated with
lime admixture.
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