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Enhancing the assessment of in
situ beam–column strength
through probing and machine
learning
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Kingdom, 2Department of Civil, Environmental and Geomatic Engineering, University College London,
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Beam–columns are designed to withstand the concurrent action of both axial
and bending stresses. Therefore, when assessing the structural health of an in
situ beam–column, both of these load effects must be considered. Probing,
having been shown recently to be an effective methodology for predicting
the in situ health of prestressed stayed columns under axial compression, is
applied currently for predicting the in situ health of beam–columns. Although
probing stiffness was sufficient for predicting the health of prestressed stayed
columns, additional data are required to predict both the moment and axial
utilisation ratios. It is shown that the initial lateral deflection is a suitable
measure considered alongside the probing stiffnessmeasured at various probing
locations within a revised machine learning (ML) framework. The inclusion
of both terms in the ML framework produced an almost exact prediction of
both the aforementioned utilisation ratios for various design combinations,
thereby demonstrating that the probing framework proposed herein is an
appropriate methodology for evaluating the structural strength reserves of
beam–columns.
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beam–columns, structural stability, on-site assessment, structural health monitoring,
machine learning

1 Introduction

Structural members within buildings and civil infrastructure are typically designed
considering a pre-defined “serviceable design life,” in accordance with the respective
national building codes and standards. Throughout this stipulated design lifetime,
the structure will naturally face a variety of scenarios that may affect the intrinsic
structural load-carrying capacity, such as the deterioration of the structural members
through corrosion (Doebling et al., 1998) or, perhaps, owing to a change in the
design requirements that results in additional loading caused by changes in use or
increased occupancy (Ross et al., 2016; Askar et al., 2021; Slaughter, 2001). With the
construction industry contributing about 30% of greenhouse gas emissions and energy
consumption globally (UNEP, 2020), from which a substantial amount of demolition
waste is generated (Publications Office of the European Union, 2017), the industry needs
to focus on efforts to reduce its impact. The rehabilitation of existing structures is one
such effective method to reduce the embodied carbon of a structure, thereby reducing its
environmental impact (Alba-Rodríguez et al., 2017). However, rehabilitating a structure for
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reuse requires an assessment of the in situ health of the constituent
structural members and components such that strategies for
strengthening and rehabilitation may be developed.

Structural health monitoring (SHM) covers a wide spectrum of
techniques, where essentially the response of structures and their
individual components to applied actions is recorded to determine
their mechanical state and current health (Gharehbaghi et al., 2022;
Katam et al., 2023; Amafabia et al., 2017). SHM techniques can
be classified into four categories of increasing levels of complexity,
namely, “detection,” “localization,” “quantification,” and “prediction
of the remaining life” (Rytter, 1993). The SHM techniques can
be further distinguished by the nature of the actions applied,
where “static-based methods” measure the response of a structure
to quasi-static loads (such as stiffness, strains, and stresses) and
“dynamic-based methods” measure the structural response to
dynamic loading (such as the frequency response to dynamic
loading) (Gharehbaghi et al., 2022; Shokravi et al., 2020). In
essence, both classes of methods aim to evaluate the current
mechanical state, or health, of a structure, given its response to an
applied action, be it a static or dynamic perturbation. Static-based
methods have been used in civil infrastructure, such as bridges,
where parameters such as displacements, strains, and strut and
cable stresses can be measured for identifying structural damage
(Chen et al., 2016; Martínez et al., 2016; Wu et al., 2018). Dynamic-
based methods are also used extensively in the industry for damage
identification through the vibrational characteristics of a structure
(Koh and Dyke, 2007; Fan and Qiao, 2011; Hakim et al., 2014;
Favarelli et al., 2021). Gharehbaghi et al. (2022) noted that the
measurements of static responses were much more straightforward
than those of dynamic-based responses since the dynamic-based
responses require the meticulous management of operational and
environmental effects for obtaining accurate data.

Beam–columns are ubiquitous structural members within steel-
framed buildings, transferring the vertical and lateral loads acting on
the building to the foundation (Lindner, 1997). Their importance in
providing stability to the overall frame underscores the critical need
for developing a robust, practical, and cost-effective SHM technique
as being an essential precursor for extending the design service
life of existing structures (Liu and Nayak, 2012; Thomson, 2013;
Sumitro and Wang, 2005). For the outcomes of an SHM procedure
to achieve this goal, it must be able to determine the “current” (in
situ) structural capacity of the structural member or, at least, be able
to provide sufficient information to predict its current proximity
to failure. The current paper investigates the feasibility of using
the probing SHM procedure, introduced by Shen et al. (2023), to
evaluate the health of simply supported beam–columns subjected to
axial compression and uniform bending.

Considering first the design of slender steel columns under
a purely axial load, these are typically governed by buckling
instabilities (Timoshenko and Gere, 1963; Allen and Bulson, 1980),
where the ultimate axial load capacity (Pult) is equal to the Euler
buckling load, PE = π

2EI/L2e , where E and I are the Young’s modulus
of the material and the second moment of the area of the cross
section, respectively, while Le is the effective buckling length of the
column that varies with the boundary conditions at the supports.
Considering next the design of slender members subjected to
uniaxial bending, the ultimate bending moment capacity (Mult) is
typically governed by lateral torsional buckling (LTB). The effects

of LTB can be mitigated by restraining the beam to prohibit the
lateral deformation or by using cross sections with high torsional
and warping stiffness such as closed sections (Kitipornchai and
Trahair, 1980; Trahair et al., 2008). The ultimate bending moment
for members that are designed to be laterally restrained is typically
governed by plasticity and is, hence, dependent on the cross-
sectional geometry and material properties.

The current study considers members that are subjected to
a combination of both axial and bending forces simultaneously,
wherein the effects of LTB are restrained, and henceforth referred to
as “beam–columns.”This is achieved by considering a beam–column
with a circular hollow section (CHS). In practice, LTB can also be
restrained in beams that support a floor slab since the slab restrains
the compression flanges of the beam. Hence, the study of laterally
restrained beam–columns represents a more straightforward, yet
practically realistic, design scenario faced within the industry; the
explicit consideration of laterally unrestrained beam–columns is
left for future work. Furthermore, the effects of the local–global
buckling interaction are not presently considered. The failure
criterion for laterally restrained beam–columns is more intricate
since it is determined by the member response to both bending
and compression actions (EN, 2014; Liew and Gardner, 2015;
Arrayago et al., 2015; Cavajdová and Vican, 2023). This response is
best demonstrated by the interaction plot shown in Figure 1, where
̂P is the applied axial compression force P normalised by the ultimate

axial capacity of the member Pult, and hence, ̂P = P/Pult, while M̂ is
the applied momentM normalised by the ultimate bending capacity
of the member Mult, and hence, M̂ =M/Mult. In Figure 1, the solid
line indicates the failure boundary envelope, i.e., the combinations
of M̂b and ̂Pb that would induce the onset of failure within the
member. Hence, combinations of M̂ and ̂P that lie below the curve
are safe-sided, as depicted by the coordinate (M̂safe, ̂Psafe) in Figure 1;
conversely, points that lie above the interaction boundary cause
failure and are unsafe, as depicted by the coordinate (M̂unsafe, ̂Punsafe).
Obtaining M̂ and ̂P for an in situ structure would provide designers
with a metric that can inform the potential structural strength
reserve of the beam–columns, i.e., addressing the criteria for
SHM mentioned above. Previous work has stated that this is a
critically important area of research for present SHMmethodologies
(Gharehbaghi et al., 2022). Consequently, any structural health
monitoring index for beam–columns must be evaluated in relation
to this boundary, which is discussed in Sections 3, 4.Once the results
from the probing–machine learning framework are presented and
analysed, a brief discussion on the prospects of future developments
is presented, and then, conclusions are drawn.

2 Probing SHM methodology for
beam–columns

The probing methodology was originally developed by
Thompson (2015) to assess the buckling resistance of shells
using a non-destructive technique. The process involved loading
a cylindrical shell to a prescribed axial compression load and
is subsequently probed laterally with a small probing force Fp
while recording the corresponding probing lateral deflection δp.
The prescribed axial compression load is then increased, once
again recording the response to probing, until all the probing
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FIGURE 1
Failure envelope for a beam–column under a combination of
normalised uniaxial bending moment M̂ and normalised axially
compressive force P̂.

responses for each normalised axial compression level are recorded.
The results are plotted, which enables the notoriously difficult-
to-predict buckling load of the cylindrical shell to be obtained
(Shen et al., 2023). The concept of using probing as a monitoring
technique was devised by Shen et al. (2023) by considering the
case of axially loaded prestressed stayed columns (PSCs). In
their study, the normalised axial utilisation ratios, equivalent to
̂P currently, alongside the degree of cable erosion, were successfully

inferred from the probing response of the PSC. This methodology,
again, is non-destructive, can be executed with minimal
interruption, and may be classified as a periodic visit-based
monitoring (PVM) technique since continuous monitoring via
sensors is not required. The current work extends the developed
probing SHM methodology to predict the utilisation ratio of
simply supported beam–columns subjected to combined axial and
bending loads.

The procedure adopted here is similar to that implemented
for the study of PSCs (Shen et al., 2023), where the
more generic steel beam–column is modelled within the
commercial finite element (FE) analysis software application
Abaqus (Dassault Systèmes Simulia Corp, 2021). The modelled
beam–columns, under a specified combination of axial force (P) and
uniform bending moment (M), are probed laterally at a prescribed
location Lp with a nominal probing force Fp; in the present study,
Fp = 100N. The probing response for the beam–columns is then
recorded by measuring the corresponding displacement δp, as
shown in Figure 2, with this procedure being repeated for varying
combinations of M̂ and ̂P to generate the dataset for the study
presented later. Throughout the parametric study, it is observed that
the probing response is typically linear, as reported for PSCs by
Shen et al. (2023). However, it is noted that certain combinations of
M̂ and ̂P considered within the parametric study exhibit a nonlinear
response to probing. This is owing to Mult being governed by

material plasticity for a laterally restrained beam; hence, probing
potentially causes the member to be loaded beyond its elastic
limit. A fundamental principle of probing in the structural health
assessment methodology is that the structure must remain elastic
during the probing process to ensure that any of its effects are
transient and reversible (Shen et al., 2023). Therefore, combinations
of M̂ and ̂P that undergo permanent deformation through plasticity,
presently termed “plastic points,” are considered to be beyond the
applicability of the probing procedure and are hence excluded from
the study. The probing stiffness kp is evaluated for each loading
combination considered using the relationship kp = dFp/dδp. The
evaluated kp is subsequently used as an input for the artificial
neural network (ANN) surrogate machine learning (ML) model
to infer the utilisation ratios, M̂ and ̂P, of the beam–column; hence,
the ANN ML model aims to solve the “inverse” problem to that
of the FE analyses. The use of ML surrogate models provides a
powerful solution for capturing complex structural behaviours that
are difficult to model with traditional methods (Wu et al., 2022;
Xing et al., 2023). In theory, with sufficient training, the surrogate
ANN ML model should be able to infer both M̂ and ̂P when the
beam–column is probed laterally in situ. Details of the surrogate
ANNML model are given in Section 4.

2.1 FEA model description

An important part of this framework is the FE model of the
beam–column. The beam–column considered here is modelled as
a simply supported member, as shown in Figure 2. The axial load
is applied as a concentrated force at the top of the member, while
the uniform uniaxial bending moment is applied as a pair of equal
and opposite external moments at its ends, as shown in Figure 2.
The geometrical and material properties of the beam–column
are given in Table 1.

The commercial FE software application Abaqus is used to
model the beam–columns, where Timoshenko beam elements
with linear interpolation functions (“B21” in the Abaqus element
library) are utilised. This choice is appropriate since the interaction
between local and global buckling was not within the scope
of the current study. Following a mesh sensitivity study, an
arrangement comprising 200 beam elements along the main
column member is demonstrated to be sufficiently accurate, when
verified by comparing the elastic critical buckling load evaluated
in FE with the theoretical value from the Euler buckling load
PE. The probing response of the structure is expected to remain
within the elastic regime, but for the sake of realism, the well-
established quad-linear material (QLM)model is implemented here
(Yun and Gardner, 2017), using the nominal material properties
given in Table 1 and shown in Figure 2C. Unlike the traditional
elastic–perfectly plastic material models, the QLM model captures
the strain-hardening response of steel, as well as the gradual loss
of stiffness near the strain-hardening regions, making it a more
accurate representation of the structural material. The static solver
accounting for nonlinear geometry is implemented in the pre-
loading stage, while the arc length solver presented by Riks (1979)
is used for the probing load step.
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FIGURE 2
(A) Geometry, loading setup, and boundary conditions of the probing procedure modelled in Abaqus, where the dotted line shows the original state
and the solid line depicts the deflected shape during probing; (B) cross section of the beam–column member; (C) engineering stress–strain
relationship for the material model used to generate the interaction plot and for the parametric study, as detailed in Table 1.

TABLE 1 Geometrical and material properties used in the parametric
study. Note that the “quad-linear material” (QLM) model is
defined by Yun and Gardner (2017).

Cross-section profile Circular hollow section (CHS)

Beam–column length, L 5000mm

CHS outer-diameter, do 139.7mm

CHS inner-diameter, di 129.7mm

CHS thickness, t 5mm

Material model Quad-linear material model

Elastic modulus, E 210.0kN/mm2

Yield stress, fy 355.0N/mm2

2.2 Beam–column probing parametric
study framework

A parametric study was conducted on the presented
beam–column by varying the applied moment, applied axial force,

and location at which the probe is applied, and the corresponding
displacement is measured, as shown in Figure 3. First, a linear
buckling analysis (LBA) was executed to obtain the buckling loads
and modes of the beam–column. Imperfections were subsequently
introduced to the FE model through scaling the first buckling mode
by an amplitude of L/10000 to introduce a small perturbation
to the numerical model that can consistently initiate the initial
instability while effectively simulating the behaviour of “perfect”
structural members (Saito and Wadee, 2008; Lapira et al., 2017).
Since the present aim is to provide a demonstrable enhancement
of the original probing concept published by Shen et al. (2023),
a comprehensive study focussing on the influence of different
imperfection profiles with practically significant magnitudes on
the MLmodel is not within the scope of this study and is earmarked
for a future study. The ultimate axial load capacity Pult and ultimate
moment capacity Mult of the beam–column were then determined
by loading the member with the respective forces, in isolation, to
failure. In these analyses, the nonlinear arc-lengthmethod presented
by Riks (1979), as implemented in Abaqus, was utilised, accounting
for both geometric and material nonlinearity in the FE analysis
procedure. For the member subjected to pure axial compression,
Pult was determined by considering the ultimate load taken at
the peak value that is observed in the equilibrium path of load
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FIGURE 3
Framework for the parametric study on the probing response of the beam–column.

FIGURE 4
(A) Load–deflection curve of the pure axial case with a peak ultimate load and (B) moment–rotation curve for the pure bending case with no
distinct peak.

versus deflection, as shown in Figure 4A. For members subject
only to uniform bending, a similar peak was not observed in the
post-buckling equilibrium path, as shown in Figure 4B, and hence,
the approach presented by dos Santos et al. (2018) was used to
obtainMult.

Having established the values for Pult and Mult, the interaction
boundary of the beam–column was determined; the goal of this

procedure was to obtain coordinates (M̂b, ̂Pb) that define the
interaction boundary, as shown in Figure 1. This was performed
by implementing a two-step process within Abaqus, where the
beam–column was first subjected to M̂b, i.e., an applied moment
as a fraction of Mult, through a∗STATIC load-step that accounts
for geometric nonlinearity. Subsequently, the axial force P was
applied within a∗STATIC, RIKS load-step that also accounts for
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FIGURE 5
(A) Two-step procedure used to obtain the interaction boundary; (B) combinations of M̂ and P̂ to be examined in the SHM procedure.

geometric nonlinearity, until failure occurred. The value for ̂Pb
is then established by normalising the resulting axial load with
Pult. This “two-step process” is shown graphically in Figure 5,
and the procedure is repeated until the interaction boundary is
defined. Having determined the interaction boundary, “safe-sided”
(or structurally viable) combinations of M̂ and ̂P are obtained
using a rejection sampling method, executed using the GeoPandas
module within Python (GeoPandas, 2023). This was achieved by
first generating sample points, with a mesh-size interval of 0.05
by 0.05 on both the M̂ and ̂P axes, while points lying beyond the
boundary shown in Figure 5B were rejected. This essentially creates
a uniform grid of combinations for M̂ and ̂P.

Finally, the probing study was conducted on the obtained
structurally viable combinations of M̂ and ̂P.The probing analysis in
Abaqus was conducted in two steps. In the first step, the stipulated
loading values of M̂ and ̂P were applied within a∗STATIC step
accounting for geometric nonlinearity. Subsequently, a probing force
of Fp = 100N was applied at Lp and analysed within the arc-length
method load step presented by Riks (1979), where the probing
force–displacement response was recorded such that plots of Fp
versus δp, shown in Figure 6A, could be generated. Owing to
the linear probing force–deflection response of the beam–column,
the probing stiffness kp was obtained by computing the gradient
dFp/dδp, as shown in Figure 6. Moreover, it was noted in Figure 6B
that owing to the curvature caused by M̂, there is an initial
lateral deflection, wini, at the intercept of the abscissa on the
load–deflection curve; hence, wini was also recorded alongside kp.
This procedure was then repeated at different probe locations, i.e.,
Lp = {L/4,L/3,L/2}, for each of the aforementioned structurally
viable combinations of M̂ and ̂P. It should be noted that owing to
the symmetrically applied bending moments, the probing response
of the beam–column is the same for both the top and lower halves
of the column. Therefore, probing was only considered in the lower
half of the column. The data from the probing procedure were
then organised into a pivot table, where each column of the table

corresponded to the probing response (kp or wini) at a given probe
location such that the results were ready for use within the ML
framework.

3 Behaviour and probing response of
the beam–column

The presence of the in-service bending moment M, along with
the axial load P, induces a curvature in the beam–column. The
deflected profile of this beam–column can be found by considering
the differential equation of equilibrium, given by Timoshenko and
Gere (1963):

EIw″ + Pw = −M, (1)

where w describes the deflected profile as a function of the
longitudinal coordinate x, as shown in Figure 7, while primes
(′) denote derivatives with respect to x. The general solution to
Equation 1 is known to be of the form

w (x) = C1 sin βx+C2 cos βx−
M
P
, (2)

where C1 and C2 are constants that depend on the structural
boundary conditions, while β is defined in Equation 3 as:

β = √ P
EI
. (3)

For a beam–column with uniform bending moment M, the
boundary conditions are

−EIw″ (0) = −EIw″ (L) =M. (4)

Thus, by substituting the conditions in Equation 4 into Equation 2,
the constants C1 and C2 can be determined, which yields

w (x) = M
P
{[

1− cos βL
sin βL

] sin βx+ cos βx− 1}. (5)
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FIGURE 6
(A) Linear probing response with only P, with the abscissa intercept at δp = 0; (B) linear probing response under M and P, with the abscissa intercept at
δp =wini due to the curvature induced by M.

FIGURE 7
(A) Probing in the direction of deflection (positive direction)
exacerbates the deflected shape, leading to a larger curvature, while
(B) probing against the direction of deflection (negative direction)
leads to a smaller curvature; here, w(x) and solid lines represent the
deflected shape of the member after probing, and dashed lines
represent the deflected shape before probing.

The deflected profile in Equation 5 is therefore dependent
on M and P. Note that as P→ 0, and thereby, β→ 0, the
deflection function w converges to a parabola in x, as described by
Euler–Bernoulli bending theory.

Owing to the complex behaviour of beam–columns under
combined bending and axial loading, the direction of the probing
force Fp is important. For load combinations that are close
to the interaction boundary, probing the beam–column in the
positive direction, as shown in Figure 7A, leads to a nonlinear
probing response, as shown by the solid line in Figure 8A for
the load combination (M̂ = 0.45, ̂P = 0.35). This behaviour was
not observed for load combinations that were remote from the

interaction boundary, as shown by the dashed line in Figure 8A,
which represents the probing response for load combination (M̂ =
0.15, ̂P = 0.05). This nonlinear probing response was caused by
the positive probing force Fp, triggering an inelastic response
that violated one of the principal aims of the probing procedure
for structural health assessment, i.e., ensuring that the probing
intervention must trigger an elastic (hence reversible) response
from the structure, as described in Section 2. One potential strategy
to avoid triggering an inelastic response is to probe the member
in the “negative” direction, i.e., in the opposing direction to the
deflected shape, as shown in Figure 7B. This ensures that a linear
and elastic probing response of the beam–column is maintained,
as shown by the dashed line in Figure 8B, where a linear probing
force–displacement response is observed when probing in the
“negative” direction. This is currently attributed to the fact that
probing in the negative direction is equivalent to applying a
negative moment (−M) to the member, which, in effect, unloads the
member, and hence, the probing equilibrium path follows a linear
elastic response.

A simplified and safemethod for identifying the aforementioned
“plastic points” is to determine the “elastic boundary” by
considering the linear addition of the absolute stress blocks
from the applied moment M and the axial compression P while
limiting the peak stresses to be less than the yield stress of fy.
Mathematically, the addition of the absolute stress blocks can be
expressed as

| P
A
| + |Mz

I
| < fy, (6)

where A and I are the cross-sectional area and the second moment
of the area of the beam–column, respectively, while z is the distance
from the geometrical centroid of the cross section to its extreme
fibre. Using the definitions of ̂P and M̂, respectively, and substituting
them into Equation 6, yields Equation 7:

|
̂P(Pult)
A
| + |

M̂(Mult)z
I
| < fy,, (7)

which can be used to eliminate combinations of M̂ and ̂P that
experience plasticity, as shown in Figure 9. It was found that
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FIGURE 8
Probing force–displacement response at Lp = 0.5L for (A) Fp = + 100N for the load combinations (M̂ = 0.85, P̂ = 0.05) and (M̂ = 0.15, P̂ = 0.05), which are
close to and remote from the interaction boundary, respectively, and (B) Fp for load combination (M̂ = 0.45, P̂ = 0.35), which is close to the interaction
boundary. In (B), the positive probing response changes the gradient after Fp = 2N. In both sub-figures, the probing responses were shifted in the
abscissa by −wini.

points that lie above the elastic boundary exhibit a nonlinear
probing response, confirming the accuracy of the derived boundary.
Therefore, the present study considers load combinations that lie
within the interaction and elastic boundary to avoid triggering
plasticity during probing. Moreover, combinations of M̂ and
̂P that are excessively close to the interaction boundary are

also excluded from the analysis. This was achieved by bringing the
interaction boundary inwards towards the origin by 0.05M̂ and
0.05 ̂P; this is presently termed the “offset boundary.” Therefore,
the loading combinations of M̂ and ̂P that lie within these
established boundaries are considered here and are indicated by
blue dots in Figure 9.

The probing response for all combinations of M̂ and ̂P is
considered in the parametric study conducted in Abaqus; the
results showing the variation in kp and wini alongside M̂ and
̂P are shown in Figures 10A, B. A direct correlation between ̂P

and kp is readily observed by the linear variation in the ̂P-axis
direction in Figure 10A, echoing the findings obtained by Shen et al.
(2023). However, a similar correlation between M̂ and kp is not
readily found since the response is practically constant for
different M̂ values, while ̂P is constant. However, a variation in wini
with both M̂ and ̂P is found, as shown in Figure 10, which strongly
suggests that wini is a suitable parameter to consider in the ML
framework.

Using Equation 5, the FE results can be verified against w(x) by
substituting the probe location into x, with the resulting analytical
values shown in Figure 10C. It is shown that the calculated values for
w(x) agree reasonably well with wini obtained from Abaqus as long
as the response remains elastic. This is shown in Figure 11, which
depicts the ratio of the analytical deflection value to that determined

FIGURE 9
Final combinations of M̂ and P̂ showing the acceptable region and
those that exceed both the offset and elastic boundaries are indicated
by grey crosses.

fromAbaqus, where values equal to unity denote perfect agreement.
It is shown in Figure 11 that all the results lie within the range
[0.9,1.0], with the vast majority lying in the range [0.99,1.00], which
implies that the probing response generated by Abaqus is sufficiently
accurate to be utilised as the training data in the ANNMLmodel to
predict M̂ and ̂P.
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FIGURE 10
Contours of (A) probing stiffness kpand (B) initial lateral deflection derived from Abaqus, and (C) initial lateral deflection derived from analytical
formulations. In each sub-figure, the response is calculated at different probing locations Lp = L/4, L/3, and L/2 (from left to right).

4 Machine learning framework and
results

Following the framework developed by Shen et al. (2023), an
ANN is implemented for the machine learning framework in the
current study to determine whether this can be used to predict
M̂ and ̂P for beam–columns. Here, the ANN is developed using
TensorFlow (Abadi et al., 2016) with the high-level application
programming interface Keras (Chollet, 2015).

As discussed in Section 3, the probing stiffness response kp alone
may be insufficient to determine M̂ and ̂P, owing to the lack of

variation in the former with kp. Consequently, it was hypothesised
that different input cases are required to generate a good prediction
of M̂ and ̂P in the ANN. Hence, the suitability of kp and wini
measured at different probing locations as ANN input parameters
is explored in different scenarios, which are outlined in Table 2.
Owing to the symmetry of the loading conditions and geometry,
probe locations are limited to the lower half of the member, i.e.,
Lp = {L/4,L/3,L/2}, to avoid duplicating data responses in theANN.
The inputs (kp,uini) are then normalised using the MinMaxScaler
function within the sklearn.preprocessing package, which is known
to assist in achieving convergence by reducing scaling effects
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FIGURE 11
Ratio of analytical to Abaqus wini predictions for different Lp values; ratios equal to unity imply exact agreement. The mean ratio is 0.991 for all three
cases, while the coefficients of variation ratios are 0.017 for the cases where Lp = {L/4,L/3} and 0.018 for the case where Lp = L/2.

TABLE 2 Input cases for the ML model and corresponding number of data points.

Input case Input variable Probe location(s) Number of data points

1 kp + wini 0.5L only 296

2 kp + wini 0.25L, 0.33L, 0.5L 888

3 kp 0.5L only 148

4 kp 0.25L, 0.33L, 0.5L 444

5 wini 0.5L only 148

6 wini 0.25L, 0.33L, 0.5L 444

FIGURE 12
Framework for testing and training the developed ANN.
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FIGURE 13
Comparison of the predicted values (ANN results) and the actual values (FE results) on plots of M̂ versus P̂ for input cases 1–2 with (A, B) MAE and (C, D)
EDLF. (A) Input case 1 with MAE. (B) Input case 2 with MAE. (C) Input case 1 with EDLF. (D) Input case 2 with EDLF.

when training the ANN model (Montavon et al., 2012). The total
number of data points used varies according to the input cases,
as shown in Table 2.

The ANN model predicts two outputs, M̂pred and ̂Ppred, which
can be presented as coordinates in the M̂– ̂P space. Following
an initial hyperparameter optimisation study, the structure of the
ANN is formed of three hidden layers, each having 20 neurons,
which produces sufficiently accurate predictions without excessive
computational effort. The activation function used for the neurons
in the internal layers is chosen to be the rectified linear unit (ReLU)
(Agarap, 2018), while for the output layer, a sigmoid function was
used to ensure that M̂pred and ̂Ppred lie in the range [0,1]. The
framework for the ANN is shown in Figure 12, which depicts the
“70–30” split of the training data, i.e., 70% of the probing results
are used as the training dataset, and the remaining 30%, termed

the “evaluation dataset,” are set aside as an “unseen and unbiased”
dataset to evaluate the accuracy of the trained ANN. From the
initial hyperparameter study, the optimum number of epochs was
determined to be 2,000.

In the ML framework, loss functions are used to quantify the
model error in the training space, and they are used to optimise the
weights and bias between each layer in the ANN (Kerkhof et al.,
2023). Currently, two types of loss functions are explored, namely,
the mean absolute error (MAE) and a bespoke loss function
termed “Euclidean distance-loss function” (EDLF) developed by
Sung Lee et al. (2020). The difference between the MAE and EDLF
is that the MAE computes the average absolute error between the
predicted and actual outputs, averaging both the errors of M̂ and ̂P
together (Hodson, 2022), whereas EDLF calculates the distance in
the Euclidean space between the ML-predicted coordinate points
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FIGURE 14
Normalised frequency plots of ML/FE for input cases 1 and 2 with loss functions (A) MAE and (B) EDLF for M̂ and (C) MAE and (D) EDLF for P̂.

FIGURE 15
Normalised frequency plots of ML/FE for P̂ for input cases 3 and 4 with loss functions (A) MAE and (B) EDLF.
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TABLE 3 Summary of results of M̂pred/M̂FE and P̂pred/P̂FE with different input cases and loss functions.

Input case Loss function M̂pred/M̂FE P̂pred/P̂FE

Mean Std. deviation Mean Std. deviation

1 EDLF 0.95 0.07 1.01 0.04

2 EDLF 0.96 0.06 1.00 0.06

3 EDLF 1.45 0.40 1.00 0.04

4 EDLF 1.46 1.40 1.01 0.03

5 EDLF 1.09 0.38 1.91 1.58

6 EDLF 1.09 0.38 1.94 1.57

1 MAE 0.96 0.08 1.00 0.03

2 MAE 0.99 0.02 1.02 0.05

3 MAE 1.45 1.38 0.99 0.01

4 MAE 1.42 1.33 1.05 0.12

5 MAE 1.06 0.39 1.98 1.64

6 MAE 1.07 0.39 1.94 1.59

against the training dataset true coordinate points in the M̂– ̂P two-
dimensional space (Sung Lee et al., 2020).The evaluated loss values,
calculated using either the MAE or EDLF, are back-propagated
into the ANN model (Larochelle et al., 2009) in a manner that
minimises subsequent training losses using the Adam optimisation
algorithm (Kingma and Ba, 2015). This optimisation procedure is
repeated until the training epoch is completed. Subsequently, upon
completing the training loop, the test dataset, which was initially
set aside, was used to evaluate the performance of the trained ANN
model, thus evaluating the model against “unseen” data, thereby
preventing potential bias in the results. The results obtained from
the evaluation dataset fed into the trained ANN model are then
plotted in Figures 13–15.

4.1 Results

Six input cases and two different loss functions were studied
presently, as shown in Table 2. Following the completion of the ANN
training procedure presented in Section 4, the evaluation datasetwas
then used to predict M̂ and ̂P from the “unseen” probing results as
an input. The results from the predictions for input cases 1 and 2,
with different loss functions, are shown in Figure 13. The accuracy
of the prediction is evaluated by comparing the ratio of the predicted
to the actual values, i.e., the “ML/FE” ratio. For each input case, the
resultingML/FE ratios are averaged, and the statistical data are given
in Table 3, which provides an overview of the performance of all the
models. In Table 3, a ML/FE ratio above 1 implies that the ANN
model has over-predicted the indicated utilisation ratio, whether for
M̂ or ̂P.

Following the discussion presented in Section 3, it is not
surprising that input cases 1 and 2 are determined to be the

best performing ANN models, as shown in Table 3, since they
utilise data points from both the contours of Figures 10A,B as
inputs. Consequently, the model captured the variation in probing
responses from both wini and kp against both M̂ and ̂P. Although
it is noted that the results given in Table 3 only evaluate the model
performance in summary and in aggregate, the results also suggest
some input models may be better at predicting only one of the
outputs, i.e., either ̂P or M̂. For instance, input cases 3 and 4
produce accurate predictions for ̂P, while input cases 5 and 6produce
accurate predictions for M̂. In the subsequent sections, the different
input cases are discussed in more detail.

4.2 Input cases 1 and 2

When comparing the different loss functions for input cases
1 and 2, there is no notable difference in terms of the predicted
coordinate and actual coordinate. Both cases predict M̂ and ̂P with
very good accuracy, as shown in Figure 13, which was evidenced
by the close proximity of the predicted points with the FE results,
depicted using the “× ” and “◦” symbols, respectively. The best
performing model among the four cases shown in Figure 13 is
case 2, i.e., implementing the MAE loss function and using both
wini and kp at three probe locations as inputs. This behaviour is
expected since the ANN is trained on a more diverse training
dataset, which includes multiple probing locations and two input
variables, that is utilised to generate more accurate predictions.
This is clearly shown in Figure 14, where the normalised frequency
distributions of M̂pred/M̂FE and ̂Ppred/ ̂PFE are presented. The
distribution of the ML/FE ratio for both M̂ and ̂P in both cases
are centred around a normalised value of 1, with very little spread,
indicating an overall encouraging model performance.
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Furthermore, the normalised frequency plots shown in
Figure 14 suggest that the MAE loss function outperforms
EDLF when predicting M̂, as indicated by the normalised
frequency ML/FE ratios being more focused around a value of
1.0 in Figure 14A compared with the EDLF results shown in
Figure 14B. The same trend is also observed for the predictions of
̂P, shown in Figures 14C, D for the MAE and EDLF loss functions,

respectively.

4.3 Performance of input cases 3–6

In general, the performance of input cases 3–6 is sub-optimal
compared with the results of input cases 1–2, regardless of the loss
functions or the number of probe locations considered, as shown in
Table 3. Input cases 5–6 are theworst-performingmodels, regardless
of the loss functions used, and are, therefore, not examined further in
this study. For input cases 3 and 4, the ML model appears to predict
̂Pwith some level of accuracy, as shown in Figure 15.This behaviour

is expected since input cases 3 and 4 comprise only kp as the inputs,
which was shown to be only sensitive to a change in ̂P in Figure 10A.
Although it was noted that most of the ̂P predictions were centred
around the ML/FE ratio of unity in Figure 15, the spread in
the normalised frequency plots is excessively large, which implies
that input cases 3 and 4 are relatively inconsistent in their
predictions.

4.4 Discussion of future developments of
the probing ML framework

As noted in Section 3, a key finding from the current work
is the recognition that owing to the curvature of the column,
which is induced by the applied bending moment, the direction in
which the probing force is applied becomes an important parameter
in ensuring that the beam–column remains elastic. Therefore, for
the probing methodology to be extended to include structural
members that also experience bending, wini needs to be considered
an input parameter within the ANN model framework. Moreover,
the current study is deliberately limited in scope to consider
the beam–column as a planar element; therefore, further work
is necessary to consider more complex and realistic scenarios
involving major and minor axes bending in three dimensions.
This can be further extended to asymmetrical cross sections and
open cross sections that are also susceptible to LTB. The current
work has also focused on the behaviour of perfect beam–columns,
i.e., without considering the effects of imperfections or damage.
In theory, damage prediction based on this probing framework is
possible, as indicated by Shen et al. (2023).

A comprehensive over-fitting study was not performed in the
ML model proposed in the current study since the predictions
generated by theMLmodel were sufficiently accurate for input cases
1 and 2, despite the low number of epochs used. Future work can
use techniques such as early stopping and k-fold cross-validation
(Jung and Hu, 2015) to ensure that the ML model is sufficiently
regularised. Moreover, the use of physics-informed neural networks
(PINNs) can also be implemented by defining a custom loss function
within the ANN. The use of PINNs in ANNs, as a means of

buckling analysis, was explored by Tao et al. (2020), where an
inequality constraint was used to ensure that the ANN predicts the
buckling load of an axially compressed cylindrical shell to be lower
than the experimental value. Therefore, through the enforcement
of a corresponding inequality, the ANN model for the probing
methodology should allow the predicted utilisation ratios to provide
safe-sided predictions (Shen et al., 2023). This would inevitably
lead to a more conservative estimate of the in situ utilisation ratios
of the beam–columns when deployed in the industry, but any
degree of conservatism could be controlled through a user-defined
tolerance level.

5 Concluding remarks

The probing response of a perfect beam–column that is
restrained against the effects of LTB was explored in the current
work using the commercial FE software application Abaqus. Owing
to a more complex response for probing a beam–column, when
compared to a member under pure compression, it is shown
that the probing stiffness kp provides sufficient data to predict
̂P, but in isolation, it is insufficient for predicting M̂ since kp is

essentially invariant with the applied moment. However, this is
remedied by including ameasurement of the initial deflection before
probing, wini, which restores accuracy to the developed ANN.
Subsequently, the developed ANN is demonstrated to predict M̂
and ̂P accurately when kp and wini at different probing locations are
used as inputs.

The present study also highlights a potential risk associated with
the implementation of probing as a structural health assessment tool
for beam–columns designed to fail with a plastic ultimate moment
of resistance, Mult. To mitigate the risk of damaging the member
during the probing process, the member should be probed such that
the local deflection is reduced, which would ensure that the probing
response of the column remains linear. A further recommendation
is that the probing procedure is not conducted within 5% of the
elastic limit. Future research will elaborate on the current findings
by exploring different scenarios, such as laterally unrestrained beams
while also focussing on experimental studies to validate the current
findings while ascertaining the practicality of in situ probing as a
methodology for assessing structural health.
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