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Recent seismic analyses indicate that the structural damping ratio should
be considered frequency-independent, for safe and accurate estimations. In
response, damping models like the Wilson–Penzien (WP) damping model, that
is one of the modal damping, provide frequency independence across all
modes; however, these models require considerable computational resources,
especially for large-scale models. While Rayleigh damping is computationally
efficient, it maintains a nearly constant damping ratio only within a limited
frequency range. To address these limitations, several alternative damping
models have been introduced, such as uniform (UN), causal hysteretic (CH),
and extended Rayleigh (ER). We use the factor Wξ to represent the frequency
range where the damping ratio remains approximately constant, defined as
the ratio of maximum to minimum frequencies ( fmax/fmin), within a specified
tolerance of the target damping ratio. For Rayleigh damping, Wξ = 3.7, while
the CH and ER models achieve Wξ values greater than 20. Although the UN
model achieves a high Wξ, it demands large computational resources in the
implicit analyses, commonly used for seismic response studies. In this study, we
address the simultaneously inputting horizontal and vertical seismic motion into
a large-scale dynamic analysis model of a high-rise building. In this analysis,
horizontal, vertical, and local beam vibration modes spanning a wide frequency
range appeared. Considering that these modes require the same damping ratio,
damping models with Wξ values of 50 or higher are desirable. However, this
threshold considerably exceeds Wξ values achievable with the existing models,
rendering these models unsuitable for the intended application. Therefore, we
propose and validate the efficiency of two new damping models (ER-W and
CH19) that meet this requirement by improving existing models. Using these
damping models, it is possible to analyze the horizontal and vertical modes and
local vibration modes of the beam, assuming a simultaneous horizontal and
vertical input to a high-rise building.
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Rayleigh damping, wilson-penzien damping, uniform damping, Frequencyinsensitive,
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1 Introduction

Damping in buildings substantially impacts seismic response
assessments. It can be broadly classified into two categories: inherent
damping that occurs within the linear range, and plastic damping
that arises from material plasticization. This study focuses on the
inherent damping. Although the damping ratio (ξ) of a building’s
first-order mode is generally well-known, the ξ values for higher-
order modes remain less understood. However, recent evidence
suggests these values are similar to or slightly exceed those of
the primary mode (Nakamura et al., 2017). As a conservative
measure for seismic design, it is assumed that the ξ for higher-
order modes should match the first-order mode’s damping ratio.
Consequently, for all modes considered in the response analysis, ξ
is treated as constant and independent of the vibration frequency.
Three prevalent damping models in seismic response analyses are
stiffness-proportional, Rayleigh, and modal damping (Figure 1). In
stiffness-proportional damping, the ξ set for primary modes is
amplified for higher-order modes, while modal damping allows for
the customization of ξ across all modes. However, as the number
of analytical degrees of freedom (DOFs) increases, so does the
computational load, making modal damping less feasible for large-
scale models.

Rayleigh damping combines mass- and stiffness-proportional
damping (Figure 2), allowing the assignment of target damping
ratios (ξaim) at two specific frequencies. Between these frequencies,
ξ remains relatively close to ξaim, and the computational load is
manageable, making Rayleigh damping a widely used choice in
many analyses. However, its adaptive-frequency range where ξ
is almost constant is narrow, limiting its accuracy in capturing
responses across low- and high-order modes, presenting a notable

challenge with Rayleigh damping. In addition, issues with Rayleigh
damping have been discussed by Hall (2006).

With recent advancements in computational power and
analytical methods, several studies have investigated seismic
responses using large-scale FE models of structures, i.e.,
(Ichihara et al., 2021). In addition, more analyses now incorporate
both horizontal and vertical seismic wave components. Typically,
vertical modes exhibit higher frequencies than their horizontal
counterparts. According to Kinoshita et al. (2021), if the primary
horizontal vibrational frequency of a skyscraper is 0.2 Hz,
its primary vertical frequency reaches 2.6 Hz, which is 13
times higher. Mogi et al. (2023) conducted a study on a high-rise
building using a large-scalemodel, demonstrating that in addition to
primary modes, local beams resonate within the 5.0–7.2 Hz range.
In this study, this analysis model is used as an example model. To
ensure frequency independence of damping across all modes for
more complex building models, we set a targetWξ of 50 supposing
fmin = 0.2 Hz and fmax = 10 Hz.

The following assumptions are made in the analysis of this
paper as a conservative assumption, and all of the damping models
examined in this paper correspond to these assumptions. If these
assumptions change, the appropriate dampingmodel will also differ.

1) The damping ratios of the higher-order horizontal modes
are the same as the damping ratio of the first horizontal
vibration mode.

2) The damping ratios of the vertical modes and local modes
are also the same as the damping ratio of the first horizontal
vibration mode.

Earlier, Nakamura (2007) introduced the causal hysteretic
(CH) damping model, achieving frequency independence by

FIGURE 1
Representative damping model available for time history analysis. (A) Stiffness-proportional damping (B) Rayleigh damping (C) Modal damping.

FIGURE 2
Rayleigh damping. (A) Mass-proportional damping (B) Stiffness-proportional damping (C) Rayleigh damping.
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FIGURE 3
Extended Rayleigh (ER) damping. (A) Mass-proportional damping (B) Causal damping (C) ER damping.

FIGURE 4
Wξ( f) of Rayleigh damping (tolerance 10% and f1 = 1).

restricting the frequency range under consideration. This
model represents a time–domain approximation of complex
damping, 1 + 2ξi, derived from the frequency domain,
where i indicates an imaginary unit. Extended Rayleigh (ER)
damping model was developed by integrating the CH model,
instead of the stiffness-proportional damping model (Figure 3)
and was subsequently validated by Nakamura (2016). These
models further demonstrated their effectiveness in addressing
nonlinear analyses (Nakamura et al., 2023).

Hereafter, Wξ denotes the extent of the adaptive-frequency
range, defined as the ratio of the maximum frequency fmax to
minimum frequency fmin that remains within a specific tolerance
relative to the target damping ratio. This concept aligns with Hall
(2006), who demonstrated that for Rayleigh damping, the frequency
range spans from ω̂ toR ω̂when the obtained damping ratio is within
the range of ξmin = ξ-Δ and ξmax = ξ + Δ, for the desired damping
ratio ξ. In this paper, we express the desired damping ratio ξ as
ξaim, Δ/ξ as “the allowable tolerance,” and amount of the adaptive-
frequency area R asWξ. For instance, at a tolerance range of ±10%,
Wξ is 3.7 for Rayleigh damping, whereas for CH and ER models, it
exceeds 20. However, this study aims to achieve aWξ above 50 and
proposes two models (ER-W and CH19).

Uniform damping (UN) introduced by Huang et al. (2019)
manifests an impressively extensive frequency-independent range.
However, it requires very fine time–step intervals, making it suitable
for explicit analyses, but increasing the computational load in

implicit analyses due to these finely spaced intervals. In addition, this
model poses challenges related to the frequency-dependent behavior
of dynamic stiffness, as highlighted by Mogi et al. (2023). These
damping models are outlined and compared in this paper.

2 Classical damping models

Certain classical and commonly usedmodels in various analyses
are discussed below.

2.1 Wilson–Penzien model (WP)

Wilson–Penzienmodel (WP), developed byWilson and Penzien
(1972), is a type of modal damping model that provides a constant
damping ratio across all frequencies. Damping matrix in this model
is based on initial elastic eigenvalues and remains unchanged, even
as the structure enters the nonlinear domain. Chopra andMcKenna
(2016) demonstrated that response variations are minimal, even
without updating the damping matrix as the structure evolves.
However, a limitation of this model lies in its requirement for
extensive eigenvalue analyses across very many modes. Given that
the dampingmatrix is a full matrix, the computational load becomes
notable for large-scale models, often hindering its application.

2.2 Rayleigh model

Considering [M], [K], and {u (t)} as the mass matrix, stiffness
matrix, and displacement vector of the structure, respectively, the
equation of motion can be expressed as Equation 1, where {D (t)}
represents the damping force vector.

[M]{ ̈u(t)} + {D(t)} + [K]{u(t)} = {0} (1)

In Equation 1, the Rayleigh damping model is
represented by Equation 2.

{D(t)} = (α[M] + β[K]){u̇(t)} (2)

Coefficients α and β are determined based on two circular
frequencies, ω1 and ω2 (or the two frequencies f1 and f2), along with
the target damping ratio ξaim, as shown in Equation 3. The accuracy
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TABLE 1 Allowable tolerance of the damping ratio and adaptive-frequency range for Rayleigh damping.

Allowable tolerance f 2/f 1 f min/f 1 f max/f 1 Wξ (=f max/f min)

±5% 1.91 0.88 2.18 2.49

±10% 2.55 0.83 3.08 3.71

±20% 4.0 0.76 5.23 6.88

FIGURE 5
Approximate imaginary unit function (Z′) ( f).

Rξ( f ) of the damping ratio ξ according to f with respect to ξaim is
expressed by Equation 4. When f < f1 or f2 < f, Rξ( f ) > 1, for f1 < f <
f2, then Rξ( f ) < 1.

α =
2ξaimω1ω2

ω1 +ω2
=
4πξaim f1 f2
f1 + f2

, β =
2ξaim
ω1 +ω2

=
ξaim

π( f1 + f2)
(3)

Rξ( f) =
ξ( f)
ξaim
, ξ( f) = 1

2
( α
ω
+ βω) = α

4π f
+ π fβ (4)

This study aims to maintain a consistent damping ratio, ξaim,
over an extensive frequency range during time–history response
analysis. However, Rayleigh damping achieves this only within
a narrow range around the two specified frequencies, f1 and f2.
Consequently, this research seeks to expand Rayleigh damping’s
adaptive-frequency range by defining an allowable area in the
damping ratio, termed as the tolerance level. For Rayleigh damping,
the Wξ values are 2.5, 3.7, and 6.9 when tolerances are set at 5%,
10%, and 20% of ξaim, respectively. Figure 4 depicts Wξ with a
10% tolerance, whereas Table 1 enumerates Wξ values for various
tolerance thresholds in Rayleigh damping. In this damping model,
there is an option to use [K] in Equation 2 as either the initial
stiffness or the tangent stiffness (Jehel et al., 2014).The former
approach is referred to as the initial Rayleigh model, and the latter
as the tangent Rayleigh model. If the tangent [K] is used, eigen
frequencies f1 and f2 must be modified, but it is common practice to
keep these frequencies fixed and replace only [K] with the tangent
stiffness.

3 Recently proposed model

Several models have been proposed in recent years to achieve
frequency-independent damping for nonlinear time–domain
analyses. For example, capped viscous damping (Hall, 2006;
Mogi et al., 2022), an inherent damping model using virtual
viscous dampers with uniform damping constants (Kitayama
and Constantinou, 2022), rate-independent linear damping
incorporated into a base-isolated structure (Wu et al., 2023),
UN (Huang et al., 2019), bell-shaped damping (Lee, 2021),
CH (Nakamura, 2007), and ER (Nakamura, 2016) models.
This section provides an overview of the UN, CH, and ER
models, which are regarded as highly suitable for general
seismic analyses.

3.1 Uniform damping model (UN)

Huang et al. (2019) and Tian et al. (2022) introduced
a novel damping model based on frequency-independent
damping theory that ensures consistent damping across a wide
frequency range. Integrated into FE programs, such as LS-DYNA
(Livermore Software Technology Corporation, 2021), this model
is used in impact analysis. Recently, this model is also installed
in OPENSEES (Tian et al., 2023). Generally, the damping ratio
remains almost constant across a broad frequency scope. To
streamline calculations, a differential approximation is used to
evaluate the filtering process, implying a potential decrease in
accuracy of the damping ratio if the time increment, Δt, is
extended. Although this damping model is predominantly used
for explicit methods, where refining Δt poses minimal issues,
caution is advised when employing it for implicit methods. This
model amplifies dynamic stiffness, altering natural frequencies
of the building. No effective countermeasure exists for this
phenomenon; therefore, the user manual advises direct correction
of building stiffness by adjusting the Young’s modulus (Mogi et al.,
2023). Hereafter, the original UN model is abbreviated as
UN0, and the stiffness-modified model as UN1. Lee (2021)
proposed bell-shaped proportional viscous damping models for the
same purpose.

3.2 Causal hysteretic damping (CH)

Nakamura (2007) introduced the CH model, a damping
approach that achieves frequency independence by limiting the
considering frequency range. This model represents a time–domain
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FIGURE 6
Causal damping model. (A) Total model (B) Stiffness-proportional part (C) Time delay part.

TABLE 2 Coefficients of CH2, CH4, and CH9.

Name N Δt(s) a0 b1 b2 b3 b4 b5 b6 b7 b8 b9

CH2 2

1/flim 1/(π flim)

−0.5506 −0.1300 — — — — — — —

CH4 4 −0.6155 −0.2753 −0.1453 −0.0650 — —– — —– —

CH9 9 −0.6314 −0.3078 −0.1963 −0.1376 −0.1000 −0.0727 −0.0510 −0.0325 −0.0158

transformation of complex damping (1 + 2ξi, where i is an imaginary
unit) from the frequency domain. Since i does not adhere to the
causality law and is thus not convertible to the time–domain (Inaudi
and Kelly, 1995), an approximate imaginary unit (Figure 5) that
complies with causality, is employed to develop a suitable damping
model for time–history response analysis. By transforming this
an approximate imaginary unit to the time–domain, the impulse
response function can be obtained. This function can be effectively
applied to the time–history analyses.

Equation 5 defines the damping force vector {D(t)} for
the CH model, where [K] denotes the stiffness matrix, {u̇(t)}
indicates the velocity vector at the current time t, and {u (t
- j × Δt)} is a displacement vector prior to time t by j ×
Δt. This equation modifies the stiffness-proportional damping,
proportional to the current velocity in the first term, by the
coefficient sum of past displacements in the second term (Figure 6).
The damping force vector {D( f )} in the frequency domain
is expressed by Equation 6. For nonlinear analysis, there is a
choice of [K] as either the initial stiffness or the tangential
stiffness at each time step. In this paper, the tangential stiffness is
used in all cases.

{D(t)} = 2ξ[K] ⋅ (a0 ⋅ {u̇(t)} +
N

∑
j=1

bj{u(t− j ⋅ Δt)}) (5)

{D( f)} = 2ξ(2π f ⋅ i ⋅ a0 +
N

∑
j=1

bj ⋅ e
−2πf ⋅i⋅jΔt) ⋅ [K]{u( f)} (6)

N corresponds to the number of past displacements considered.
Depending on N, several models can be constructed. We used two-
term, four-term, and nine-term models. Increasing the number of

terms enhances both the Wξ value and model accuracy, but also
increases computational demand. The values of a0 and bj for each
model are listed in Table 2. The highestWξ is obtained in the nine-
term model (hereafter, CH9). Figure 7A shows Rξ( f ) for CH9 when
ξaim is 0.01, 0.03, and 0.05 and flim is 10 Hz.The differences in Rξ( f )
across each ξaim are minimal. A peak appears in the low-frequency
range approximately 0.8 Hz, and the tolerance was based on this
peak value. Figure 7A shows that the tolerance is 11% andWξ is 25.8
for ξaim = 0.03.

3.3 Extended Rayleigh damping (ER)

Although Rayleigh damping is a straightforward and useful
technique, it is primarily limited by its narrow adaptive-
frequency range. While Rayleigh damping combines mass-
proportional and stiffness-proportional components, in the ER
model, the stiffness-proportional damping is replaced by the
two-term CHmodel (Figure 3).

Within the ER framework, two models were developed to
minimize the allowable tolerance for the target damping ratio
ξaim, within the adaptive-frequency range. The range for ξaim. is
set between 0.01 and 0.10. These models accommodate allowable
tolerances of ±5% and ±10% and are termed high- and medium-
accuracy models, respectively, as described by (Nakamura, 2016).
Hereinafter, the high-accuracy model is referred to as ER-H, and the
medium-accuracy model as ER-M.

The damping force vector, {D(t)}, is expressed in Equation 7,
where a0, b1, and b2 represent the coefficients of the two-term
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FIGURE 7
Comparison of Wξ of the CH model. (A) Rξ(F) for CH9 (B) Rξ(F) for CH19.

CH model. Coefficients C0 to C2 are adjusted based on ξaim
(Table 3). Equation 8 presents the theoretical expression for ξ( f ),
whereas the accuracy Rξ( f ) with respect to ξaim is shown in
Equation 9, where flim denotes the upper frequency limit set
by the CH model. Figure 8A and (b) display Rξ( f ) values for
ER-H and ER-M when ξaim is 0.01, 0.03, or 0.05, with an
flim of 10 Hz. As observed in these figures, Rξ is large below
0.7 Hz, decreases below 1 between 0.7 and 1.2 Hz, exceeds 1
between 1.2 and 4 Hz, remains close to 1 between 4 and 8 Hz,
and finally increases beyond 8 Hz. This pattern aligns with the
characteristics shown in Figure 3C. When ξaim is 0.03, the Wξ is
13.7 for ER-H in Figure 8A and 21.5 for ER-M in Figure 8B. The
applicability of these models to nonlinear analyses has also been
confirmed (Ota et al., 2023).

{D(t)} = (α0′[M] + α1′[K]){u̇(t)} + 2ξaim[K] ⋅ (γ
′
1{u(t− tlim)} + γ

′
2{u(t− 2tlim)})

a0 =
1
(π ⋅ flim)

,b1 = −0.551,b2 = −0.130, tlim =
1

flim(s)
α0
′ = 2ξaim flimC0,α1′ = 2ξaima0(C1 +C2),γ

′
1 = 2ξaimC1b1,γ

′
2 = 2ξaimC1b2,

}}}}
}}}}
}
(7)

ξ′( f) ≈
ξaim flimC0

2π f
+

ξaim
1+ 2ξaimC1Z

′
R2( f)
⋅ (C1Z

′
I2( f) +

2C2 f
flim
)

whereZ′R2( f) =
2

∑
j=1

bj cos (2jπ fΔt),Z
′
I2( f) = a0 −

2

∑
j=1

bj sin (2jπ fΔt)

}}}}}
}}}}}
}
(8)

Rξ( f) = ξ′( f)/ξaim (9)

fmin, fmax and Wξ for ER-H and ER-M are presented in Table 4.
TheWξ value for eachmodel ranged within 13.5–13.7 and 21.3–21.5
for ξaim = 0.01–0.05.

4 Improvement for a wider
adaptive-frequency range

In Section 3, CH9, ER-H, and ER-M models were introduced.
Although these models achieve higher Wξ values than Rayleigh
damping, they fall short of meeting the target Wξ of over 50.
Therefore, we first improve the causal hysteresis damping to achieve
Wξ = 50 with a tolerance below 15% (CH19). Next, we aim to
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TABLE 3 Coefficients C0–C2 for ER.

ξaim ER-H (tolerance =
±5%)

ER-M (tolerance =
±10%)

C0 C1 C2 C0 C1 C2

0.01 0.266 0.770 0.119

0.205 0.920 0.00.02 Linear interpolation

0.03 0.262 0.775 0.119

: Linear interpolation Linear interpolation

0.05 0.260 0.780 0.126 0.205 0.920 0.0

: Linear interpolation Linear interpolation

0.10 0.235 0.790 0.157 0.180 0.930 0.0251

develop a model with an even larger Wξ using extended Rayleigh
damping, achievingWξ = 80 with a tolerance below 20% (ER-W).

4.1 Causal damping model with N = 19
(CH19)

In the causal damping model, we previously used a model
(CH9) with a time delay term (N) of 9, which proved insufficient.
Therefore, we consider a model (CH19) in which N is increased
to 19. Although this expansion improves Wξ, the increased N in
time–history response analysismay reduce computational efficiency.
Table 5 shows the coefficients (b1-b19) for CH19, with Δt(s) and a0
remaining the same as in Table 2. Figure 8B shows Rξ of CH19. The
overall trend is similar to CH9, but with a larger Wξ of 57.4 when
ξaim = 0.03. The peak appears around 0.8 Hz for CH9 and shifts
to around 0.4 Hz for CH19, with each model’s maximum tolerance
corresponding to these peaks.

Table 6 compares the tolerances and Wξ values of CH9 and
CH19 for the same ξaim. Higher ξaim generally results in a larger
tolerance. When ξaim = 0.03, the tolerance is 11% with Wξ = 25.8
for CH9, whereas for CH19, the tolerance slightly increases to 14%,
butWξ reaches 57.4. For CH19,Wξ exceeds 50 across all cases, when
ξaim ranges between 1% and 5%.

In addition, when using the proposed model, the setting of F lim
is important, it is necessary to give F lim so that the frequency range
to be considered falls between Fmin and Fmax referring to Table 6.

4.2 Extended Rayleigh damping model for
a wider adaptive area (ER-W)

We propose the ER-W model, designed to expand Wξ with
a slight trade-off in accuracy. The target damping ratio, ξaim, is
set within the range of 0.005–0.05, with an allowable tolerance of
±20% in the adaptive-frequency range. This model employs a four-
term CH model, defined by coefficients a0 and b1–b4, since a two-
term CH model cannot achieve that performance. Equations 10,

11 show the calculation method for this model, which is simpler
than ER-H and ER-M due to its broader tolerance. This model
is called ER-W for its wider adaptive area. Rξ is calculated by
Equation 9 as above.

The coefficient α0' in Equation 11 was optimized through
numerical trials within the range 0.005 < ξaim < 0.05 within the
±20% tolerance.This optimization resulted in dividing ξaim into two
groups, above and below 0.02, since a single α0' value could not be
applied across all ξaim. Figure 8C displays the Rξ values for ER-W
with flim set at 10 Hz, while Table 4 compares the Wξ values of ER-
W against those of ER-H and ER-M. For 0.01 < ξaim ≤ 0.05, theWξ
of the ER-W model exceeds 80. However, ER-W shows significant
fluctuations in the low-frequency range, resulting in comparatively
lower accuracy in that range.

As mentioned above, when using the proposed model, the
setting of F lim is important, it is necessary to give F lim so that
the frequency range to be considered falls between Fmin and Fmax
referring to Table 4.

Although this model achieves a larger Wξ than CH19, being a
type of Rayleigh damping model, it still faces limitations—such as
issues in models with rigid body motion (e.g., uplift or sliding)—as
described by Hall (2006).

{D(t)} = (α0
′[M] + α1

′[K]){u̇(t)} + 2ξaim ⋅ [K] ⋅ (
4

∑
j=1

bj{u(t− j ⋅ tlim)}) (10)

Here,

α0
′ = (0.1445ξaim + 2.513× 10

−5) flim (0.005 ≤ ξaim < 0.02)
α0
′ = (0.1376ξaim + 17.59× 10

−5) flim ( 0.02 ≤ ξaim ≤ 0.05)
α1
′ = 2ξaima0,a0 = 1/(π ⋅ flim)

b1 = −0.616,b2 = −0.275,b3 = −0.145b4 = −0.065, tlim = 1/ flim(s)

ξ′( f) ≈
α0
′

4π f
+

ξaimZ
′
I4( f)

1+ 2ξaimZ
′
R4( f)

WhereZ′R4( f) =
4

∑
j=1

bj cos (2jπ fΔt),Z
′
I4( f) = a0 −

4

∑
j=1

bj sin (2jπ fΔt)

}}}}}}}}}}}}}}}}
}}}}}}}}}}}}}}}}
}
(11)

5 Analysis of a high-rise steel building

To compare the properties of various damping models,
we conducted horizontal and vertical simultaneous input
analysis on a 35-story high-rise steel building, following the
approach used by Mogi et al. (2023). To directly evaluate beam
vibrations, a long beam was divided into small elements, generating
localized vibrational beammodes, and the response in the long beam
was then calculated. The columns were assigned elastic properties
with bilinear hysteresis at both ends. The model includes 756 nodes
and 1756 DOF.

Figure 9 shows the element division of the building’s analytical
model. In the horizontal direction, the first three mode frequencies
are 0.21 Hz, 0.62 Hz, and 1.08 Hz. Figure 10 shows the effective
mass ratio for each mode, with the first mode accounting for
77% in the horizontal direction and surpassing 90% by the
third mode. Therefore, first to third modes are important for
the horizontal response evaluation.

Frontiers in Built Environment 07 frontiersin.org

https://doi.org/10.3389/fbuil.2024.1491991
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Nakamura et al. 10.3389/fbuil.2024.1491991

FIGURE 8
Comparison of Wξ of the ER models. (A) Rξ(F) for ER-H (B) Rξ(F) for ER-M (C) Rξ(F) for ER-W.

The first vertical mode corresponds to the overall seventh
mode, at 2.9 Hz. Vertical modes differ from horizontal ones and
are distributed across a broad frequency range. Overall 7th–12th
modes (2.9–4.9 Hz) are column vibration modes, arising from

column compression and tension, while the overall 15th–40th
modes (5.8–7.2 Hz) represent prominent local beam vibrations.
The effective mass ratio in the vertical direction reaches nearly
90% up to the 40th mode. Consequently, to evaluate beam
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TABLE 4 Comparison of the adaptive-frequency range for ER.

ξaim ER-H ER-M ER-W (improved model)

fmin/flim fmax/flim Wξ fmin/flim fmax/flim Wξ fmin/flim fmax/flim Wξ

0.01 0.06 0.82 13.7 0.04 0.85 21.3 0.00115 0.92 80.0

0.03 0.06 0.82 13.7 0.04 0.86 21.5 0.00115 0.92 80.0

0.05 0.06 0.81 13.5 0.04 0.86 21.5 0.00110 0.92 83.6

TABLE 5 Coefficients for CH19.

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

−0.6350 −0.3160 −0.2080 −0.1540 −0.1210 −0.0981 −0.0816 −0.0688 −0.0585 −0.0500

b11 b12 b313 b14 b15 b16 b17 b18 b19 —

−0.0427 −0.0363 −0.0306 −0.0255 −0.0207 −0.0162 −0.0120 −0.0079 −0.0039 —

TABLE 6 Comparison of the adaptive-frequency range for CH9 and CH19.

ξaim CH9 CH19 (improved model)

Tolerance fmin/flim fmax/flim Wξ Tolerance fmin/flim fmax/flim Wξ

0.01 9% 0.037 0.955 25.8 9% 0.019 0.978 51.4

0.03 11% 0.036 0.930 25.8 14% 0.017 0.975 57.4

0.05 14% 0.034 0.950 27.9 19% 0.018 0.970 53.8

response behavior, modes up to the 40th must be represented,
necessitating a minimum Wξ of 36 (7.2(Hz)/0.2(Hz)). However,
to accommodate more complex cases, we set a target Wξ of 50.
In addition to the WP model used as a benchmark, we employed
Rayleigh damping, widely used in practice, along with CH9, ER-
H, ER-M and the proposed CH19 and ER-W models. Uniform
damping models UN0 and UN1 were also studied as outlined
in Section 3.1.

Figure 11 shows the accuracy of the damping ratio Rξ for
each model. Rξ is the ratio of the calculated damping ratio
ξ( f ) at each frequency to the target damping ratio ξaim (set
at 0.02 in this case). The ξ( f ) values were calculated from the
logarithmic decay characteristics of 100 single-DOF models with
natural frequencies between 0.01 and 10 Hz using each damping
model. CH-9 and CH-19 are almost the same as the theoretical
characteristics of the causal damping model (Figure 7), while ER-
H, ER-M and ER-W correspond well to the theoretical extended
Rayleigh damping model (Figure 8).

Rayleigh damping is tested in two configurations: where the
target damping ratio applies to the first and seventh modes [labeled
R (1–7)], primarily for horizontal modes, and another for the
1st and 40th modes [named R (1–40)], for both horizontal and
vertical modes. The flim for ER-H, ER-M, and ER-W was set at 4.0,
6.0, and 15.0 Hz, respectively. As shown in Figure 11, the upper

accuracy limits for ER-H and ER-M are approximately 3.5 and 5 Hz,
respectively, while ER-W surpasses the 7.2 Hz target frequency. The
flim for CH9 and CH19were set to 4.5 and 10.0 Hz, respectively, with
CH19 also exceeding 7.2 Hz.

We applied two types of seismic motion inputs: L1 (once-every-
50-year event scaled by 0.2) and L2 (once-every-500-year event
scaled by 1.0). The seismic motions were input simultaneously
in the horizontal and vertical directions. For L1, all members
remained within the elastic range, while for L2, the beams entered
the plastic range, though columns stayed elastic. Figure 12 shows
the acceleration and displacement response spectra for L2 seismic
motion, with the damping ratio set at 0.02.

TheNewmark-βmethod (β = 1/4) was used for time integration.
For R and ER models, the integration time interval was set to Δt
= 0.01 s. For WP, Δt = 0.005 (s) was used because it diverged at
Δt = 0.01 (s). Since UN1 requires fine time increments for solution
stability, its integration time interval was set to Δt = 0.0005 (s) based
on preliminary trials.

6 Results and discussion

Figures 13, 14 illustrate the elastic peak response result at a
scale factor of 0.2 (L1 earthquake), while Figures 15, 16 present the
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FIGURE 9
Modeling image of the analyzed steel building.

inelastic peak response result at a scale factor 1.0 (L2 earthquake).
The beam amplitude was derived by calculating difference between
the nodal vertical displacement at the center of the long-span beam
and average vertical displacement of the nodes at both ends. Vertical
acceleration represents vertical response at the center node of the
long-span beam. Shear coefficient was determined by dividing the
story shear force at each story by the weight above it. In addition,
side column axial force ratio graphically represents the ratio of the
side column response of each damping model to that of the WP.
In the nonlinear analysis, Rayleigh damping is applied in both the
initial and tangent models, with the tangent model shown in all
analysis results, including the ERmodel, due to minimal differences
between the two.

FIGURE 10
Effective mass ratio of the building.

In all figures, the results of R (1–7) and R (1–40) are shown
as current general methods, with WP included as the benchmark
method for comparison. In addition, themodels CH9, CH19, ER-W,
and UN1 are also described in these figures. As shown in Figure 11,
CH9, ER-H, and ER-M cannot capture modes beyond the seventh
mode (2.9 Hz), resulting in less accurate analysis outcomes.
Therefore, only CH9 is retained as a representative of this group.
CH19 and ER-W represent the proposed methods, while the
modified method (UN1) is displayed among the uniform damping
methods for its superior accuracy over the original method (UN0).

Figure 13A shows the horizontal displacement, where nearly all
models align well with WP due to the predominance of the first-
order mode, though CH19 and ER-W show slightly larger values,
a phenomenon discussed later. In Figure 13B, the beam amplitude
shows a more substantial discrepancy in R (1–40) compared to
other models, attributed to an underestimation of the damping ratio
from the 2nd to 40th order. This discrepancy more pronounced
in Figure 13C for horizontal acceleration, where both R (1–40)
but also R (1–7) exhibit larger responses. For vertical acceleration
in Figure 13D, the influence of the 40th order mode at 7.2 Hz is
significant, CH9 and R (1–7) show a marked difference from WP
due to its inability to accommodate the damping ratio of this mode.
Throughout Figure 13, UN1 delivers an accurate response, and the
proposed ER-W and CH19 also perform well.

The shear coefficient in Figure 14A and story drift angle in
Figure 14B reveal larger responses for R (1–7) and R (1–40) relative
to WP, possibly due to these models underestimating damping for
the first–seventh orders. On the other hand, other models generally
performwell, butUN1 shows a slightly lower response.Althoughnot
displayed, UN0 is even less accurate, especially in Figure 14B; while
the UN1 modification improves accuracy, slight differences persist.
Figure 14C shows the ratio of the column axial force across all layers,
with R (1–40) displaying a larger response due to its underestimation
of damping across modes. The ductility factor of all models in
Figure 14D is smaller than 1, reflecting an elastic range analysis. And
all models exhibit properties similar to those seen in Figure 14B.

Figures 15, 16 display results for the nonlinear range, with trends
similar to those in Figures 13, 14 for the elastic range. In Figure 15A,
CH19 and ER-W exhibit slightly larger results than WP, while
other models show minimal deviation from WP, consistent with
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FIGURE 11
Accuracy of the damping ratio Rξ = ξ(F) ∕ ξaim. (A) R (1–7), R (1–40) and UN (B) ER-H, ER-M, ER-W, CH9 and CH19.

FIGURE 12
Simulated earthquake motion. (A) Acceleration response (cm/s2) (B) Displacement response (cm).

FIGURE 13
Distributions across the height of the 35-story building: (A) peak horizontal displacement at each floor, (B) peak beam vertical displacement at each
floor, (C) peak horizontal acceleration at each floor and (D) peak vertical acceleration at each floor (L1 earthquake).
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FIGURE 14
Distributions across the height of the 35-story building: (A) peak shear coefficient in each story, (B) peak story drift angle in each story, (C) peak axial
force ratio in each story and (D) ductility factor in each story (L1 earthquake).

FIGURE 15
Distributions across the height of the 35-story building: (A) peak horizontal displacement at each floor, (B) peak beam vertical displacement at each
floor, (C) peak horizontal acceleration at each floor and (D) peak vertical acceleration at each floor (L2 earthquake).

Figure 3. In Figures 15B–D,UN1 and the proposed ER-WandCH19
correspond WP.

In Figures 16A, B, deviations fromWP are observed for R (1–7),
R (1–40), while other models align closely. The difference between
UN1 and WP is reduced compared to Figure 14. In Figure 16C, all
models diverge from WP, but R (1–7) is the closest. In Figure 16D,
results mirror those in Figure 16B, with CH9, CH19, and ER-W
showing strong correspondence to WP, though deviations are more
pronounced.

Through Figures 13–16, it can be observed that the proposed
CH19 and ER-W models provide better responses, as compared

to Rayleigh damping. However, the horizontal displacements of
these models, dominated primarily by first-order modes, tend
to be larger, with ratios relative to WP at the top of the
building reaching 1.17 for CH19 and 1.14 for ER-W in the
linear analysis (L1 earthquake) as shown in Figure 13A. In the
nonlinear analysis (L2 earthquake), these differences are slightly
reduced, with CH19 and ER-W at 1.12 and 1.06, respectively
(Figure 15A).

Figure 17 shows the accuracy Rf( f ) of the resonance frequencies
of CH19 and ER-W models with ξ = 0.02, as used in the analysis.
Rf( f ) is expressed as the product of stiffness accuracy Rfk( f ) and the
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FIGURE 16
Distributions across the height of the 35-story building: (A) peak shear coefficient in each story, (B) peak story drift angle in each story, (C) peak axial
force ratio in each story and (D) ductility factor in each story (L2 earthquake).

FIGURE 17
Frequency variation of the first-order mode for CH19 and ER-W.

damping accuracy Rfξ( f ), as shown in Equation 12.

R f( f) = R fk( f) ⋅R fξ( f)

where R fk( f) = √1+ 2ξaim ⋅Z
′
R( f),R fξ( f) = √

1− ξ( f)2

1− ξaim2

}}}}
}}}}
}

(12)

With the flim set at 10 Hz for CH19 and 15 Hz for ER-
W, Figure 17 plots from 0 Hz to 10 Hz on the abscissa. The first-
order analysis frequency of 0.2 Hz is also shown in the figure.
The Rf (0.2) values for CH19 and ER-W are 0.969 and 0.978,
respectively, corresponding to first-order resonance frequencies of
1.94 and 0.196 Hz.This deviation from the original first-order mode
frequency of 0.2 Hz is considered to have changed the seismic input
component, contributing to the observed differences in the first-
order mode response.

7 Calculation load

Table 7 presents the computation times for each dampingmodel.
Models R (1–7), R (1–40), ER-H, ER-W, CH9, and CH19 showed
stable and accurate performance even with a relatively coarse time
increment (0.01 s). In contrast, UN0 andUN1 required considerably
more CPU time, due to the need for fine integration time intervals
(0.0005 s) to maintain stability. WP, as a dense matrix, incurs a
high computational cost for the Cholesky decomposition of effective
stiffness matrix K ∼.

All analyses were carried out on an SD530 LenovoThink System
equipped with an Intel Xeon Gold 6,246 3.3 GHz CPU. Analyzing
the WP model required 532 (s), while uniform damping required
a time step of 0.0005 (s), resulting in a calculation time of 469
(s). Models R (1–7) and R (1–40) completed in 30 (s), while ER-
H and ER-M took 27 (s) each. The proposed ER-W and CH19
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TABLE 7 CPU times spent on computations.

Damping scheme Ground motion scale factor F =
1.0

Integration time
interval (s)

CPU time (s)

R (1–9)

0.01

30

R (1–40) 30

ER-H 27

ER-M 25

ER-W 23

CH9 26

CH19 27

UN0
0.0005

469

UN1 489

WP 0.005 532

required 23 (s) and 27 (s), respectively, making their computational
loads comparable to standard Rayleigh damping. Although UN1
achieves high analysis accuracy, its implicit method demands finer
time increments, extending the duration of the analysis. This
computational burden is likely to increase substantially for larger
analytical models.

8 Conclusion

In the seismic response analysis of the large-scale models, which
will become increasingly important in the future, there is a need for
a dampingmodel that canmaintain a consistent damping ratio from
low- to high-order modes, with minimal computational load. In
the current seismic design, Rayleigh damping is commonly applied
in seismic design for such cases; however, its frequency range for
achieving a constant damping ratio is considerably narrow. In this
study, we define this frequency range using the coefficient Wξ, and
propose a dampingmodel suited for scenarios whereWξ exceeds 50.

For standard Rayleigh damping, Wξ is relatively low,
approximately 3.7 with a 10% tolerance and approximately 6.9 with
a 20% tolerance. In contrast, the causal damping and modified
Rayleigh damping models we have previously proposed achieveWξ
values of 26 and 21, respectively, at a 10% tolerance. While sufficient
for many applications, the high-rise model examined here includes
local beam vibration modes in addition to horizontal and vertical
modes, necessitating new damping models with Wξ values of 36.
However, to accommodate more complex cases, we set a target
Wξ of 50.

Therefore, we first improved causal hysteresis damping,
achieving aWξ of 50 with a 15% tolerance. We then ER damping to
attain a larger Wξ, reaching 80 with a 20% tolerance. These models

were applied to both linear and nonlinear seismic response analyses
of a steel-framed high-rise structure, demonstrating high accuracy
with computation times similar to those of standard Rayleigh
damping, thereby confirming the efficacy of the proposed models.

In many of the problems that have been studied so far, the input
seismic motion was assumed to be either horizontal or vertical. In
such cases, the conventional model of Wξ was sufficient to cover
the required frequency range. However, for analyses that assume
simultaneous horizontal and vertical inputs, as in the example in this
study, and that also consider local vibrationmodes, the conventional
model of Wξ is not sufficient. The model proposed in this paper is
effective for such problems.

As for the application of these damping models, although the
example was a 2-dimensional model, it is also possible that a 3-
dimensional model will be used in the future. In that case, themodel
will be even larger, so themodels proposed in this paper will be even
more effective. In addition to this, for example, in an analysis where
the same 3 directions of input as the actual phenomenon are applied
to a large-scale 3-dimensional FE model of a nuclear power plant
building, we believe that the effectiveness of the models will be even
more apparent.

For future development of these models, several issues are
noteworthy. First, in both models, the damping ratio variation is
relatively high near the lower limit ( fmin) of the applicable range. It
is desirable to achieve a more stable damping ratio in this range. In
addition, it is necessary to consider how to deal with cases where a
largerWξ is required.

For causal history damping, the model currently requires 19
past displacements, which could be optimized by reducing this
count to improve calculation efficiency for larger analysis model.
Although ER damping achieves a high Wξ, it remains a variant of
Rayleigh damping, thus retaining some inherent limitations such
as issues with rigid body motion, making it challenging to apply in
specific cases.Therefore, evaluating each model’s applicability based
on many problems is essential.
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