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The monitoring of concrete structures has advanced remarkably with the aid
of deep learning technologies. Since concrete is multi-purpose and low-cost,
it is extensively used for construction purposes. Concrete is very enduring.
Nevertheless, it tends to crack which endangers the integrity of the structure
and results in complications. The current study offers a new image segmentation
approach for detecting cracks in concrete by making use of an optimized
U-Net++ architecture. The proposed model gives the features of the T-Max-
Avg Pooling layer which effectively combines the advantages of traditional
max and average pooling using a learnable parameter to balance feature
extraction dynamically. This innovation both improves the output accuracy and
processing speed and captures the fine details. In addition, it mitigates noise
and transcends the limitations of conventional pooling methods. Moreover,
using learnable pruning and shortening skip connections in U-Net++ reduce
redundant computations, making the model faster without compromising
accuracy. In comparison with other models like Mask R-CNN and VGG-U-
Net, the proposed model had considerably faster inference times (21.01 ms
per image) and fewer computational requirements (40G FLOPs), making it very
suitable for real-time monitoring applications. The DeepCrack and Concrete
Pavement Crack datasets were employed to assess the model thoroughly which
yielded an MIoU score of 82.1%, an F1 score of 90.12%, a Dice loss score
of 93.7%, and an overall accuracy of 97.65%. According to the results, the
enhanced U-Net++ with T-Max-Avg Pooling provided a balanced trade-off
between segmentation accuracy and computational efficiency. This indicates
its considerable potential for automated real-time crack detection in concrete
structures by employing resource-constrained environments including drones
and mobile platforms.
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1 Introduction

Concrete crack detection is vital for the maintenance and
inspection of concrete structures because the existing cracks are
the chief indicators of the durability and potential damage of
the structure. Regular crack measurement systems are part of
the construction inspection programs of many countries and
are usually conducted visually by technicians (Sjolander et al.,
2023; Yan et al., 2019). The conventional devices for crack
detection, such as the Schmidt Hammer and ultrasonic wave
generators, are effective. Nonetheless, they are time-consuming,
labor-intensive, and prone to human error (Yu et al., 2022;
Nie et al., 2018). Furthermore, these devices lack the precision
needed for a reliable and consistent crack detection in difficult
conditions. By providing superior efficiency, robustness, and
accuracy, recent improvements in deep learning, especially
convolutional neural networks (CNNs), have led to a revolution
in crack detection (Alam et al., 2020). Deep learning-based
methods transcend the limitations of conventional approaches
by automatically learning complex features from the image
data. In this way, the need for expert intervention and manual
feature extraction is eliminated. In spite of their theoretical
advantages, these methods are challenging to use in practical
applications such as real-timemonitoring in resource-constrained
environments (Sanjerehei and Rundel, 2020). Deep learning
offers significant advantages over traditional image processing
and machine learning techniques including independence from
expert-guided thresholds, superior precision, and robustness
with respect to various images. CNNs are the driving force
behind advancements in computer vision (LeCun et al., 2015).
Image segmentation, a crucial aspect of visual systems, involves
dividing an image into its constituent components.This process is
vital in applications such as medical image analysis, self-driving
vehicles, and augmented reality. Recent deep learning-based
segmentation models have significantly outperformed traditional
methods, leading to a paradigm shift in image segmentation. U-
Net is a convolutional neural network architecture designed for
biomedical imagesegmentation. Itwas introducedbyRonneberger
et al., in 2015 and has since gained popularity due to its simple yet
effective design (Ronneberger et al., 2015).TheU-Net architecture
consists of a contracting path to capture context and a symmetric
expanding path for precise localization, making it particularly
effective for segmenting images with limited annotated data. U-
Net++ is an extension of the original U-Net architecture proposed
to improve segmentation by redesigning the skip connections.
The main innovation in U-Net++ is the use of nested and dense
skip pathways which aim to reduce the semantic gap between the
encoder and decoder subnetworks.This results in a more accurate
segmentation especially in medical imaging tasks (Qian et al.,
2024). EfficientDet is a family of object detection models
that leverage the EfficientNet backbone for feature extraction.
Presented in2020, thismodel iswell-knownfor itsbalancebetween
efficiency and accuracy. EfficientDet introduces a weighted bi-
directional feature pyramid network (BiFPN) as well as a
compound scalingmethod that uniformly scales the width, depth,
and resolution of the backbone, box/class prediction network,
and feature network, providing a state-of-the-art performance
with fewer computations and parameters (Nawaz et al., 2022). In

addition to U-Net++ enhancements, EfficientDet, a state-of-the-
art object detection model, has shown a remarkable performance
in various detection tasks due to its efficient architecture and
compound scaling (Tan et al., 2020). EfficientDet balances
accuracy and computational efficiency by scaling the network
width, depth, and resolution uniformly. While EfficientDet has
been primarily designed for object detection, its principles can
be applied to image segmentation tasks, providing insights into
developingmore efficient and accuratemodels for crack detection.
Given the advancements in image segmentation, its application
for detecting cracked zones has increased (Lyu et al., 2023). Recent
advancements have demonstrated that physics-informed neural
networks (PINNs) have becomemore andmore popular in various
engineeringfields.Physical laws, representedbypartialdifferential
equations, are directly integrated by PINNs into the learning
process of the neural network. This enhances the reliability
and interpretability of the model, particularly for engineering
applications that need a solid basis in physical principles. For
example, the applicationofhierarchical deep learningandphysics-
informed finite element analysis in engineering has shown their
significant potential in improving the accuracy of prediction
and reducing the computational requirements, as emphasized by
recent studies (Antony et al., 2023; Rodriguez-Torrado et al., 2022;
Asadzadeh et al., 2023). Moreover, research on structural health
monitoring and failure analysis has also incorporated PINNs,
showing their considerable ability in modeling complex systems
with embedded physical constraints, as observed in recent works.
These contributions are especially relevant in the field of concrete
crack detection in which the integration of physics into data-
driven models can improve their generalization and robustness,
resulting in more dependable real-time monitoring systems. By
highlighting these developments, the importance of incorporating
physics-informed strategies besides deep learning techniques
becomes evident. In fact, they provide new opportunities for
enhancing the reliability and accuracy of anomaly detection in
civil infrastructure (Wang et al., 2023). The aim of this study is to
bridge the gapbetween the theoretical capabilities of deep learning
and its practical deployment for infrastructure monitoring. By
reducing the computational costs and having a high accuracy, the
proposed enhancedU-Net++ architecture offers a balanced trade-
off that makes it viable for real-world large-scale crack detection
applications, ultimately improving the safety of the infrastructure
and the efficiency of its maintenance.

2 Materials and methods

2.1 Data collection

The dataset utilized for this study comprised high-resolution
images of concrete surfaces including both cracked and non-cracked
areas. These images were sourced from publicly available datasets
and augmented with additional images collected from real-world
inspections to ensure a comprehensive representation of various
crack types and conditions.The images weremeticulously annotated
to label the crack regions accurately. The images had various
sizes. Therefore, they had to be preprocessed before running the
algorithm.
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2.1.1 The dataset details
The DeepCrack dataset consisted of 20,000 images, while the

Concrete-Pavement Crack dataset included 10,000 images. The
images had a high resolution and ensured a wide range of cracks.
Some of the data used in this study are shown in Figure 2.

2.1.2 Dataset features
The crack regions in all images were manually annotated by

civil engineering experts to ensure high-quality ground-truth data.
The images included variations in surface types, lighting conditions
(daylight and shadow), and environmental factors (wet and dry
conditions).

2.1.3 Dataset preparation and usage
The images were resized to a standard resolution of 256 × 256

pixels and normalized to values between 0 and 1 to align with the
input requirements of the network. The datasets was split into 70%
for training, 15% for validation, and 15% for testing to ensure a
robust evaluation.

2.1.4 Analysis and evaluation
The datasets had a significant imbalance. There were more

intact regions than cracks in the majority of the images. To address
this problem and to increase the accuracy of the model, data
augmentation techniques were used.

2.1.1.1 The data augmentation techniques and their
effects

In this study, data augmentation techniques were employed to
enhance the robustness of the model by increasing the diversity of
the training dataset. The data augmentation techniques included
random rotations (between −30 to +30°), translations (up to 10%
of the image size along the X and Y-axes), scaling (between
0.8 and 1.2), horizontal and vertical flips (with a probability
of up to 50%), brightness adjustment (between 0.5 and 1.5),
contrast adjustment (between 0.5 and 1.5), and Gaussian noise
addition. These techniques were selected to mimic various real-
world conditions under which concrete crack images could be
captured, thus helping the model generalize better to different
scenarios. These augmentation techniques were selected based on
their ability to cover a vast range of conditions that are likely to
be met in real-life scenarios such as changes in image quality,
perspective, or lighting. Applying the data augmentation techniques
improved the performance of the model significantly. In particular,
by providing diverse input data, it mitigated overfitting.This allowed
themodel to learnmore generalized features.The changes randomly
applied to the images aswell as their descriptions are listed inTable 1.

2.2 Model architecture

The model used in this study was an improved version of the
U-Net++ architecture augmented with a novel T-Max-Avg-Pooling
layer for enhanced feature extraction and output refinement.

2.2.1 U-Net++ architecture
U-Net++ is an advanced variant of the traditional U-Net

architecture designed specifically for image segmentation tasks. It

aims to improve performance by introducing dense skip connections
and nested dense convolutional blocks (Zhou et al., 2018).
Additionally, the use of the T-Max-Avg Pooling layer enhances
its ability to capture diverse features. Figure 1 shows the U-Net++
architecture.

2.2.2 The overview of the U-Net++ architecture
and its comparison with the traditional U-Net
architecture

The U-Net++ architecture is a state-of-the-art version of the
traditional U-Net. It was designed to overcome the limitations in
segmentation accuracy and feature propagation. U-Net++ presents
two principal innovations: nested convolutional blocks and dense
skip connections. These dense skip connections bridge the gap
between the encoder and decoder characteristics more efficiently
than the original U-Net. This increases feature propagation and
decreases the semantic disparity between the encoder and decoder
pathways. The skip connections in the original U-Net connect each
encoder layer to its corresponding decoder layer. This contributes
to the preservation of spatial information. Nonetheless, these
connections can result in a considerable semantic gap between
high-level and low-level feature maps. U-Net++ mitigates this
gap by incorporating convolutional operations and intermediate
dense skip pathways between the encoder and decoder stages. This
both refines the feature maps and improves the quality of the
segmentation output (Zhang et al., 2023). The new T-Max-Avg
Pooling layer further improves the performance of U-Net++ by
combining average pooling, max pooling, and a trainable pooling
operation. This pooling strategy permits the model to capture the
prominent features adaptively and reduce the noise. This offers a
more thorough feature extraction in comparison with the standard
average or max pooling layers utilized in the traditional U-Net.

2.2.2.1 Traditional Pooling Methods

• Max Pooling: In this method, the maximum value from each
patch of the featuremap is selected.Although it selects themost
notable feature, it may discard other important information.
Besides, it is sensitive to noise (Liu Z. et al., 2019).
• Average Pooling: In this method, the average value of the
features in a patch is calculated.Though it reduces noise, it may
obscure the valuable features. In addition, unlikeMax Pooling,
it lacks the ability to select the sharp details or edges (Su and
Wang, 2020).
• Mixed Pooling: This method is a combination of max pooling
and average pooling (in the conventional sense of
the term) (Li et al., 2023).

2.2.3 T-Max-Avg Pooling
T-Max-Avg Pooling is a cutting-edge method which combines

the advantages of both Max and Average Pooling. Specifically:

• It chooses the K highest pixel values from the feature map and
employs parameter T to control the outputs of the average and
maximum values of these pixels.
• This flexibility lets the model retain both prominent features
(like max pooling) and reduce noise (like average pooling).
This makes the model more adaptive to different types of data.
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FIGURE 1
(A) U-Net++ consists of an encoder and a decoder that are connected through a series of nested dense convolutional blocks. The main idea behind
U-Net++ is to bridge the semantic gap between the feature maps of the encoder and decoder prior to fusion. For example, the semantic gap between
X0, 0 and X1, 3 is bridged using a dense convolutional block with three convolutional layers. (B) The detailed analysis of the first skip pathway of
U-Net++. (C) U-Net++ can be pruned at inference time if trained with deep supervision (Zhou et al., 2018).

FIGURE 2
Examples of the used images.

• By learning adaptive pooling operations, T-Max-Avg improves
feature extraction and assures that themodel extracts both fine
details and extensive contextual information.

2.2.3.1 Mathematical Formula
Let X represent the input feature map of a pooling window

and let K indicate the number of top values selected from this

window. The T-Max-Avg Pooling operation is expressed in the
following way:

F (T−Max−Avg (X)) = T ⋅Max(Xk) + (1−T) ⋅Avg(Xk) (1)

The detailed derivations for Equations 1–11 can be found in this
study. Where:
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TABLE 1 The random changes to the images and their descriptions.

Description Change type

Rotating the image by a random angle within a specified range (−30 to +30°) Random Rotation

Shifting the image randomly along the X and Y-axes within a specified range (up to 10% of the image size) Random Translation

Scaling the image by a random factor within a specified range (0.8–1.2) Random Scaling

Flipping the image horizontally with a certain probability (up to 50%) Random Horizontal Flip

Flipping the image vertically with a certain probability (up to 50%) Random Vertical Flip

Adjusting the brightness of the image by a random factor within a specified range (0.5–1.5) Random Brightness Adjustment

Adjusting the contrast of the image by a random factor within a specified range (0.5–1.5) Random Contrast Adjustment

Adding Gaussian noise to the image with a specified mean and standard deviation Gaussian Noise Addition

TABLE 2 Comparing the performance of the models.

Pooling method Dice (%) mIoU (%) F1 (%) Precision (%) Recall (%) Inference time (ms)

Max Pooling 93.1 76.5 85.4 88.7 81.2 30.05

Average Pooling 92.8 75.9 84.9 87.9 80.8 28.5

Mixed Pooling 93.5 77 86.2 89 82.4 29.5

T-Max-Avg Pooling 93.7 82.1 90.12 87.6 94.5 21.01

TABLE 3 The runtime, memory usage, and FLOPs for the proposed model and the existing benchmarks.

Models Inference time (ms/image) Memory (GB) FLOPs (G)

Deep Crack (Liu et al., 2019b) 98.23 6 45

CNN (Fan et al., 2018) 90.57 4 25

VGG-U-Net (Shi et al., 2021) 86.71 11 120

SegNet (Nguyen et al., 2022) 95.45 9 70

U-Net (Liu et al., 2019c) 30.05 9 60

U-Net++ (Zhou et al., 2020) 28.65 8 50

EfficientDet (Sohaib et al., 2024) 32.15 5 45

Mask R-CNN (He et al., 2018) 85.36 13 160

The Proposed Method 21.01 8 40

• X indicates the set of pixel values or feature values in the
pooling window.
• K represents the number of highest values taken from
the window.
• Xk stands for the top K highest values from the
pooling window.
• Max(Xk) indicates the maximum of these K values.
• Avg(Xk) is the average of the K highest values.

• T is the tunable parameter that determines the contribution of
the Max and Average Pooling.
• When T = 1, the pooling operation behaves like

Max Pooling and entirely focuses on the largest feature
in the window.
• When T = 0, the operation behaves like Average

Pooling and smooths the features by averaging
all of them.
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FIGURE 3
The architecture of the proposed method.

• When 0 < T < 1, the operation mixes both pooling
strategies which allows the model to adapt dynamically
according to the features in the input window (Zhao and
Zhang, 2024).

2.2.4 The contributions of T-Max-Avg Pooling
and dense skip connections

The dense skip connections improve gradient flow as well
as feature reuse across layers. Liu et al. (2019a) and Oluwaseun
(2023) provide further details regarding similar pooling techniques
and their applications in image segmentation. This considerably

enhances the performance of the model with respect to both
convergence speed and accuracy. Furthermore, learnable skip
connection pruning, which gives weights to each skip connection,
is used. In this way, the model is enabled to remove the
redundant pathways during training without a considerable loss
in performance. This both accelerates the model and mitigates
computational complexity, making U-Net++ appropriate for
resource-constrained environments. A new feature of the proposed
architecture, the T-Max-Avg Pooling layer improves the ability of
the network to capture both broader contextual information and
fine details. Traditional max pooling often concentrates on the most
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FIGURE 4
The Dice coefficient and MIoU of the network.

FIGURE 5
Comparing the validations of the methods.

prominent features, while average pooling mitigates the noise but
may blur the vital details. T-Max-Avg Pooling dynamically balances
the maximum and average values by combining these approaches
with a trainable parameter (T). This enables the model to capture
the important features adaptively which improves the accuracy of
segmentation.

2.2.5 The effect of pruning on the performance
and training time of the model

Pruning skip connections in U-Net++ presents a practical way
to accelerate the model by reducing the redundant calculations
and maintaining the quality of its performance. The pruning
process involves the gradual removal of the less important skip
connections detected by giving weights to each connection and
adjusting them by employing the L2 norm during training. The

connections with a minimal contribution to the final output
are pruned. This permits the model to concentrate on critical
information pathways. The effect of pruning on performance is
considerable in two principal aspects, computational efficiency and
speed (Chatzikonstantinou et al., 2021).When the less essential skip
connections are pruned, the complexity of the model is reduced
which leads to faster training and inference times without a marked
decrease in accuracy. Particularly, using learnable skip connections
assures that only redundant pathways are eliminated and the ability
of themodel to combine low- and high-level featuremaps effectively
is preserved. This approach both accelerates the training process
and improves the adaptability of themodel by preventing overfitting
to unnecessary connections. Moreover, bottleneck compression
is utilized to further reduce the computational load through 1
× 1 convolutional layers to decrease the dimensionality of the

Frontiers in Built Environment 07 frontiersin.org

https://doi.org/10.3389/fbuil.2024.1485774
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Sarhadi et al. 10.3389/fbuil.2024.1485774

feature maps in the skip connections. This decreases the number
of parameters and FLOPs (floating-point operations) which leads to
faster inference times and lower memory consumption. In addition,
the critical features are preserved for an accurate segmentation.
In general, the pruning strategy provides a balanced compromise
between computational efficiency and accuracy, making U-Net++
more appropriate for real-time applications, especially in resource-
constrained environments. The results of the experiments showed
that proper pruning, combined with bottleneck compression, leads
to a noticeable reduction in training time and a notable increase
in processing speed without compromising the performance of the
model. Doing experiments with trade-offs between accuracy and
speed assures that U-Net++ becomes more effective and efficient as
mentioned in Table 3.

2.2.6 The benefits of the T-Max-Avg Pooling layer
over traditional pooling methods

TheT-Max-Avg Pooling layer was designed to transcend several
inherent limitations in traditional pooling methods such as average
pooling and max pooling in order to enhance both the feature
extraction and performance of the model. This part mentions the
theoretical advantages thatmake T-Max-Avg Pooling an exceptional
choice for deep learning tasks, especially in regard to crack detection
in concrete structures.

2.2.6.1 Adaptive feature retention
One of the main benefits of the T-Max-Avg Pooling layer is

its flexibility. By combining average pooling, max pooling, and a
tunable parameter, the T-Max-Avg approach permits the model to
retain the prominent features (as in max pooling) and to reduce
noise at the same time (as in average pooling). Parameter T finds
a balance between the average and maximum values and makes
the model flexible to adapt dynamically to various kinds of features
within the pooling window. This flexibility is especially helpful in
image segmentation tasks in which both prominent features and
nuanced details are vital.

2.2.6.2 Enhancing robustness and reducing noise
Max pooling is useful for capturing the most remarkable

features. However, it is susceptible to noise. In contrast, average
pooling often obscures the sharp features by averaging. T-Max-
Avg Pooling overcomes these limitations by taking advantage of
both approaches: it chooses the highest pixel values and calculates
a weighted combination of the average and maximum values.
This hybrid approach assures that the most significant features are
preserved and the effects of noise are mitigated. This leads to more
robust feature maps.

2.2.6.3 Improved generalization
The learnable parameter permits the model to generalize better

across different datasets by dynamically adapting the pooling
behavior based on the specific features of the input data. This
means that the T-Max-Avg Pooling can productively handle
data variability which is essential for real-world applications
like crack detection in which the characteristics of the input
images can differ remarkably owing to varied environmental
conditions.

2.2.7 Comparing the T-Max-Avg-Pooling method
with other state-of-the-art pooling methods

The proposed T-Max-Avg-Pooling layer provides a unique
combination of average pooling, max pooling, and an additional
learnable parameter (T) which permits the model to adapt the
pooling operation dynamically between the dominant features and
the featuremaps.This flexibility gives T-Max-Avg-Pooling the ability
to make a balance between preserving the fine details and reducing
noise. This makes it highly effective in different scenarios like
crack detection in concrete structures. To ensure the effectiveness
and novelty of the proposed method, it is compared below with
other advanced pooling methods such as spatial pyramid pooling
(SPP) and stochastic pooling. Unlike conventional pooling methods
that depend on max or average values, stochastic pooling selects
the activation functions according to a multinomial distribution
formed over each pooling region. This stochasticity increases
the robustness of the model by preventing overfitting, especially
in scenarios with small datasets. Nevertheless, the randomness
introduced by stochastic pooling can result in variability in the
output which might not always be proper for applications such
as crack detection in which maintaining a consistently high
accuracy is vital (Ju et al., 2023). In contrast, the T-Max-Avg-Pooling
layer presents a deterministic yet adaptive mechanism that assures
both consistency and robustness by learning how much emphasis
should be placed on the average and maximum values within a
region. SPP improves feature extraction by permitting the network
to pool from different spatial scales which is especially helpful
for capturing multi-scale contextual information. It is useful in
scenarios in which the input images vary remarkably in size since
it provides the generation of fixed-length representations regardless
of the input dimensions. Nonetheless, SPP increases computational
complexity because of its multi-level pooling. This makes it less
appropriate for deployment in resource-constrained environments
or real-time applications. In contrast, T-Max-Avg-Pooling finds a
balance between feature robustness and computational efficiency,
needs fewer resources, and productively captures the features crucial
for an accurate segmentation.

2.3 Architecture structure

1. Encoder: The encoder part of U-Net++ consists of multiple
stages each of which contains nested dense convolutional
blocks followed by down-sampling operations.TheT-Max-Avg
pooling layer is used to reduce the spatial dimensions of the
feature maps and to increase the depth.

2. Nested Dense Convolutional Blocks: Within each stage,
multiple convolutional layers are densely connected. The
output of each convolutional layer is concatenated with the
inputs of subsequent layers, forming dense connections.

3. Decoder: The decoder part of U-Net++ consists of up-
sampling stages that gradually restore the spatial dimensions
of the feature maps. Each up-sampling stage includes a
combination of transposed convolutions concatenatedwith the
corresponding encoder feature maps (skip connections) and
nested dense convolutional blocks.
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4. Output Layer: The final output layer consists of a 1 × 1
convolutional layer to produce the segmentation map with the
desired number of classes.

By integrating these advanced components, U-Net++ achieves
superior performance on various image segmentation tasks, making
it a powerful tool for medical imaging, remote sensing, and other
applications. Figure 3 shows the proposed architecture.

2.4 Training procedure

Themodel was trained using the following approach:

• Loss Function: Due to its effectiveness in handling imbalanced
data scenarios typical in crack detection tasks, the Dice loss
function was employed to optimize the model.
• Optimizer: The Adam optimizer was selected due to its
adaptive learning rate capabilities and efficiency.
• Learning Rate: An initial learning rate of 0.001 was set.
A scheduler was used to adjust the rate dynamically
during training.
• Batch Size: A batch size of 16 was chosen to balance the
memory constraints and an effective training.

2.5 Evaluation metrics

2.5.1 Accuracy
Accuracy is a measure of how often the classifier is correct. It is

the ratio of the number of correct predictions to the total number of
predictions.

Accuracy =
Number o f Correct Predictions
Total Number o f Predictions

(2)

In terms of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN), accuracy can be
expressed as:

Accuracy = TP+TN
TP+TN+ FP+ FN

(3)

2.5.2 Precision
Precision is a metric employed to measure the accuracy of

positive predictionsmade by amodel. In the context of classification
or segmentation tasks like crack detection, precision measures how
often the predicted positive results of themodel are correct, focusing
on the ability of the model to avoid false positives (incorrectly
labeling non-crack areas as cracks).

Precision = TP
TP+ FP

(4)

2.5.3 F1 Score
The F1 score is a measure of a test’s accuracy. The F1 score,

which makes a balance between recall and precision, is selected to
evaluate howwell themodel detects the true positive crack pixels and
minimizes the false positives. This metric is vital in crack detection
to prevent overestimating the crack regions which could result in

needless and expensive maintenance tasks. Moreover, the F1 score
gives a balanced view of both false negatives and false positives,
which is essential for assuring the reliability of crack detection. It
considers both the precision (P) and the recall (R) of the test to
compute the score. The F1 score is the harmonic mean of precision
and recall.

F1 Score =
2× (P×R)

P+R
(5)

where:
- P is the ratio of the true positive predictions to the total number
of positive predictions:

P = TP
TP+ FP

(6)

- R is the ratio of the true positive predictions to the total number
of actual positives:

R = TP
TP+ FN

(7)

2.5.4 Mean Intersection-over-Union (MIoU)
MIoU is a standard metric used for assessing the overall

performance of the segmentation models. In crack detection tasks,
MIoU presents a thorough measure of how well the predicted crack
regions are matched with the actual cracks by considering both
over-segmentation and under-segmentation. It provides a general
perspective on the performance of themodel across the entire image,
assuring that themodel adequately segments the cracks regardless of
their position and size. It calculates the average Intersection-over-
Union (IoU) for all classes.

IoU =
|A∩B|
|A∪B|

(8)

where:A is the set of predicted pixels and B is the set of ground
truth pixels.

The MIoU is the mean of the IoU scores for all classes.

MIoU = 1
C
×∑
|Ai ∩Bi|
|Ai ∪Bi|

(9)

where:C is the number of classes, Ai is the set of predicted pixels for
class i, and Bi is the set of ground truth pixels for class i.

2.5.5 Dice Loss
Dice loss is very suitable for segmentation tasks which use

imbalanced datasets. Using Dice loss is common for crack detection
in which the crack regions are usually much smaller than the
background. By maximizing the overlap between the ground truth
and predicted regions, Dice loss assures that the model pays especial
attention to these small but crucial features, thereby improving the
accuracy of segmentation. Dice loss is a loss function commonly
used for image segmentation tasks. It is derived from the Dice
coefficient which measures the overlap between two samples. Dice
loss is particularly useful for imbalanced datasets.

The Dice coefficient (also known as the Sorensen–Dice index)
is given by:

Dice Coe f ficient =
2|A∩B|
|A| + |B|

(10)
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where:A is the set of predicted pixels and B is the set of ground
truth pixels.

The Dice loss is then defined as:

Dice Loss = 1−Dice Coe f ficient (11)

2.6 Experimental setup

The experiments were conducted using a high-performance
computing system equipped with an NVIDIA GPU to
facilitate efficient training and inference. The following details
outline the setup:

• Hardware: NVIDIA Tesla T4
• Software: TensorFlow and Keras libraries for implementing
and training the deep learning model.
• Splitting the Training and Validation Datasets:The dataset was
split into 80% training and 20% validation subsets to evaluate
the generalization ability of the model.

3 Results

After tuning the network and its parameters, the network was
trained on Google Colab with a T4 VGA, 16 Gigabyte of RAM, and
a Ryzen 7 CPU. One hundred epochs were set for training.

In Figure 4 the right chart, theMIoU is shown,whereas in the left
chart, the Dice loss is plotted. The blue and orange charts illustrate
error in the training and validation phases, respectively.

3.1 The impact of T-Max-Avg Pooling: The
results of the ablation study

To further elucidate the impact of the T-Max-Avg Pooling layer
on the performance of the model, an ablation study was conducted
to compare the proposed pooling method with traditional pooling
methods. The study involved four configurations: max pooling,
average pooling, mixed pooling, and T-Max-Avg Pooling. Each
of them was tested under identical conditions to evaluate its
effect on key metrics such as accuracy, Dice loss, MIoU, and
inference time. The results, summarized in Table 2, demonstrated
a significant improvement when the T-Max-Avg Pooling layer was
used. Specifically, the proposed pooling method achieved an MIoU
score of 82.1%, an F1 score of 90.12%, and a Dice coefficient of
93.7% which were consistently higher than those achieved by the
other pooling methods. The adaptability of the T-Max-Avg Pooling
allows it tomake a balance between retaining the prominent features
(similar to max pooling) and reducing noise (similar to average
pooling). This flexibility contributes to its superior performance in
capturing intricate crack details which is crucial for an accurate
segmentation. In terms of computational efficiency, the T-Max-
Avg Pooling also exhibited the shortest inference time (21.01 ms
per image) compared to max pooling (30.05 ms), average pooling
(28.5 ms), and mixed pooling (29.5 ms). This reduced inference
time, combined with enhanced accuracy metrics, positions T-Max-
Avg Pooling as an optimal choice for real-time crack detection

applications where both precision and speed are critical. Overall,
the ablation study underscored the advantages of the T-Max-
Avg Pooling layer in achieving a well-balanced trade-off between
model accuracy and computational efficiency, making it suitable
for practical deployment in real-time infrastructure monitoring
scenarios.

3.2 Computational efficiency

The recommended U-Net++ model with T-Max-Avg Pooling
showed high computational accuracy and efficiency, making it
appropriate for environments with limited resources or real-time
applications.The feasibility of themodel is analyzed below according
to key performance metrics:

3.2.1 Inference time
The inference time of 21.01 ms per image in the proposed

method is highly promising for real-time monitoring systems. This
speed enables the model to be deployed in applications where
timely feedback is critical such as continuous crack monitoring
using drones or mobile cameras. Real-time crack detection allows
for proactive maintenance, reducing the risk of structural failures.
The efficiency of the model also makes it suitable for deployment
on various platforms. For real-time applications, the hardware
requirements are flexible, ranging from high-performance GPUs
to edge devices with moderate computational capabilities. The low
memory consumption (7.6 GB) and the relatively low computational
requirements (40 GFLOPs) suggest that the model can run
effectively on modern GPUs, high-performance edge devices, and
even resource-constrained environments with optimized settings.
For example, with additional optimization techniques such asmodel
quantization, the model could be deployed on mobile devices or
embedded systems, enabling widespread adoption for infrastructure
health monitoring. Thus, the inference time and computational
efficiency of the proposed method make it very useful for practical
scenarios that demand real-time performance as in drone-based
infrastructure inspections, where processing speed and accuracy
are crucial.

3.2.2 Comparison with other methods
The proposed method consistently outperforms the other

models not only in terms of computational efficiency and inference
time but also with respect to segmentation performance metrics
(e.g., high Dice and precision scores). Models such as EfficientDet
and SegNet provide a moderate computational efficiency. However,
they are not very accurate in crack detection tasks. This makes
the recommended model an optimal choice for environments
which require both high accuracy and real-time performance. The
recommended U-Net++ model with T-Max-Avg Pooling presents
a highly efficient solution for real-time crack detection, balancing
high accuracy with low inference time and moderate memory
consumption. This balance makes it appropriate for deployment
in real-world resource-constrained environments (e.g., embedded
systems, drones, and mobile devices) without compromising crack
detection performance in concrete structures. All parameters are
presented in Table 3. As observed in Figure 5, on identical datasets,
the proposed method had a higher accuracy and a lower error
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rate compared to the other methods. To evaluate the speed of the
proposed method, eight relevant algorithms were run and their
results were compared with those of the proposed method.

4 Discussion

4.1 The limitations of the proposed model

Despite its superior performance over other existingmodels, the
proposed U-Net++ architecture with the T-Max-Avg-Pooling layer
has its own limitations. One noticeable limitation is its potential
difficulty in generalizing to different real-world environments. The
datasets employed for training and validation mostly compromise
controlled images with well-defined crack features. In uncontrolled
environments like those involving various textures, lighting
conditions, or obstructions like debris or dirt, the robustness of
the model could be challenged, reducing its accuracy. Another
limitation of themodel is its high computational requirements. Even
though the proposedmodel is more efficient than other benchmarks
in terms of memory usage and inference speed, deploying it in
environments with very limited memory or processing power like
older constrained embedded systems or mobile devices may still
present some challenges. In these cases, the computational efficiency
of the model might not totally balance the hardware limitations. In
addition, the reliance of the model on high-quality input images
can affect performance in scenarios in which image quality is
compromised owing to suboptimal camera conditions or sensor
limitations. In such cases, identifying fine cracks might be more
challenging, potentially resulting in false negatives or decreased
detection accuracy. Finally, though the T-Max-Avg-Pooling layer
enhances feature robustness and extraction, it is also susceptible to
parameter tuning. Tuning the pooling parameter (T) improperly
may result in suboptimal pooling results, affecting the overall
performance of the model. Further automated tuning strategies
and optimization could decrease this sensitivity.

4.2 Potential scenarios with suboptimal
performance

The proposed method may not have an optimal performance
in scenarios with large environmental variations such as outdoor
inspections where surface and lighting conditions vary extensively.
Moreover, in environments with excessive occlusions or noise,
the model may struggle to differentiate accurately between actual
cracks and irrelevant features. Such challenges highlight the need
for further pre-processing steps or supplementary training data
that consider diverse real-world conditions to further improve the
robustness of the model.

4.3 The analysis of the impact of
environmental factors on the performance
of the model

To evaluate the robustness of the model under various real-
world environmental conditions, some experiments were conducted

to understand how different factors affect the accuracy of crack
detection. The performance of the model was tested against
variations in noise levels, lighting conditions, and surface debris,
which are typical challenges encountered in field applications.

1. Lighting Variations: The model was tested under diverse
lighting conditions, ranging from bright sunlight to low-light
environments. The results demonstrated that under well-lit
conditions, the Dice coefficient was 93.7%, whereas under
dim lighting, it dropped to 89.2%.Thedecrease in accuracywas
primarily due to shadow effects and insufficient visibility which
hindered precise crack segmentation.

2. Noise Levels: A Gaussian noise was added to simulate real-
world scenarios such as interference from dust or sensor
noise. By increasing the noise level, the precision of crack
detection decreased. For instance, at moderate noise levels, the
F1 score dropped from 90.12% to 85.4%. However, using the
T-Max-Avg Pooling layer mitigated some of these effects by
maintaining a balanced representation of the features, resulting
in a better trade-off between precision and noise compared to
traditional pooling techniques.

3. Surface Debris and Occlusions: There is often debris such
as leaves, dirt, or other materials on concrete surfaces that
partially hide the cracks. The recall score of the model
decreased from 94.5% to 88.3% when tested with synthetic
occlusions. The use of dense skip connections in the U-Net++
architecture was helpful to some extent in distinguishing the
cracks from the background noise. However, the performance
was still affected by the occlusion of critical features.

These analyses demonstrated that while the proposed U-Net++
model with T-Max-Avg Pooling performed well under controlled
conditions, its robustness in real-world environments can be
further improved.

5 Conclusion

In this study, an improved U-Net++ architecture featuring the
novel T-Max-AvgPooling layerwas introduced, aiming at enhancing
the efficiency and accuracy of concrete crack detection. The
proposedmodel demonstrated superior results compared to existing
methods, achieving a balanced trade-off between computational
speed, memory efficiency, and detection accuracy. Specifically,
the model achieved an inference time of 21.01 ms per image,
outperforming other well-known models like Mask R-CNN and
Deep Crack. This makes it highly suitable for real-time applications
such as infrastructure monitoring using drones or mobile
platforms. The integration of dense skip connections, learnable
pruning techniques, and the T-Max-Avg Pooling layer improved
feature extraction, robustness, and computational efficiency. The
experiments, which included the Concrete Pavement Crack and
DeepCrack datasets, yielded promising results with an MIoU score
of 82.1%, a precision score of 87.6%, an F1 score of 90.12%, a Dice
loss score of 93.7%, a recall score of 94.5%, and an overall accuracy of
97.65%. These metrics indicated that the proposed architecture not
only enhanced segmentation performance but also made it more
suitable for deployment in resource-constrained environments.
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The proposed U-Net++ architecture, combined with the T-Max-
Avg Pooling layer, showed a great potential for automating the
process of crack detection in concrete structures, thereby improving
maintenance efficiency, reducing manual labor, and minimizing
human error.

5.1 Future works

Future studies can focus on optimizing several specific aspects
of the current U-Net++ architecture to improve its efficiency
and performance. One of the principal goals of future works
can be applying quantization techniques to reduce the size and
computational requirements of the model, making it more suitable
for deployment on edge devices. By changing the parameters of
the model from floating-point level to a lower level of precision,
it is expected that accuracy is maintained while the inference
speed is significantly improved, especially for resource-constrained
environments. Furthermore, the potential of transfer learning in
enhancing the robustness of the crack detection model can be
explored. By pre-training the model on large-scale and diverse
datasets beyond those related to concrete, the ability of the model
to generalize to different types of materials and surface conditions
can be improved. This will involve fine-tuning the model to enable
it to detect cracks in various construction materials, such as asphalt,
brick, and evenmetallic surfaces, expanding its applicability beyond
concrete structures. In addition, the architecture of the model
can be optimized by integrating advanced attention mechanisms.
Particularly, the incorporation of self-attention modules can
improve the focus of the model on the most important areas of
the images, further enhancing its detection performance in complex
scenarios. This improves the ability of the model in detecting fine
details and subtle anomalies, which is vital for accurate structural
evaluations. Finally, the proposed enhancements, including
attention mechanisms, transfer learning, and model quantization,
aim to make the model more efficient and versatile, enabling real-
time crack detection across a wide range of infrastructure conditions
and materials.
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